File: r-tree.lisp

package info (click to toggle)
cl-containers 20170403-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,072 kB
  • ctags: 1,387
  • sloc: lisp: 8,341; makefile: 14
file content (1066 lines) | stat: -rw-r--r-- 43,465 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
(in-package :eksl-utilities)


#|

R-Trees allow dynamic insertion and deletion of multi-dimensional
spatial structures.  The structures are indexed hierarchically in
nodes of some predefined size.  Each node contains a tight minimum
bounding n-dimensional rectangle over its descedants.  Using pruning
techniques, the r-tree can be searched for fast nearest-neighbor queries.

The interface adheres to the eksl containers library.

For Example:

(defparameter *r-tree* (make-container 'r-tree
                                        :max-node-size 5
                                        :dimensions 4))

creates an r-tree with branching factor 5 that expects insertion of 
4-dimensional
items.


(loop for i from 0 to 1000 do
       (insert-item *r-tree* (make-list 4 :initial-element i)))

inserts the points '(i i i i) for i from 0 to 1000 into the r-tree. 
By default,
a list of n numbers is assumed to be a point in n-dimensional space. 
Furthermore, the
minimum bounding rectangle is assumed to be the point itself.  The insert-item
method also accepts an item of type r-tree-item.  This allows one to 
create arbitrary
spatial items that can be bound by an n-dimensional 
minimum-bounding-rectangle.  When using
insert-item with objects of than points, one must explicitly create 
an r-tree-item and
specify its MBR.

(nearest-neighbors *r-tree* '(100 100 100 100) 3)

finds the 3 nearest neighbors of the point (100 100 100)

Sometimes it's important to associate a label with a spatial-object. 
In this case,
the r-tree-labelled-item should be used as follows:

(insert-item *r-tree* (make-container 'r-tree-labelled-item 
spatial-object label
                                       :mbr *the-mbr-for-spatial-object*
                                       :test *the-equality-test*))

In the case of simple points, this can be reduced to:

(insert-item *r-tree* (make-container 'r-tree-labelled-item '(x0 x1 
... xn) the-label))

Nearest neighbor queries on r-trees with labelled items return (point 
label) pairs instead
of just points.


|#

(export '(r-tree-root-node
          r-tree-max-node-size
          r-tree-min-node-size
          r-tree-dimensions
          r-tree-depth
          node-splitting-fn
          nearest-neighbors
          insert-item
          delete-item))

;;; r-tree
(defclass* r-tree (test-container-mixin container-uses-nodes-mixin)
  ((root-node :accessor r-tree-root-node
              :initarg :root-node
              :initform nil
              :type r-tree-node
              :documentation "The root node of the r-tree")
   (max-node-size :accessor r-tree-max-node-size
                  :initarg :max-node-size
                  :type fixnum
                  :documentation "The maximum branching factor of the r-tree")
   (min-node-size :accessor r-tree-min-node-size
                  :initarg :min-node-size
                  :type fixnum
                  :documentation "The minimum branching factor of the r-tree.
                                   Defaults to min(2, floor(max-node-size/2))")
   (node-splitting-fn :accessor node-splitting-fn
                      :initarg :node-splitting-fn
                      :type function
                      :documentation "The function used to split nodes")
   (r-tree-dimensions :accessor r-tree-dimensions
                      :initarg :dimensions
                      :type fixnum)
   (r-tree-size :accessor size
                :initarg r-tree-size
                :initform 0)
   (test #'equal))
  (:documentation "R-Trees are dynamic data structures that allow
quick insertion, deletion and searching of spatial data objects in
multiple dimensions.  max-node-size refers to the number of records a node
can keep before it needs to be split.  min-node-size, likewise, is the minimum
number of records required in a node.")
  :copy-slots)

;;; make-container :: 'r-tree -> ... -> r-tree
(defmethod make-container ((class (eql 'r-tree)) &rest args)
  (apply #'make-r-tree args))

;;; make-r-tree :: fixnum -> fixnum -> r-tree
(defun make-r-tree (&key (max-node-size 5) (dimensions 2)
                         (min-node-size (max (floor (/ max-node-size 2)) 2))
                         (node-splitting-fn #'r-tree-quadratic-split))
  (make-instance 'r-tree
    :max-node-size max-node-size
    :min-node-size min-node-size
    :dimensions dimensions
    :node-splitting-fn node-splitting-fn))

(defmethod print-object ((r-tree r-tree) stream)
  (print-unreadable-object (r-tree stream :type t :identity t)
    (format stream "~A ~A ~A"
            (r-tree-max-node-size r-tree)
            (r-tree-min-node-size r-tree)
            (r-tree-dimensions r-tree))))


(defmethod print-r-tree ((r-tree r-tree) stream)
  (if (r-tree-root-node r-tree)
    (format stream "~A" (r-tree-root-node r-tree))
    (format stream "()")))

;;; r-tree-depth :: r-tree -> fixnum
#+WAIT
(defmethod r-tree-depth ((r-tree r-tree))
  (1- (ceiling (log (size r-tree) (r-tree-min-node-size r-tree)))))

(defmethod r-tree-depth ((r-tree r-tree))
  (aif (r-tree-root-node r-tree)
       (r-tree-node-depth it)
       0))

;;; r-tree-node

;;?? GWK make this a mixin and fix it
(defclass* r-tree-node (vector-container)
  ((parent-node :accessor r-tree-parent-node
                :initform nil
                :initarg :parent-node)
   (parent-record :accessor r-tree-parent-record
                  :initform nil
                  :initarg :parent-record))
  (:documentation "R-Tree nodes contain a number of records")
  :copy-slots)

(defmethod initialize-instance :after ((node r-tree-node) &key records)
  (mapc (curry #'insert-item node) records))

(defgeneric make-r-tree-node-like (node &key)
  (:documentation "An interface for making an r-tree-node like the parameter"))

(defmethod mbr-for-r-tree-node ((node r-tree-node))
  (apply #'add-mbrs (collect-items node :transform #'mbr)))

(defmethod r-tree-internal-node? ((r-tree r-tree-node))
  nil)

(defmethod r-tree-node-depth ((node r-tree-node) &optional (depth 1))
  (r-tree-node-depth (r-tree-next-node (first-item node)) (1+ depth)))


;;; r-tree-root-node? :: r-tree-node -> boolean
(defmethod r-tree-root-node? ((node r-tree-node))
  (null (r-tree-parent-node node)))

;;; r-tree-leaf-node
(defclass* r-tree-leaf-node (r-tree-node)
  ()
  (:documentation "r-tree-leaf-nodes contain only r-tree-items"))

(defmethod make-container ((class (eql 'r-tree-leaf-node)) &rest args)
  (apply #'make-r-tree-leaf-node args))

(defun make-r-tree-leaf-node (&key (records nil) (parent-node nil) 
                                   (parent-record nil))
  (make-instance 'r-tree-leaf-node
    :records records
    :parent-node parent-node
    :parent-record parent-record))

(defmethod make-r-tree-node-like ((node r-tree-leaf-node)
                                  &key (parent-node nil) (parent-record nil))
  (make-container 'r-tree-leaf-node
                  :parent-node parent-node
                  :parent-record parent-record))

(defmethod print-object ((node r-tree-leaf-node) stream)
  (format stream "(~{ ~A~} )~%" (collect-elements node)))

(defmethod r-tree-node-depth ((node r-tree-leaf-node) &optional (depth 1))
  depth)

;;; r-tree-internal-node
(defclass* r-tree-internal-node (r-tree-node)
  ()
  (:documentation "An internal node"))

(defmethod make-container ((class (eql 'r-tree-internal-node)) &rest args)
  (apply #'make-r-tree-internal-node args))

(defun make-r-tree-internal-node (&key (records nil) (parent-node 
                                                      nil) (parent-record nil))
  (make-instance 'r-tree-internal-node
    :records records
    :parent-node parent-node
    :parent-record parent-record))

(defmethod make-r-tree-node-like ((node r-tree-internal-node)
                                  &key (parent-node nil) (parent-record nil))
  (make-container 'r-tree-internal-node
                  :parent-node parent-node
                  :parent-record parent-record))

(defmethod r-tree-internal-node? ((node r-tree-internal-node))
  t)

(defmethod print-object ((node r-tree-internal-node) stream)
  (format stream "(~{~A~})" (mapcar #'r-tree-next-node 
                                    (collect-elements node))))

;;; mbr
(defclass* mbr (array-container)
  ()
  (:documentation "mbr is a minimum-bounding-rectangle in n-dimensions.  The
data structure is an array-container with two rows, the first rows is the
minimum bound; the second is the maximum bound."))

(defmethod make-container ((class (eql 'mbr)) &rest args)
  (apply #'make-mbr args))

(defun make-mbr (&key (minimum nil)
                      (maximum nil)
                      (dimensions (list 2 (length minimum))))
  (make-instance 'mbr
    :minimum minimum
    :maximum maximum
    :dimensions dimensions))

(defmethod initialize-instance :after ((mbr mbr)
                                       &key (minimum nil) (maximum nil))
  (loop for i from 0 to (1- (/ (size mbr) 2))
        for min in minimum
        for max in maximum do
        (item-at! mbr min 0 i)
        (item-at! mbr max 1 i)))

(defmethod min-point ((mbr mbr) (dimension number))
  (item-at mbr 0 dimension))

(defmethod max-point ((mbr mbr) (dimension number))
  (item-at mbr 1 dimension))

;;; iterate-mbrs :: mbr -> mbr -> fn -> t
(defmethod iterate-mbrs ((mbr1 mbr) (mbr2 mbr) fn)
  (loop for i from 0 to (1- (/ (size mbr1) 2)) do
        (funcall fn
                 (item-at mbr1 0 i) (item-at mbr1 1 i)
                 (item-at mbr2 0 i) (item-at mbr2 1 i))))

;;; mbr-dimension-increase :: mbr -> mbr -> fixnum
;;; this method measures the total amount in dimension 'mbr1' needs to be
;;; increased to enclose 'mbr2' completely.
(defmethod mbr-size-increase ((mbr1 mbr) (mbr2 mbr))
  (loop for i from 0 to (1- (/ (size mbr1) 2)) sum
        (+ (max 0 (- (item-at mbr1 0 i) (item-at mbr2 0 i)))
           (max 0 (- (item-at mbr2 1 i) (item-at mbr1 1 i))))))

;;; mbr-area-increase :: mbr -> mbr -> fixnum
;;; reports the total area mbr1 would be increased so that it completely
;;; encloses mbr2
(defmethod mbr-area-increase ((mbr1 mbr) (mbr2 mbr))
  (- (mbr-area (add-mbrs mbr1 mbr2)) (mbr-area mbr1)))

;;; mbr-area :: mbr -> fixnum
(defmethod mbr-area ((mbr mbr))
  (loop for i from 0 to (1- (/ (size mbr) 2))
        with total-area = 1 do
        (setf total-area (* total-area (- (item-at mbr 1 i) (item-at mbr 0 i))))
        finally (return total-area)))

;;; add-mbr :: mbr -> mbr -> mbr-mixin
(defmethod add-mbrs ((mbr mbr) &rest mbrs)
  (let ((result (make-container 'mbr :dimensions (list 2 (/ (size mbr) 2))))
        (mbrs (push mbr mbrs)))
    (loop for i from 0 to (1- (/ (size mbr) 2)) do
          (item-at! result (reduce #'min
                                   (mapcar (curry-after #'item-at 0 
                                                        i) mbrs)) 0 i)
          (item-at! result (reduce #'max
                                   (mapcar (curry-after #'item-at 1 
                                                        i) mbrs)) 1 i))
    result))

;;; overlap-mbr? :: mbr -> mbr -> boolean
;;; if mbr1 overlaps mbr2, then return true, otherwise return false
;;; overlap means that mbr1 completely contains mbr2
(defmethod overlap-mbr? ((mbr1 mbr) (mbr2 mbr))
  (iterate-mbrs mbr1 mbr2 #'(lambda (min1 max1 min2 max2)
                              (when (or (< min2 min1) (> max2 max1))
                                (return-from overlap-mbr? nil))))
  t)


;;; record-mixin
(defclass* record-mixin (copyable-mixin)
  ((mbr :accessor mbr
        :initarg :mbr
        :type mbr))
  (:documentation "r-tree records and r-tree-items are both records, so
we need to abstract out their equivalence.")
  :copy-slots)

;;; r-tree-record
(defclass* r-tree-record (record-mixin container-node-mixin)
  ((next :accessor r-tree-next-node
         :initarg :next))
  (:documentation "An r-tree record contains a pointer to the nodes below it
and the minimum-bounding-rectangle of those nodes.")
  :copy-slots)

(defmethod make-container ((class (eql 'r-tree-record)) &rest args)
  (apply #'make-r-tree-record args))

(defun make-r-tree-record (&rest args)
  (apply #'make-instance 'r-tree-record args))

(defmethod insert-item :after ((node r-tree-node) (item r-tree-record))
  (setf (r-tree-parent-node (r-tree-next-node item)) node)
  (setf (r-tree-parent-record (r-tree-next-node item)) item))


;;; label-mixin
(defclass* label-mixin (copyable-mixin)
  ((label :accessor label
          :initarg :label))
  (:documentation "provides a label slot")
  :copy-slots)

;;; r-tree-item
(defclass* r-tree-item (record-mixin)
  ((spatial-object :accessor spatial-object
                   :initarg :spatial-object
                   :type t)
   (test :accessor r-tree-item-test
         :initarg :test
         :type function))
  (:documentation "An r-tree item is a spatial-object with and its
minimum-bounding-rectangle.")
  :copy-slots)

(defmethod make-container ((class (eql 'r-tree-item)) &rest args)
  (apply #'make-r-tree-item args))


(defmethod initialize-instance :after ((item r-tree-item) &key)
  (unless (and (slot-boundp item 'mbr)
               (mbr item))
    (setf (mbr item) (make-container 'mbr
                                     :minimum (spatial-object item)
                                     :maximum (spatial-object item)))))

(defun make-r-tree-item (spatial-object &key (mbr nil) (test #'equal))
  (make-instance 'r-tree-item
    :spatial-object spatial-object
    :test test
    :mbr mbr))

(defmethod print-object ((item r-tree-item) stream)
  (print-unreadable-object (item stream :type t :identity t)
    (format stream "~A" (spatial-object item))))


;;; r-tree-labelled-item
(defclass* r-tree-labelled-item (r-tree-item label-mixin)
  ()
  (:documentation "When using r-trees for nearest-neighbor classification it is
often necessary to label each spatial object.  This item provides a slot for
such a label.")
  :copy-slots)

(defmethod make-container ((class (eql 'r-tree-labelled-item)) &rest args)
  (apply #'make-r-tree-labelled-item args))

(defun make-r-tree-labelled-item (spatial-object label &key (mbr nil) 
                                                 (test #'equal))
  (make-instance 'r-tree-labelled-item
    :spatial-object spatial-object
    :label label
    :test test
    :mbr mbr))

;;; insert-item :: r-tree -> (fixnum) -> r-tree
(defmethod insert-item ((r-tree r-tree) (item list))
  (insert-item r-tree (make-container 'r-tree-item item)))

;;; insert-item :: r-tree -> record record-mixin -> r-tree
;;; insert-item* inserts the record in the r-tree, but we also need to record
;;; the the size increase, hence the incf
(defmethod insert-item ((r-tree r-tree) (record record-mixin))
  (incf (size r-tree))
  (insert-item* r-tree record))

;;; insert-item* :: r-tree -> record-mixin -> r-tree
(defmethod insert-item* ((r-tree r-tree) (record record-mixin))
  (let ((node (choose-r-tree-node r-tree record)))
    (insert-item node record)
    (multiple-value-call #'adjust-r-tree r-tree (split-r-tree-node 
                                                 r-tree node)))
  r-tree)

;;; delete-item :: r-tree -> (t) -> r-tree
(defmethod delete-item ((r-tree r-tree) (item list))
  (delete-item r-tree (make-container 'r-tree-item item)))

;;; delete-item :: r-tree -> r-tree-item -> r-tree
(defmethod delete-item ((r-tree r-tree) (item r-tree-item))
  (multiple-value-bind (node record) (find-leaf-node r-tree item)
    (when node
      (delete-item node record)
      (decf (size r-tree))
      (condense-r-tree r-tree node)
      (when (and (= (size (r-tree-root-node r-tree)) 1)
                 (r-tree-internal-node? (r-tree-root-node r-tree)))
        (setf (r-tree-root-node r-tree)
              (r-tree-next-node (first-item (r-tree-root-node r-tree))))
        (setf (r-tree-parent-node (r-tree-root-node r-tree)) nil)
        (setf (r-tree-parent-record (r-tree-root-node r-tree)) nil))))
  r-tree)


;;; find-leaf-node :: r-tree -> r-tree-item -> r-tree-leaf-node
(defmethod find-leaf-node ((r-tree r-tree) (item r-tree-item))
  (awhen (r-tree-root-node r-tree)
    (find-leaf-node it item)))

;;; find-leaf-node :: r-tree-internal-node -> r-tree-item -> r-tree-leaf-node
(defmethod find-leaf-node ((node r-tree-internal-node) (item r-tree-item)) 
  (iterate-container node 
                     #'(lambda (record) 
                         (when (overlap-mbr? (mbr record) (mbr item)) 
                           (multiple-value-bind 
                             (n r) (find-leaf-node (r-tree-next-node record) item) 
                             (when n 
                               (return-from find-leaf-node (values n r))))))) 
  nil) 

#+OLD
(defmethod find-leaf-node ((node r-tree-internal-node) (item r-tree-item))
  (iterate-container node
                     #'(lambda (record)
                         (when (overlap-mbr? (mbr record) (mbr item))
                           (return-from find-leaf-node
                             (find-leaf-node (r-tree-next-node 
                                              record) item)))))
  nil)



;;; find-leaf-node :: r-tree-leaf-node -> r-tree-item -> r-tree-leaf-node
(defmethod find-leaf-node ((node r-tree-leaf-node) (item r-tree-item))
  (iterate-container node #'(lambda (record)
                              (when (and (overlap-mbr? (mbr record) (mbr item))
                                         (funcall (r-tree-item-test item)
                                                  (spatial-object record)
                                                  (spatial-object item)))
                                (return-from find-leaf-node (values 
                                                             node record)))))
  nil)

;;; condense-r-tree :: r-tree -> r-tree-node -> (t) ->
(defmethod condense-r-tree ((r-tree r-tree) (node r-tree-node) 
                            &optional (records nil))
  (if (r-tree-root-node? node)
    (progn
      (format t "~%CONDENSE-R-TREE:  RECORDS = ~{~A~%~}~%" records)
      (mapc (curry #'insert-item* r-tree) records))
    (let ((parent (r-tree-parent-node node))
          (record (r-tree-parent-record node)))
      (cond
       ((< (size node) (r-tree-min-node-size r-tree))
        (delete-item parent record)
        (if (r-tree-internal-node? node)
          (setf records (nconc (collect-elements node) records))
          (setf records (nconc records (collect-elements node)))))
       (t (setf (mbr record) (mbr-for-r-tree-node node))))
      (condense-r-tree r-tree parent records))))



;;; choose-r-tree-node :: r-tree -> r-tree-item -> r-tree-leaf-node
;;; Invoked from the top of the tree, calls choose-leaf with the root node
(defmethod choose-r-tree-node ((r-tree r-tree) (item r-tree-item))
  (aif (r-tree-root-node r-tree)
       (choose-r-tree-node it item)
       (setf (r-tree-root-node r-tree)
             (make-container 'r-tree-leaf-node))))

;;; choose-r-tree-node :: r-tree -> r-tree-record -> r-tree-internal-node
;;; This finds
(defmethod choose-r-tree-node ((r-tree r-tree) (record r-tree-record))
  (let ((tree-depth (r-tree-depth r-tree)))
    (labels ((choose-r-tree-node* (node record current-depth record-depth)
               (if (= (- tree-depth current-depth) record-depth)
                 node
                 (choose-r-tree-node* (r-tree-next-node 
                                       (choose-best-fit node record))
                                      record
                                      (1+ current-depth)
                                      record-depth))))
      (choose-r-tree-node* (r-tree-root-node r-tree)
                           record
                           1
                           (r-tree-node-depth (r-tree-next-node record))))))

;;; choose-r-tree-node :: r-tree-leaf-node -> r-tree-item -> r-tree-leaf-node
(defmethod choose-r-tree-node ((node r-tree-leaf-node) (item r-tree-item))
  (declare (ignore item))
  node)

;;; choose-r-tree-node :: r-tree-internal-node -> r-tree-item -> r-tree-leaf-node
(defmethod choose-r-tree-node ((node r-tree-internal-node) (item r-tree-item))
  (choose-r-tree-node (r-tree-next-node (choose-best-fit node item)) item))


;;; choose-best-fit :: r-tree-internal-node -> record-mixin -> r-tree-node
;;; choose-best-fit finds the node record that requires the least expansion
;;; of it's minimum-bounding-rectangle to insert the record.  When ties
;;; occur, the record with the least area is favored.  If the areas are
;;; identical, then choose arbitrarily.
(defmethod choose-best-fit ((node r-tree-internal-node) (record record-mixin))
  (loop for i from 1 to (1- (size node))
        with best-fit = (first-item node)
        with best-fit-area = (mbr-area (mbr best-fit))
        with best-fit-increase = (mbr-area-increase (mbr best-fit) 
                                                    (mbr record)) do
        (awhen (item-at node i)
          (let ((increase (mbr-area-increase (mbr it) (mbr record)))
                (area (mbr-area (mbr it))))
            (when (or (< increase best-fit-increase)
                      (and (= increase best-fit-increase)
                           (> best-fit-area area)))
              (setf best-fit-increase increase)
              (setf best-fit it)
              (setf best-fit-area area))))
        finally (return best-fit)))

;;; split-r-tree-node :: r-tree -> r-tree-node -> r-tree-node r-tree-node
(defmethod split-r-tree-node ((r-tree r-tree) (node r-tree-node))
  (if (> (size node) (r-tree-max-node-size r-tree))
    (funcall (node-splitting-fn r-tree) r-tree node)
    node))

;;; r-tree-quadratic-split :: r-tree -> r-tree-node -> r-tree-node r-tree-node
(defmethod r-tree-quadratic-split ((r-tree r-tree) (node r-tree-node))
  (let ((left (make-r-tree-node-like node
                                     :parent-node (r-tree-parent-node node)
                                     :parent-record 
                                     (r-tree-parent-record node)))
        (right (make-r-tree-node-like node
                                      :parent-node (r-tree-parent-node node)
                                      :parent-record 
                                      (r-tree-parent-record node))))
    (multiple-value-bind  (rec1 rec2) (pick-node-seeds node)
      (delete-item node rec1)
      (delete-item node rec2)
      (insert-item left rec1)
      (insert-item right rec2))
    (pick-remaining-nodes r-tree node left right)))

;;; pick-node-seeds :: r-tree-node -> r-tree-record r-tree-record
;;; return the pair of records r1 and r2 that maximize:
;;;   area(mbr(r1),mbr(r2)) - area(mbr(r1)) - area(mbr(r2))
(defmethod pick-node-seeds ((node r-tree-node))
  (flet ((area-fn (rec1 rec2)
           (- (mbr-area (add-mbrs (mbr rec1) (mbr rec2)))
              (mbr-area (mbr rec1)) (mbr-area (mbr rec2)))))
    (loop for i from 0 to (1- (size node))
          with seed1 = (first-item node)
          with seed2 = (item-at node 1)
          with area = (area-fn seed1 seed2) do
          (loop for j from 1 to (1- (size node))
                with record1 = (item-at node i) do
                (let* ((record2 (item-at node j))
                       (val (area-fn record1 record2)))
                  (when (> val area)
                    (setf area val)
                    (setf seed1 record1)
                    (setf seed2 record2))))
          finally (return (values seed1 seed2)))))

;;; pick-and-insert-next-node :: r-tree-node -> r-tree-node -> r-tree-node
(defmethod pick-and-insert-next-node ((node r-tree-node) (left r-tree-node)
                                      (right r-tree-node))
  (loop for i from 1 to (1- (size node))
        with mbr-left = (mbr-for-r-tree-node left)
        with mbr-right = (mbr-for-r-tree-node right)
        with record = (first-item node)
        with left-increase = (mbr-area-increase mbr-left (mbr record))
        with right-increase = (mbr-area-increase mbr-right (mbr record))
        with max-diff = (abs (- left-increase right-increase)) do
        (let* ((nextrecord (item-at node i))
               (left-increase* (mbr-area-increase mbr-left (mbr nextrecord)))
               (right-increase* (mbr-area-increase mbr-right (mbr nextrecord)))
               (val (abs (- left-increase right-increase))))
          (when (> val max-diff)
            (setf max-diff val)
            (setf left-increase left-increase*)
            (setf right-increase right-increase*)
            (setf record nextrecord)))
        finally (progn
                  (delete-item node record)
                  (if (< left-increase right-increase)
                    (insert-item left record)
                    (insert-item right record)))))


;;; pick-remaining-node :: r-tree -> r-tree-node -> r-tree-node ->
;;;                        r-tree-node -> r-tree-node r-tree-node
(defmethod pick-remaining-nodes ((r-tree r-tree) (node r-tree-node)
                                 (left r-tree-node) (right r-tree-node))
  (cond
   ((finished-quadratic-split? r-tree node left right) (values left right))
   (t (pick-and-insert-next-node node left right)
      (pick-remaining-nodes r-tree node left right))))


;;; finished-quadratic-split? :: r-tree -> r-tree-node -> r-tree-node ->
;;;                              r-tree-node -> boolean
(defmethod finished-quadratic-split? ((r-tree r-tree) (node r-tree-node)
                                      (left r-tree-node) (right r-tree-node))
  (cond
   ((empty-p node) t)
   ((= (+ (size node) (size left)) (r-tree-min-node-size r-tree))
    (iterate-container node (curry #'insert-item left))
    (empty! node)
    t)
   ((= (+ (size node) (size right)) (r-tree-min-node-size r-tree))
    (iterate-container node (curry #'insert-item right))
    (empty! node)
    t)
   (t nil)))

;;; adjust-r-tree :: r-tree -> r-tree-node -> r-tree-node -> r-tree
(defmethod adjust-r-tree ((r-tree r-tree) (left r-tree-node) &optional right)
  (if (r-tree-root-node? left)
    (if right
      (let* ((lrecord (make-container 'r-tree-record
                                      :next left
                                      :mbr (mbr-for-r-tree-node left)))
             (rrecord (make-container 'r-tree-record
                                      :next right
                                      :mbr (mbr-for-r-tree-node right)))
             (newroot (make-container 'r-tree-internal-node
                                      :records (list lrecord rrecord))))
        (setf (r-tree-parent-node left) newroot)
        (setf (r-tree-parent-record left) lrecord)
        (setf (r-tree-parent-node right) newroot)
        (setf (r-tree-parent-record right) rrecord)
        (setf (r-tree-root-node r-tree) newroot)
        r-tree)
      r-tree)
    (let ((parent (r-tree-parent-node left))
          (record (r-tree-parent-record left)))
      (setf (mbr record) (mbr-for-r-tree-node left))
      (setf (r-tree-next-node record) left)
      (when right
        (insert-item parent (make-container 'r-tree-record
                                            :next right
                                            :mbr (mbr-for-r-tree-node right))))
      (multiple-value-call #'adjust-r-tree r-tree (split-r-tree-node 
                                                   r-tree parent)))))



;;;
;;;                     NEAREST-NEIGHBOR
;;;

(defparameter *nnscount* 0)
(defparameter *promise-pruning* t)


;;; nearest-neighbor-node-mixin
(defclass* nearest-neighbor-node-mixin (copyable-mixin)
  ((neighbor-distance :accessor neighbor-distance
             :initarg :neighbor-distance))
  (:documentation "Base class of nearest-neighbor nodes and promises")
  :copy-slots)

;;; promise 
(defclass* promise (nearest-neighbor-node-mixin)
  ()
  (:documentation "Promises are placed holders in the kbest heap"))

(defun make-promise (distance)
  (make-instance 'promise 
    :neighbor-distance distance))

(defmethod make-container ((class (eql 'promise)) &rest args)
  (apply #'make-promise args))

(defmethod print-object ((n promise) stream)
  (print-unreadable-object (n stream :type t :identity t)
    (format stream "~A" (neighbor-distance n))))

;;; promise-record 

(defclass* promise-record (r-tree-record)
  ((promise :accessor promise
            :initarg :promise))
  (:documentation "Promise records are used when the MinMaxDist pruning
technique is used.  A promised record simply adds a slot to the record
that stores a pointer to a promise.")
  :copy-slots)

(defmethod make-promise-record ((record r-tree-record) promise)
  (make-instance 'promise-record
    :next (r-tree-next-node record)
    :mbr (mbr record)
    :promise promise))

(defmethod make-container ((class (eql 'promise-record)) &rest args)
  (apply #'make-promise-record args))

(defmethod promise-record? ((pr promise-record)) t)

(defmethod promise-record? ((obj t)) nil)

;;; nearest-neighbor-node
(defclass* nearest-neighbor-node (nearest-neighbor-node-mixin)
  ((spatial-object :accessor spatial-object
                   :initarg :spatial-object
                   :initform nil)
   (mbr :accessor mbr
        :initarg :mbr))
  (:documentation "nearest-neighbor-node objects store branch and bound
search information when doing a recursive descent of an r-tree.")
  :copy-slots)

(defmethod make-container ((class (eql 'nearest-neighbor-node)) &rest args)
  (apply #'make-nearest-neighbor-node args))

(defun make-nearest-neighbor-node (&rest args)
  (apply #'make-instance 'nearest-neighbor-node args))

(defmethod r-tree-item->nearest-neighbor-node ((item r-tree-item) distance)
  (make-container 'nearest-neighbor-node
                  :mbr (mbr item)
                  :spatial-object (spatial-object item)
                  :neighbor-distance distance))

(defmethod nearest-neighbor-node-return-value ((node nearest-neighbor-node))
  (spatial-object node))


(defmethod print-object ((n nearest-neighbor-node) stream)
  (print-unreadable-object (n stream :type t :identity t)
    (format stream "~A ~A" (neighbor-distance n) (spatial-object n))))

;;; nearest-neighbor-node
(defclass* labelled-nearest-neighbor-node (nearest-neighbor-node label-mixin)
  ()
  (:documentation "An analagous nearest-neighbor-node class for 
labelled items."))

(defmethod make-container ((class (eql 
                                   'labelled-nearest-neighbor-node)) &rest args)
  (apply #'make-labelled-nearest-neighbor-node args))

(defun make-labelled-nearest-neighbor-node (&rest args)
  (apply #'make-instance 'labelled-nearest-neighbor-node args))

(defmethod r-tree-item->nearest-neighbor-node ((item r-tree-labelled-item) distance)
  (make-container 'labelled-nearest-neighbor-node
                  :mbr (mbr item)
                  :spatial-object (spatial-object item)
                  :label (label item)
                  :neighbor-distance distance))

(defmethod nearest-neighbor-node-return-value ((node 
                                                labelled-nearest-neighbor-node))
  (list (spatial-object node) (label node)))



;;; nearest-neighbor-node-sorter :: nearest-nighbor-node ->
;;;                                 nearest-neighbor-node -> boolean
(defmethod nearest-neighbor-sorter ((nn1 nearest-neighbor-node-mixin)
                                    (nn2 nearest-neighbor-node-mixin))
  (> (neighbor-distance nn1) (neighbor-distance nn2)))

;;; nearest-neighbors :: (t) -> fixnum -> (t)
(defmethod nearest-neighbors ((r-tree r-tree) (item list) k &key (promise-pruning t))
  (nearest-neighbors r-tree (make-container 'r-tree-item item) k
                     :promise-pruning promise-pruning))

;;; nearest-neighbors :: r-tree -> r-tree-item -> fixnum -> (t)
;;; Some explanation on the 'sort' call here:
;;; Since heaps are just vectors, and collect-items iterates through
;;; the vector, we won't get the nearest-neighbor items in their sorted order.
;;; We could write a new collect-items method for heaps, but that would require
;;; not side afffecting the current heap, so we'd have to copy each element
;;; out and put it in a new heap (so the heap-node objects don't change) and
;;; then pop the biggest item off the top.  This seems a bit too much work
;;; for something we don't guarentee of collect-items anyway, so using
;;; sort is a workable and clean solution
(defmethod nearest-neighbors ((r-tree r-tree) (item r-tree-item) k
                              &key (promise-pruning t))
  (setf *promise-pruning* promise-pruning)
  (setf *nnscount* 0)
  (aif (r-tree-root-node r-tree)
       (let ((neighbors (make-container 'heap-container
                                        :sorter #'nearest-neighbor-sorter)))
         (nearest-neighbor-search it item neighbors k)
         (values
           (collect-items neighbors :transform 
                          #'nearest-neighbor-node-return-value)
          *nnscount*))
       (values nil 0)))

#+WAIT
(defmethod nearest-neighbors ((r-tree r-tree) (item r-tree-item) k
                              &key (promise-pruning t))
  (setf *promise-pruning* promise-pruning)
  (setf *nnscount* 0)
  (aif (r-tree-root-node r-tree)
       (let ((neighbors (make-container 'heap-container
                                        :sorter #'nearest-neighbor-sorter)))
         (nearest-neighbor-search it item neighbors k)
         (values
          (sort
           (collect-items neighbors :transform 
                          #'nearest-neighbor-node-return-value)
           #'< 
           :key (curry #'euclidean-distance* (spatial-object item)))
          *nnscount*))
       (values nil 0)))

;;; minimum-distance-metric :: r-tree-item -> mbr -> fixnum
(defmethod minimum-distance-metric ((item r-tree-item) (mbr mbr))
  (loop for i from 0 to (1- (/ (size mbr) 2))
        for p in (spatial-object item) sum
        (let* ((min (min-point mbr i))
               (max (max-point mbr i)))
          (cond
           ((< p min) (euclidean-distance* p min))
           ((> p max) (euclidean-distance* p max))
           (t 0.0)))))

;;; minimum-distance-metric :: r-tree-item -> r-tree-record -> fixnum
(defmethod minimum-distance-metric ((item r-tree-item) (record r-tree-record))
  (minimum-distance-metric item (mbr record)))

;;; min-maximum-distance-metric :: r-tree-item -> r-tree-record -> fixnum
(defmethod min-maximum-distance-metric ((item r-tree-item) (record 
                                                            r-tree-record))
  (min-maximum-distance-metric item (mbr record)))

;;; min-maximum-distance-metric :: r-tree-item -> mbr -> fixnum
(defmethod min-maximum-distance-metric ((item r-tree-item) (mbr mbr))
  (flet ((closest-hyperplane (p min max)
           (if (<= p (/ (+ min max) 2.0)) min max))
         (furthest-hyperplane (p min max)
           (if (>= p (/ (+ min max) 2.0)) min max)))
    (loop for i from 0 to (1- (/ (size mbr) 2))
          for p in (spatial-object item)
          with s = (loop for i from 0 to (1- (/ (size mbr) 2))
                         for p in (spatial-object item) sum
                         (expt (- p (furthest-hyperplane p (min-point mbr i)
                                                         (max-point 
                                                          mbr i))) 2))
          minimize
          (+ (- s (expt (- p (furthest-hyperplane p (min-point mbr i) 
                                                  (max-point mbr i))) 2))
             (expt (- p (closest-hyperplane p (min-point mbr i) 
                                            (max-point mbr i))) 2)))))


;;; euclidean-distance :: r-tree-item -> r-tree-item -> float
(defmethod euclidean-distance ((item r-tree-item) (item2 r-tree-item))
  (sqrt (euclidean-distance* item item2)))

;;; euclidean-distance :: (float) -> (float) -> float
(defmethod euclidean-distance ((pt-0 list) (pt-1 list))
  (sqrt (euclidean-distance* pt-0 pt-1)))

;;; euclidean-distance* :: number -> number -> float
(defmethod euclidean-distance* ((pt-0 number) (pt-1 number))
  (expt (- pt-1 pt-0) 2))

;;; euclidean-distance :: number -> number -> float
(defmethod euclidean-distance ((pt-0 number) (pt-1 number))
  (sqrt (euclidean-distance* pt-0 pt-1)))

;;; euclidean-distance* :: r-tree-item -> r-tree-item -> float
;;; Just like euclidean-distance but without the square root
(defmethod euclidean-distance* ((item r-tree-item) (item2 r-tree-item))
  (euclidean-distance* (spatial-object item) (spatial-object item2)))

;;; euclidean-distance* :: (fixnum) -> (fixnum) -> float
;;; Just like euclidean-distance but without the square root
(defmethod euclidean-distance* ((pt-0 list) (pt-1 list))
  (loop for x in pt-0
        for y in pt-1 sum
        (expt (- x y) 2)))

;;; euclidean-distance* :: r-tree-item -> (fixnum) -> float
(defmethod euclidean-distance* ((item r-tree-item) (item2 list))
  (euclidean-distance* (spatial-object item) item2))


(defmethod euclidean-distance* ((item list) (item2 r-tree-item))
  (euclidean-distance* item (spatial-object item2)))


;;; sort-branch-list :: (r-tree-records) -> r-tree-item -> fn -> (r-tree-records)
(defmethod sort-branch-list ((records list) (item r-tree-item)
                             &key (key (curry #'minimum-distance-metric item)))
  (sort records #'< :key key))


;;; nearest-neighbor-search :: r-tree-leaf-node -> r-tree-item ->
;;;                            heap-container -> number -> nil
;;; When we reach a leaf node, we add the spatial object is it is better than
;;; our worst nearest-neighbor estimates so far, or if we don't have enough
;;; nearest-neighbor estimates yet.
(defmethod nearest-neighbor-search ((node r-tree-leaf-node) (item r-tree-item)
                                    (neighbors heap-container) k)
  (incf *nnscount*)
  (flet ((add-item (item distance)
           (insert-item neighbors (r-tree-item->nearest-neighbor-node 
                                   item distance))))
    (iterate-container node #'(lambda (item2)
                                (let ((distance 
                                       (euclidean-distance* item item2)))
                                  (cond
                                   ((< (size neighbors) k)
                                    (add-item item2 distance))
                                   ((<= distance (neighbor-distance 
                                                  (biggest-item neighbors)))
                                    (delete-biggest-item neighbors)
                                    (add-item item2 distance))
                                   (t nil))))))
  nil)


;;; nearest-neighbor-search :: r-tree-internal-node -> r-tree-item ->
;;;                            heap-container -> number -> nil
(defmethod nearest-neighbor-search ((node r-tree-internal-node) (item r-tree-item)
                                    (neighbors heap-container) k)
  (incf *nnscount*)
  (labels ((helper (records)
             (when records
               (let ((record (first records)))
                 (when (and (promise-record? record)
                            (heap-node-index (promise record)))
                   (delete-item neighbors (promise record)))
                 (when (or (< (size neighbors) k)
                           (< (minimum-distance-metric item record)
                               (neighbor-distance (biggest-item neighbors))))
                   (nearest-neighbor-search (r-tree-next-node record) item neighbors k))
                 (helper (rest records))))))
    (if *promise-pruning*
      (helper (apply-promise-pruning 
               (sort-branch-list (collect-elements node) item) item neighbors k))
      (helper (sort-branch-list (collect-elements node) item)))))

;;; apply-promise-pruning
(defmethod apply-promise-pruning ((records list) (item r-tree-item)
                                  (neighbors heap-container) k)
  (cons (first records)
  (mapcar #'(lambda (record)
              (let ((minmax (min-maximum-distance-metric item record)))
                (cond 
                 ((or (< (size neighbors) k)
                      (< minmax (neighbor-distance (biggest-item neighbors))))
                  (unless (< (size neighbors) k)
                    (delete-biggest-item neighbors))
                  (multiple-value-bind
                    (heap promise) (insert-item neighbors (make-container 'promise minmax))
                    (declare (ignore heap))
                    (make-container 'promise-record record promise)))
                 (t record))))
          (rest records))))

  
#|

OLD STUFF FOR ORIGINAL 1995 ALGORITHM...

;;; nearest-neighbor-search :: r-tree-internal-node -> r-tree-item ->
;;;                            heap-container -> number -> nil
;;; ---------------------------------------------------------------------------\
#+OLD
(defmethod nearest-neighbor-search ((node r-tree-internal-node) (item r-tree-item)
                                    (neighbors heap-container))
  (labels ((helper (records)
             (when records
               (let ((rec (first records))
                     (others (rest records)))
                 (nearest-neighbor-search (r-tree-next-node rec) item 
                                          neighbors k)
                 (helper (prune-up-branch-list others item neighbors k))))))
    (helper (prune-down-branch-list
             (sort-branch-list (collect-elements node) item) item 
             neighbors k))))


;;; prune-down-branch-list :: (r-tree-record) -> r-tree-item ->
;;;                           heap-container -> number -> (r-tree-record)
(defmethod prune-down-branch-list ((records list) (item r-tree-item)
                                   (neighbors heap-container) k)
  (cond
   ((/= k (size neighbors)) records)
   (t (prune-down-branches records item neighbors))))


;;; prune-up-branch-list :: (r-tree-record) -> r-tree-item ->
;;;                         heap-container -> number -> (r-tree-record)
(defmethod prune-up-branch-list ((records list) (item r-tree-item)
                                 (neighbors heap-container) k)
  (cond
   ((/= k (size neighbors)) records)
   (t (prune-up-branches records item neighbors))))

;;; prune-down-branches :: (r-tree-record) -> r-tree-item -> heap-container ->
;;;                        (r-tree-record)
;;; prune records from our list that have min-distance greater than
;;; min-max-distance of some other record, if that min-distance is greater
;;; than the distance of the farthest node
(defmethod prune-down-branches ((records list) (item r-tree-item)
                                (neighbors heap-container))
  (let ((min-minmax (apply #'min (mapcar
                                  (curry #'min-maximum-distance-metric item)
                                  records))))
    (delete-if #'(lambda (record)
                   (let ((min (minimum-distance-metric item record)))
                     (and (> min min-minmax)
                          (> min (neighbor-distance (biggest-item neighbors))))))
               records)))

;;; prune-up-branches :: (r-tree-record) -> r-tree-item -> heap-container ->
;;;                      (r-tree-record)
(defmethod prune-up-branches ((records list) (item r-tree-item)
                              (neighbors heap-container))
  (let ((min-dist (neighbor-distance (biggest-item neighbors))))
    (delete-if-not #'(lambda (record)
                       (< (minimum-distance-metric item record) min-dist))
                   records)))

|#