1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
|
(in-package :eksl-utilities)
#|
R-Trees allow dynamic insertion and deletion of multi-dimensional
spatial structures. The structures are indexed hierarchically in
nodes of some predefined size. Each node contains a tight minimum
bounding n-dimensional rectangle over its descedants. Using pruning
techniques, the r-tree can be searched for fast nearest-neighbor queries.
The interface adheres to the eksl containers library.
For Example:
(defparameter *r-tree* (make-container 'r-tree
:max-node-size 5
:dimensions 4))
creates an r-tree with branching factor 5 that expects insertion of
4-dimensional
items.
(loop for i from 0 to 1000 do
(insert-item *r-tree* (make-list 4 :initial-element i)))
inserts the points '(i i i i) for i from 0 to 1000 into the r-tree.
By default,
a list of n numbers is assumed to be a point in n-dimensional space.
Furthermore, the
minimum bounding rectangle is assumed to be the point itself. The insert-item
method also accepts an item of type r-tree-item. This allows one to
create arbitrary
spatial items that can be bound by an n-dimensional
minimum-bounding-rectangle. When using
insert-item with objects of than points, one must explicitly create
an r-tree-item and
specify its MBR.
(nearest-neighbors *r-tree* '(100 100 100 100) 3)
finds the 3 nearest neighbors of the point (100 100 100)
Sometimes it's important to associate a label with a spatial-object.
In this case,
the r-tree-labelled-item should be used as follows:
(insert-item *r-tree* (make-container 'r-tree-labelled-item
spatial-object label
:mbr *the-mbr-for-spatial-object*
:test *the-equality-test*))
In the case of simple points, this can be reduced to:
(insert-item *r-tree* (make-container 'r-tree-labelled-item '(x0 x1
... xn) the-label))
Nearest neighbor queries on r-trees with labelled items return (point
label) pairs instead
of just points.
|#
(export '(r-tree-root-node
r-tree-max-node-size
r-tree-min-node-size
r-tree-dimensions
r-tree-depth
node-splitting-fn
nearest-neighbors
insert-item
delete-item))
;;; r-tree
(defclass* r-tree (test-container-mixin container-uses-nodes-mixin)
((root-node :accessor r-tree-root-node
:initarg :root-node
:initform nil
:type r-tree-node
:documentation "The root node of the r-tree")
(max-node-size :accessor r-tree-max-node-size
:initarg :max-node-size
:type fixnum
:documentation "The maximum branching factor of the r-tree")
(min-node-size :accessor r-tree-min-node-size
:initarg :min-node-size
:type fixnum
:documentation "The minimum branching factor of the r-tree.
Defaults to min(2, floor(max-node-size/2))")
(node-splitting-fn :accessor node-splitting-fn
:initarg :node-splitting-fn
:type function
:documentation "The function used to split nodes")
(r-tree-dimensions :accessor r-tree-dimensions
:initarg :dimensions
:type fixnum)
(r-tree-size :accessor size
:initarg r-tree-size
:initform 0)
(test #'equal))
(:documentation "R-Trees are dynamic data structures that allow
quick insertion, deletion and searching of spatial data objects in
multiple dimensions. max-node-size refers to the number of records a node
can keep before it needs to be split. min-node-size, likewise, is the minimum
number of records required in a node.")
:copy-slots)
;;; make-container :: 'r-tree -> ... -> r-tree
(defmethod make-container ((class (eql 'r-tree)) &rest args)
(apply #'make-r-tree args))
;;; make-r-tree :: fixnum -> fixnum -> r-tree
(defun make-r-tree (&key (max-node-size 5) (dimensions 2)
(min-node-size (max (floor (/ max-node-size 2)) 2))
(node-splitting-fn #'r-tree-quadratic-split))
(make-instance 'r-tree
:max-node-size max-node-size
:min-node-size min-node-size
:dimensions dimensions
:node-splitting-fn node-splitting-fn))
(defmethod print-object ((r-tree r-tree) stream)
(print-unreadable-object (r-tree stream :type t :identity t)
(format stream "~A ~A ~A"
(r-tree-max-node-size r-tree)
(r-tree-min-node-size r-tree)
(r-tree-dimensions r-tree))))
(defmethod print-r-tree ((r-tree r-tree) stream)
(if (r-tree-root-node r-tree)
(format stream "~A" (r-tree-root-node r-tree))
(format stream "()")))
;;; r-tree-depth :: r-tree -> fixnum
#+WAIT
(defmethod r-tree-depth ((r-tree r-tree))
(1- (ceiling (log (size r-tree) (r-tree-min-node-size r-tree)))))
(defmethod r-tree-depth ((r-tree r-tree))
(aif (r-tree-root-node r-tree)
(r-tree-node-depth it)
0))
;;; r-tree-node
;;?? GWK make this a mixin and fix it
(defclass* r-tree-node (vector-container)
((parent-node :accessor r-tree-parent-node
:initform nil
:initarg :parent-node)
(parent-record :accessor r-tree-parent-record
:initform nil
:initarg :parent-record))
(:documentation "R-Tree nodes contain a number of records")
:copy-slots)
(defmethod initialize-instance :after ((node r-tree-node) &key records)
(mapc (curry #'insert-item node) records))
(defgeneric make-r-tree-node-like (node &key)
(:documentation "An interface for making an r-tree-node like the parameter"))
(defmethod mbr-for-r-tree-node ((node r-tree-node))
(apply #'add-mbrs (collect-items node :transform #'mbr)))
(defmethod r-tree-internal-node? ((r-tree r-tree-node))
nil)
(defmethod r-tree-node-depth ((node r-tree-node) &optional (depth 1))
(r-tree-node-depth (r-tree-next-node (first-item node)) (1+ depth)))
;;; r-tree-root-node? :: r-tree-node -> boolean
(defmethod r-tree-root-node? ((node r-tree-node))
(null (r-tree-parent-node node)))
;;; r-tree-leaf-node
(defclass* r-tree-leaf-node (r-tree-node)
()
(:documentation "r-tree-leaf-nodes contain only r-tree-items"))
(defmethod make-container ((class (eql 'r-tree-leaf-node)) &rest args)
(apply #'make-r-tree-leaf-node args))
(defun make-r-tree-leaf-node (&key (records nil) (parent-node nil)
(parent-record nil))
(make-instance 'r-tree-leaf-node
:records records
:parent-node parent-node
:parent-record parent-record))
(defmethod make-r-tree-node-like ((node r-tree-leaf-node)
&key (parent-node nil) (parent-record nil))
(make-container 'r-tree-leaf-node
:parent-node parent-node
:parent-record parent-record))
(defmethod print-object ((node r-tree-leaf-node) stream)
(format stream "(~{ ~A~} )~%" (collect-elements node)))
(defmethod r-tree-node-depth ((node r-tree-leaf-node) &optional (depth 1))
depth)
;;; r-tree-internal-node
(defclass* r-tree-internal-node (r-tree-node)
()
(:documentation "An internal node"))
(defmethod make-container ((class (eql 'r-tree-internal-node)) &rest args)
(apply #'make-r-tree-internal-node args))
(defun make-r-tree-internal-node (&key (records nil) (parent-node
nil) (parent-record nil))
(make-instance 'r-tree-internal-node
:records records
:parent-node parent-node
:parent-record parent-record))
(defmethod make-r-tree-node-like ((node r-tree-internal-node)
&key (parent-node nil) (parent-record nil))
(make-container 'r-tree-internal-node
:parent-node parent-node
:parent-record parent-record))
(defmethod r-tree-internal-node? ((node r-tree-internal-node))
t)
(defmethod print-object ((node r-tree-internal-node) stream)
(format stream "(~{~A~})" (mapcar #'r-tree-next-node
(collect-elements node))))
;;; mbr
(defclass* mbr (array-container)
()
(:documentation "mbr is a minimum-bounding-rectangle in n-dimensions. The
data structure is an array-container with two rows, the first rows is the
minimum bound; the second is the maximum bound."))
(defmethod make-container ((class (eql 'mbr)) &rest args)
(apply #'make-mbr args))
(defun make-mbr (&key (minimum nil)
(maximum nil)
(dimensions (list 2 (length minimum))))
(make-instance 'mbr
:minimum minimum
:maximum maximum
:dimensions dimensions))
(defmethod initialize-instance :after ((mbr mbr)
&key (minimum nil) (maximum nil))
(loop for i from 0 to (1- (/ (size mbr) 2))
for min in minimum
for max in maximum do
(item-at! mbr min 0 i)
(item-at! mbr max 1 i)))
(defmethod min-point ((mbr mbr) (dimension number))
(item-at mbr 0 dimension))
(defmethod max-point ((mbr mbr) (dimension number))
(item-at mbr 1 dimension))
;;; iterate-mbrs :: mbr -> mbr -> fn -> t
(defmethod iterate-mbrs ((mbr1 mbr) (mbr2 mbr) fn)
(loop for i from 0 to (1- (/ (size mbr1) 2)) do
(funcall fn
(item-at mbr1 0 i) (item-at mbr1 1 i)
(item-at mbr2 0 i) (item-at mbr2 1 i))))
;;; mbr-dimension-increase :: mbr -> mbr -> fixnum
;;; this method measures the total amount in dimension 'mbr1' needs to be
;;; increased to enclose 'mbr2' completely.
(defmethod mbr-size-increase ((mbr1 mbr) (mbr2 mbr))
(loop for i from 0 to (1- (/ (size mbr1) 2)) sum
(+ (max 0 (- (item-at mbr1 0 i) (item-at mbr2 0 i)))
(max 0 (- (item-at mbr2 1 i) (item-at mbr1 1 i))))))
;;; mbr-area-increase :: mbr -> mbr -> fixnum
;;; reports the total area mbr1 would be increased so that it completely
;;; encloses mbr2
(defmethod mbr-area-increase ((mbr1 mbr) (mbr2 mbr))
(- (mbr-area (add-mbrs mbr1 mbr2)) (mbr-area mbr1)))
;;; mbr-area :: mbr -> fixnum
(defmethod mbr-area ((mbr mbr))
(loop for i from 0 to (1- (/ (size mbr) 2))
with total-area = 1 do
(setf total-area (* total-area (- (item-at mbr 1 i) (item-at mbr 0 i))))
finally (return total-area)))
;;; add-mbr :: mbr -> mbr -> mbr-mixin
(defmethod add-mbrs ((mbr mbr) &rest mbrs)
(let ((result (make-container 'mbr :dimensions (list 2 (/ (size mbr) 2))))
(mbrs (push mbr mbrs)))
(loop for i from 0 to (1- (/ (size mbr) 2)) do
(item-at! result (reduce #'min
(mapcar (curry-after #'item-at 0
i) mbrs)) 0 i)
(item-at! result (reduce #'max
(mapcar (curry-after #'item-at 1
i) mbrs)) 1 i))
result))
;;; overlap-mbr? :: mbr -> mbr -> boolean
;;; if mbr1 overlaps mbr2, then return true, otherwise return false
;;; overlap means that mbr1 completely contains mbr2
(defmethod overlap-mbr? ((mbr1 mbr) (mbr2 mbr))
(iterate-mbrs mbr1 mbr2 #'(lambda (min1 max1 min2 max2)
(when (or (< min2 min1) (> max2 max1))
(return-from overlap-mbr? nil))))
t)
;;; record-mixin
(defclass* record-mixin (copyable-mixin)
((mbr :accessor mbr
:initarg :mbr
:type mbr))
(:documentation "r-tree records and r-tree-items are both records, so
we need to abstract out their equivalence.")
:copy-slots)
;;; r-tree-record
(defclass* r-tree-record (record-mixin container-node-mixin)
((next :accessor r-tree-next-node
:initarg :next))
(:documentation "An r-tree record contains a pointer to the nodes below it
and the minimum-bounding-rectangle of those nodes.")
:copy-slots)
(defmethod make-container ((class (eql 'r-tree-record)) &rest args)
(apply #'make-r-tree-record args))
(defun make-r-tree-record (&rest args)
(apply #'make-instance 'r-tree-record args))
(defmethod insert-item :after ((node r-tree-node) (item r-tree-record))
(setf (r-tree-parent-node (r-tree-next-node item)) node)
(setf (r-tree-parent-record (r-tree-next-node item)) item))
;;; label-mixin
(defclass* label-mixin (copyable-mixin)
((label :accessor label
:initarg :label))
(:documentation "provides a label slot")
:copy-slots)
;;; r-tree-item
(defclass* r-tree-item (record-mixin)
((spatial-object :accessor spatial-object
:initarg :spatial-object
:type t)
(test :accessor r-tree-item-test
:initarg :test
:type function))
(:documentation "An r-tree item is a spatial-object with and its
minimum-bounding-rectangle.")
:copy-slots)
(defmethod make-container ((class (eql 'r-tree-item)) &rest args)
(apply #'make-r-tree-item args))
(defmethod initialize-instance :after ((item r-tree-item) &key)
(unless (and (slot-boundp item 'mbr)
(mbr item))
(setf (mbr item) (make-container 'mbr
:minimum (spatial-object item)
:maximum (spatial-object item)))))
(defun make-r-tree-item (spatial-object &key (mbr nil) (test #'equal))
(make-instance 'r-tree-item
:spatial-object spatial-object
:test test
:mbr mbr))
(defmethod print-object ((item r-tree-item) stream)
(print-unreadable-object (item stream :type t :identity t)
(format stream "~A" (spatial-object item))))
;;; r-tree-labelled-item
(defclass* r-tree-labelled-item (r-tree-item label-mixin)
()
(:documentation "When using r-trees for nearest-neighbor classification it is
often necessary to label each spatial object. This item provides a slot for
such a label.")
:copy-slots)
(defmethod make-container ((class (eql 'r-tree-labelled-item)) &rest args)
(apply #'make-r-tree-labelled-item args))
(defun make-r-tree-labelled-item (spatial-object label &key (mbr nil)
(test #'equal))
(make-instance 'r-tree-labelled-item
:spatial-object spatial-object
:label label
:test test
:mbr mbr))
;;; insert-item :: r-tree -> (fixnum) -> r-tree
(defmethod insert-item ((r-tree r-tree) (item list))
(insert-item r-tree (make-container 'r-tree-item item)))
;;; insert-item :: r-tree -> record record-mixin -> r-tree
;;; insert-item* inserts the record in the r-tree, but we also need to record
;;; the the size increase, hence the incf
(defmethod insert-item ((r-tree r-tree) (record record-mixin))
(incf (size r-tree))
(insert-item* r-tree record))
;;; insert-item* :: r-tree -> record-mixin -> r-tree
(defmethod insert-item* ((r-tree r-tree) (record record-mixin))
(let ((node (choose-r-tree-node r-tree record)))
(insert-item node record)
(multiple-value-call #'adjust-r-tree r-tree (split-r-tree-node
r-tree node)))
r-tree)
;;; delete-item :: r-tree -> (t) -> r-tree
(defmethod delete-item ((r-tree r-tree) (item list))
(delete-item r-tree (make-container 'r-tree-item item)))
;;; delete-item :: r-tree -> r-tree-item -> r-tree
(defmethod delete-item ((r-tree r-tree) (item r-tree-item))
(multiple-value-bind (node record) (find-leaf-node r-tree item)
(when node
(delete-item node record)
(decf (size r-tree))
(condense-r-tree r-tree node)
(when (and (= (size (r-tree-root-node r-tree)) 1)
(r-tree-internal-node? (r-tree-root-node r-tree)))
(setf (r-tree-root-node r-tree)
(r-tree-next-node (first-item (r-tree-root-node r-tree))))
(setf (r-tree-parent-node (r-tree-root-node r-tree)) nil)
(setf (r-tree-parent-record (r-tree-root-node r-tree)) nil))))
r-tree)
;;; find-leaf-node :: r-tree -> r-tree-item -> r-tree-leaf-node
(defmethod find-leaf-node ((r-tree r-tree) (item r-tree-item))
(awhen (r-tree-root-node r-tree)
(find-leaf-node it item)))
;;; find-leaf-node :: r-tree-internal-node -> r-tree-item -> r-tree-leaf-node
(defmethod find-leaf-node ((node r-tree-internal-node) (item r-tree-item))
(iterate-container node
#'(lambda (record)
(when (overlap-mbr? (mbr record) (mbr item))
(multiple-value-bind
(n r) (find-leaf-node (r-tree-next-node record) item)
(when n
(return-from find-leaf-node (values n r)))))))
nil)
#+OLD
(defmethod find-leaf-node ((node r-tree-internal-node) (item r-tree-item))
(iterate-container node
#'(lambda (record)
(when (overlap-mbr? (mbr record) (mbr item))
(return-from find-leaf-node
(find-leaf-node (r-tree-next-node
record) item)))))
nil)
;;; find-leaf-node :: r-tree-leaf-node -> r-tree-item -> r-tree-leaf-node
(defmethod find-leaf-node ((node r-tree-leaf-node) (item r-tree-item))
(iterate-container node #'(lambda (record)
(when (and (overlap-mbr? (mbr record) (mbr item))
(funcall (r-tree-item-test item)
(spatial-object record)
(spatial-object item)))
(return-from find-leaf-node (values
node record)))))
nil)
;;; condense-r-tree :: r-tree -> r-tree-node -> (t) ->
(defmethod condense-r-tree ((r-tree r-tree) (node r-tree-node)
&optional (records nil))
(if (r-tree-root-node? node)
(progn
(format t "~%CONDENSE-R-TREE: RECORDS = ~{~A~%~}~%" records)
(mapc (curry #'insert-item* r-tree) records))
(let ((parent (r-tree-parent-node node))
(record (r-tree-parent-record node)))
(cond
((< (size node) (r-tree-min-node-size r-tree))
(delete-item parent record)
(if (r-tree-internal-node? node)
(setf records (nconc (collect-elements node) records))
(setf records (nconc records (collect-elements node)))))
(t (setf (mbr record) (mbr-for-r-tree-node node))))
(condense-r-tree r-tree parent records))))
;;; choose-r-tree-node :: r-tree -> r-tree-item -> r-tree-leaf-node
;;; Invoked from the top of the tree, calls choose-leaf with the root node
(defmethod choose-r-tree-node ((r-tree r-tree) (item r-tree-item))
(aif (r-tree-root-node r-tree)
(choose-r-tree-node it item)
(setf (r-tree-root-node r-tree)
(make-container 'r-tree-leaf-node))))
;;; choose-r-tree-node :: r-tree -> r-tree-record -> r-tree-internal-node
;;; This finds
(defmethod choose-r-tree-node ((r-tree r-tree) (record r-tree-record))
(let ((tree-depth (r-tree-depth r-tree)))
(labels ((choose-r-tree-node* (node record current-depth record-depth)
(if (= (- tree-depth current-depth) record-depth)
node
(choose-r-tree-node* (r-tree-next-node
(choose-best-fit node record))
record
(1+ current-depth)
record-depth))))
(choose-r-tree-node* (r-tree-root-node r-tree)
record
1
(r-tree-node-depth (r-tree-next-node record))))))
;;; choose-r-tree-node :: r-tree-leaf-node -> r-tree-item -> r-tree-leaf-node
(defmethod choose-r-tree-node ((node r-tree-leaf-node) (item r-tree-item))
(declare (ignore item))
node)
;;; choose-r-tree-node :: r-tree-internal-node -> r-tree-item -> r-tree-leaf-node
(defmethod choose-r-tree-node ((node r-tree-internal-node) (item r-tree-item))
(choose-r-tree-node (r-tree-next-node (choose-best-fit node item)) item))
;;; choose-best-fit :: r-tree-internal-node -> record-mixin -> r-tree-node
;;; choose-best-fit finds the node record that requires the least expansion
;;; of it's minimum-bounding-rectangle to insert the record. When ties
;;; occur, the record with the least area is favored. If the areas are
;;; identical, then choose arbitrarily.
(defmethod choose-best-fit ((node r-tree-internal-node) (record record-mixin))
(loop for i from 1 to (1- (size node))
with best-fit = (first-item node)
with best-fit-area = (mbr-area (mbr best-fit))
with best-fit-increase = (mbr-area-increase (mbr best-fit)
(mbr record)) do
(awhen (item-at node i)
(let ((increase (mbr-area-increase (mbr it) (mbr record)))
(area (mbr-area (mbr it))))
(when (or (< increase best-fit-increase)
(and (= increase best-fit-increase)
(> best-fit-area area)))
(setf best-fit-increase increase)
(setf best-fit it)
(setf best-fit-area area))))
finally (return best-fit)))
;;; split-r-tree-node :: r-tree -> r-tree-node -> r-tree-node r-tree-node
(defmethod split-r-tree-node ((r-tree r-tree) (node r-tree-node))
(if (> (size node) (r-tree-max-node-size r-tree))
(funcall (node-splitting-fn r-tree) r-tree node)
node))
;;; r-tree-quadratic-split :: r-tree -> r-tree-node -> r-tree-node r-tree-node
(defmethod r-tree-quadratic-split ((r-tree r-tree) (node r-tree-node))
(let ((left (make-r-tree-node-like node
:parent-node (r-tree-parent-node node)
:parent-record
(r-tree-parent-record node)))
(right (make-r-tree-node-like node
:parent-node (r-tree-parent-node node)
:parent-record
(r-tree-parent-record node))))
(multiple-value-bind (rec1 rec2) (pick-node-seeds node)
(delete-item node rec1)
(delete-item node rec2)
(insert-item left rec1)
(insert-item right rec2))
(pick-remaining-nodes r-tree node left right)))
;;; pick-node-seeds :: r-tree-node -> r-tree-record r-tree-record
;;; return the pair of records r1 and r2 that maximize:
;;; area(mbr(r1),mbr(r2)) - area(mbr(r1)) - area(mbr(r2))
(defmethod pick-node-seeds ((node r-tree-node))
(flet ((area-fn (rec1 rec2)
(- (mbr-area (add-mbrs (mbr rec1) (mbr rec2)))
(mbr-area (mbr rec1)) (mbr-area (mbr rec2)))))
(loop for i from 0 to (1- (size node))
with seed1 = (first-item node)
with seed2 = (item-at node 1)
with area = (area-fn seed1 seed2) do
(loop for j from 1 to (1- (size node))
with record1 = (item-at node i) do
(let* ((record2 (item-at node j))
(val (area-fn record1 record2)))
(when (> val area)
(setf area val)
(setf seed1 record1)
(setf seed2 record2))))
finally (return (values seed1 seed2)))))
;;; pick-and-insert-next-node :: r-tree-node -> r-tree-node -> r-tree-node
(defmethod pick-and-insert-next-node ((node r-tree-node) (left r-tree-node)
(right r-tree-node))
(loop for i from 1 to (1- (size node))
with mbr-left = (mbr-for-r-tree-node left)
with mbr-right = (mbr-for-r-tree-node right)
with record = (first-item node)
with left-increase = (mbr-area-increase mbr-left (mbr record))
with right-increase = (mbr-area-increase mbr-right (mbr record))
with max-diff = (abs (- left-increase right-increase)) do
(let* ((nextrecord (item-at node i))
(left-increase* (mbr-area-increase mbr-left (mbr nextrecord)))
(right-increase* (mbr-area-increase mbr-right (mbr nextrecord)))
(val (abs (- left-increase right-increase))))
(when (> val max-diff)
(setf max-diff val)
(setf left-increase left-increase*)
(setf right-increase right-increase*)
(setf record nextrecord)))
finally (progn
(delete-item node record)
(if (< left-increase right-increase)
(insert-item left record)
(insert-item right record)))))
;;; pick-remaining-node :: r-tree -> r-tree-node -> r-tree-node ->
;;; r-tree-node -> r-tree-node r-tree-node
(defmethod pick-remaining-nodes ((r-tree r-tree) (node r-tree-node)
(left r-tree-node) (right r-tree-node))
(cond
((finished-quadratic-split? r-tree node left right) (values left right))
(t (pick-and-insert-next-node node left right)
(pick-remaining-nodes r-tree node left right))))
;;; finished-quadratic-split? :: r-tree -> r-tree-node -> r-tree-node ->
;;; r-tree-node -> boolean
(defmethod finished-quadratic-split? ((r-tree r-tree) (node r-tree-node)
(left r-tree-node) (right r-tree-node))
(cond
((empty-p node) t)
((= (+ (size node) (size left)) (r-tree-min-node-size r-tree))
(iterate-container node (curry #'insert-item left))
(empty! node)
t)
((= (+ (size node) (size right)) (r-tree-min-node-size r-tree))
(iterate-container node (curry #'insert-item right))
(empty! node)
t)
(t nil)))
;;; adjust-r-tree :: r-tree -> r-tree-node -> r-tree-node -> r-tree
(defmethod adjust-r-tree ((r-tree r-tree) (left r-tree-node) &optional right)
(if (r-tree-root-node? left)
(if right
(let* ((lrecord (make-container 'r-tree-record
:next left
:mbr (mbr-for-r-tree-node left)))
(rrecord (make-container 'r-tree-record
:next right
:mbr (mbr-for-r-tree-node right)))
(newroot (make-container 'r-tree-internal-node
:records (list lrecord rrecord))))
(setf (r-tree-parent-node left) newroot)
(setf (r-tree-parent-record left) lrecord)
(setf (r-tree-parent-node right) newroot)
(setf (r-tree-parent-record right) rrecord)
(setf (r-tree-root-node r-tree) newroot)
r-tree)
r-tree)
(let ((parent (r-tree-parent-node left))
(record (r-tree-parent-record left)))
(setf (mbr record) (mbr-for-r-tree-node left))
(setf (r-tree-next-node record) left)
(when right
(insert-item parent (make-container 'r-tree-record
:next right
:mbr (mbr-for-r-tree-node right))))
(multiple-value-call #'adjust-r-tree r-tree (split-r-tree-node
r-tree parent)))))
;;;
;;; NEAREST-NEIGHBOR
;;;
(defparameter *nnscount* 0)
(defparameter *promise-pruning* t)
;;; nearest-neighbor-node-mixin
(defclass* nearest-neighbor-node-mixin (copyable-mixin)
((neighbor-distance :accessor neighbor-distance
:initarg :neighbor-distance))
(:documentation "Base class of nearest-neighbor nodes and promises")
:copy-slots)
;;; promise
(defclass* promise (nearest-neighbor-node-mixin)
()
(:documentation "Promises are placed holders in the kbest heap"))
(defun make-promise (distance)
(make-instance 'promise
:neighbor-distance distance))
(defmethod make-container ((class (eql 'promise)) &rest args)
(apply #'make-promise args))
(defmethod print-object ((n promise) stream)
(print-unreadable-object (n stream :type t :identity t)
(format stream "~A" (neighbor-distance n))))
;;; promise-record
(defclass* promise-record (r-tree-record)
((promise :accessor promise
:initarg :promise))
(:documentation "Promise records are used when the MinMaxDist pruning
technique is used. A promised record simply adds a slot to the record
that stores a pointer to a promise.")
:copy-slots)
(defmethod make-promise-record ((record r-tree-record) promise)
(make-instance 'promise-record
:next (r-tree-next-node record)
:mbr (mbr record)
:promise promise))
(defmethod make-container ((class (eql 'promise-record)) &rest args)
(apply #'make-promise-record args))
(defmethod promise-record? ((pr promise-record)) t)
(defmethod promise-record? ((obj t)) nil)
;;; nearest-neighbor-node
(defclass* nearest-neighbor-node (nearest-neighbor-node-mixin)
((spatial-object :accessor spatial-object
:initarg :spatial-object
:initform nil)
(mbr :accessor mbr
:initarg :mbr))
(:documentation "nearest-neighbor-node objects store branch and bound
search information when doing a recursive descent of an r-tree.")
:copy-slots)
(defmethod make-container ((class (eql 'nearest-neighbor-node)) &rest args)
(apply #'make-nearest-neighbor-node args))
(defun make-nearest-neighbor-node (&rest args)
(apply #'make-instance 'nearest-neighbor-node args))
(defmethod r-tree-item->nearest-neighbor-node ((item r-tree-item) distance)
(make-container 'nearest-neighbor-node
:mbr (mbr item)
:spatial-object (spatial-object item)
:neighbor-distance distance))
(defmethod nearest-neighbor-node-return-value ((node nearest-neighbor-node))
(spatial-object node))
(defmethod print-object ((n nearest-neighbor-node) stream)
(print-unreadable-object (n stream :type t :identity t)
(format stream "~A ~A" (neighbor-distance n) (spatial-object n))))
;;; nearest-neighbor-node
(defclass* labelled-nearest-neighbor-node (nearest-neighbor-node label-mixin)
()
(:documentation "An analagous nearest-neighbor-node class for
labelled items."))
(defmethod make-container ((class (eql
'labelled-nearest-neighbor-node)) &rest args)
(apply #'make-labelled-nearest-neighbor-node args))
(defun make-labelled-nearest-neighbor-node (&rest args)
(apply #'make-instance 'labelled-nearest-neighbor-node args))
(defmethod r-tree-item->nearest-neighbor-node ((item r-tree-labelled-item) distance)
(make-container 'labelled-nearest-neighbor-node
:mbr (mbr item)
:spatial-object (spatial-object item)
:label (label item)
:neighbor-distance distance))
(defmethod nearest-neighbor-node-return-value ((node
labelled-nearest-neighbor-node))
(list (spatial-object node) (label node)))
;;; nearest-neighbor-node-sorter :: nearest-nighbor-node ->
;;; nearest-neighbor-node -> boolean
(defmethod nearest-neighbor-sorter ((nn1 nearest-neighbor-node-mixin)
(nn2 nearest-neighbor-node-mixin))
(> (neighbor-distance nn1) (neighbor-distance nn2)))
;;; nearest-neighbors :: (t) -> fixnum -> (t)
(defmethod nearest-neighbors ((r-tree r-tree) (item list) k &key (promise-pruning t))
(nearest-neighbors r-tree (make-container 'r-tree-item item) k
:promise-pruning promise-pruning))
;;; nearest-neighbors :: r-tree -> r-tree-item -> fixnum -> (t)
;;; Some explanation on the 'sort' call here:
;;; Since heaps are just vectors, and collect-items iterates through
;;; the vector, we won't get the nearest-neighbor items in their sorted order.
;;; We could write a new collect-items method for heaps, but that would require
;;; not side afffecting the current heap, so we'd have to copy each element
;;; out and put it in a new heap (so the heap-node objects don't change) and
;;; then pop the biggest item off the top. This seems a bit too much work
;;; for something we don't guarentee of collect-items anyway, so using
;;; sort is a workable and clean solution
(defmethod nearest-neighbors ((r-tree r-tree) (item r-tree-item) k
&key (promise-pruning t))
(setf *promise-pruning* promise-pruning)
(setf *nnscount* 0)
(aif (r-tree-root-node r-tree)
(let ((neighbors (make-container 'heap-container
:sorter #'nearest-neighbor-sorter)))
(nearest-neighbor-search it item neighbors k)
(values
(collect-items neighbors :transform
#'nearest-neighbor-node-return-value)
*nnscount*))
(values nil 0)))
#+WAIT
(defmethod nearest-neighbors ((r-tree r-tree) (item r-tree-item) k
&key (promise-pruning t))
(setf *promise-pruning* promise-pruning)
(setf *nnscount* 0)
(aif (r-tree-root-node r-tree)
(let ((neighbors (make-container 'heap-container
:sorter #'nearest-neighbor-sorter)))
(nearest-neighbor-search it item neighbors k)
(values
(sort
(collect-items neighbors :transform
#'nearest-neighbor-node-return-value)
#'<
:key (curry #'euclidean-distance* (spatial-object item)))
*nnscount*))
(values nil 0)))
;;; minimum-distance-metric :: r-tree-item -> mbr -> fixnum
(defmethod minimum-distance-metric ((item r-tree-item) (mbr mbr))
(loop for i from 0 to (1- (/ (size mbr) 2))
for p in (spatial-object item) sum
(let* ((min (min-point mbr i))
(max (max-point mbr i)))
(cond
((< p min) (euclidean-distance* p min))
((> p max) (euclidean-distance* p max))
(t 0.0)))))
;;; minimum-distance-metric :: r-tree-item -> r-tree-record -> fixnum
(defmethod minimum-distance-metric ((item r-tree-item) (record r-tree-record))
(minimum-distance-metric item (mbr record)))
;;; min-maximum-distance-metric :: r-tree-item -> r-tree-record -> fixnum
(defmethod min-maximum-distance-metric ((item r-tree-item) (record
r-tree-record))
(min-maximum-distance-metric item (mbr record)))
;;; min-maximum-distance-metric :: r-tree-item -> mbr -> fixnum
(defmethod min-maximum-distance-metric ((item r-tree-item) (mbr mbr))
(flet ((closest-hyperplane (p min max)
(if (<= p (/ (+ min max) 2.0)) min max))
(furthest-hyperplane (p min max)
(if (>= p (/ (+ min max) 2.0)) min max)))
(loop for i from 0 to (1- (/ (size mbr) 2))
for p in (spatial-object item)
with s = (loop for i from 0 to (1- (/ (size mbr) 2))
for p in (spatial-object item) sum
(expt (- p (furthest-hyperplane p (min-point mbr i)
(max-point
mbr i))) 2))
minimize
(+ (- s (expt (- p (furthest-hyperplane p (min-point mbr i)
(max-point mbr i))) 2))
(expt (- p (closest-hyperplane p (min-point mbr i)
(max-point mbr i))) 2)))))
;;; euclidean-distance :: r-tree-item -> r-tree-item -> float
(defmethod euclidean-distance ((item r-tree-item) (item2 r-tree-item))
(sqrt (euclidean-distance* item item2)))
;;; euclidean-distance :: (float) -> (float) -> float
(defmethod euclidean-distance ((pt-0 list) (pt-1 list))
(sqrt (euclidean-distance* pt-0 pt-1)))
;;; euclidean-distance* :: number -> number -> float
(defmethod euclidean-distance* ((pt-0 number) (pt-1 number))
(expt (- pt-1 pt-0) 2))
;;; euclidean-distance :: number -> number -> float
(defmethod euclidean-distance ((pt-0 number) (pt-1 number))
(sqrt (euclidean-distance* pt-0 pt-1)))
;;; euclidean-distance* :: r-tree-item -> r-tree-item -> float
;;; Just like euclidean-distance but without the square root
(defmethod euclidean-distance* ((item r-tree-item) (item2 r-tree-item))
(euclidean-distance* (spatial-object item) (spatial-object item2)))
;;; euclidean-distance* :: (fixnum) -> (fixnum) -> float
;;; Just like euclidean-distance but without the square root
(defmethod euclidean-distance* ((pt-0 list) (pt-1 list))
(loop for x in pt-0
for y in pt-1 sum
(expt (- x y) 2)))
;;; euclidean-distance* :: r-tree-item -> (fixnum) -> float
(defmethod euclidean-distance* ((item r-tree-item) (item2 list))
(euclidean-distance* (spatial-object item) item2))
(defmethod euclidean-distance* ((item list) (item2 r-tree-item))
(euclidean-distance* item (spatial-object item2)))
;;; sort-branch-list :: (r-tree-records) -> r-tree-item -> fn -> (r-tree-records)
(defmethod sort-branch-list ((records list) (item r-tree-item)
&key (key (curry #'minimum-distance-metric item)))
(sort records #'< :key key))
;;; nearest-neighbor-search :: r-tree-leaf-node -> r-tree-item ->
;;; heap-container -> number -> nil
;;; When we reach a leaf node, we add the spatial object is it is better than
;;; our worst nearest-neighbor estimates so far, or if we don't have enough
;;; nearest-neighbor estimates yet.
(defmethod nearest-neighbor-search ((node r-tree-leaf-node) (item r-tree-item)
(neighbors heap-container) k)
(incf *nnscount*)
(flet ((add-item (item distance)
(insert-item neighbors (r-tree-item->nearest-neighbor-node
item distance))))
(iterate-container node #'(lambda (item2)
(let ((distance
(euclidean-distance* item item2)))
(cond
((< (size neighbors) k)
(add-item item2 distance))
((<= distance (neighbor-distance
(biggest-item neighbors)))
(delete-biggest-item neighbors)
(add-item item2 distance))
(t nil))))))
nil)
;;; nearest-neighbor-search :: r-tree-internal-node -> r-tree-item ->
;;; heap-container -> number -> nil
(defmethod nearest-neighbor-search ((node r-tree-internal-node) (item r-tree-item)
(neighbors heap-container) k)
(incf *nnscount*)
(labels ((helper (records)
(when records
(let ((record (first records)))
(when (and (promise-record? record)
(heap-node-index (promise record)))
(delete-item neighbors (promise record)))
(when (or (< (size neighbors) k)
(< (minimum-distance-metric item record)
(neighbor-distance (biggest-item neighbors))))
(nearest-neighbor-search (r-tree-next-node record) item neighbors k))
(helper (rest records))))))
(if *promise-pruning*
(helper (apply-promise-pruning
(sort-branch-list (collect-elements node) item) item neighbors k))
(helper (sort-branch-list (collect-elements node) item)))))
;;; apply-promise-pruning
(defmethod apply-promise-pruning ((records list) (item r-tree-item)
(neighbors heap-container) k)
(cons (first records)
(mapcar #'(lambda (record)
(let ((minmax (min-maximum-distance-metric item record)))
(cond
((or (< (size neighbors) k)
(< minmax (neighbor-distance (biggest-item neighbors))))
(unless (< (size neighbors) k)
(delete-biggest-item neighbors))
(multiple-value-bind
(heap promise) (insert-item neighbors (make-container 'promise minmax))
(declare (ignore heap))
(make-container 'promise-record record promise)))
(t record))))
(rest records))))
#|
OLD STUFF FOR ORIGINAL 1995 ALGORITHM...
;;; nearest-neighbor-search :: r-tree-internal-node -> r-tree-item ->
;;; heap-container -> number -> nil
;;; ---------------------------------------------------------------------------\
#+OLD
(defmethod nearest-neighbor-search ((node r-tree-internal-node) (item r-tree-item)
(neighbors heap-container))
(labels ((helper (records)
(when records
(let ((rec (first records))
(others (rest records)))
(nearest-neighbor-search (r-tree-next-node rec) item
neighbors k)
(helper (prune-up-branch-list others item neighbors k))))))
(helper (prune-down-branch-list
(sort-branch-list (collect-elements node) item) item
neighbors k))))
;;; prune-down-branch-list :: (r-tree-record) -> r-tree-item ->
;;; heap-container -> number -> (r-tree-record)
(defmethod prune-down-branch-list ((records list) (item r-tree-item)
(neighbors heap-container) k)
(cond
((/= k (size neighbors)) records)
(t (prune-down-branches records item neighbors))))
;;; prune-up-branch-list :: (r-tree-record) -> r-tree-item ->
;;; heap-container -> number -> (r-tree-record)
(defmethod prune-up-branch-list ((records list) (item r-tree-item)
(neighbors heap-container) k)
(cond
((/= k (size neighbors)) records)
(t (prune-up-branches records item neighbors))))
;;; prune-down-branches :: (r-tree-record) -> r-tree-item -> heap-container ->
;;; (r-tree-record)
;;; prune records from our list that have min-distance greater than
;;; min-max-distance of some other record, if that min-distance is greater
;;; than the distance of the farthest node
(defmethod prune-down-branches ((records list) (item r-tree-item)
(neighbors heap-container))
(let ((min-minmax (apply #'min (mapcar
(curry #'min-maximum-distance-metric item)
records))))
(delete-if #'(lambda (record)
(let ((min (minimum-distance-metric item record)))
(and (> min min-minmax)
(> min (neighbor-distance (biggest-item neighbors))))))
records)))
;;; prune-up-branches :: (r-tree-record) -> r-tree-item -> heap-container ->
;;; (r-tree-record)
(defmethod prune-up-branches ((records list) (item r-tree-item)
(neighbors heap-container))
(let ((min-dist (neighbor-distance (biggest-item neighbors))))
(delete-if-not #'(lambda (record)
(< (minimum-distance-metric item record) min-dist))
records)))
|#
|