1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
(in-package #:containers)
;;; generic tree classes
;;; tree-container
(defclass* abstract-tree-container (abstract-container) ())
;;; rooted-tree-container ::
(defclass* rooted-tree-container (abstract-tree-container)
((root nil ia))
(:documentation "Base class of all trees with roots."))
(defclass* many-child-node (container-node-mixin
iteratable-container-mixin)
())
(defmethod iterate-children ((node many-child-node) fn)
(iterate-nodes node fn))
(defmethod has-children-p ((node many-child-node))
(iterate-children
node
(lambda (v)
(declare (ignore v))
(return-from has-children-p t)))
(values nil))
(defmethod find-child-node ((node many-child-node) child
&key (test #'eq) (key #'identity))
(find child (children node) :test test :key key))
(defclass* many-ordered-child-node (many-child-node
vector-container-mixin)
()
(:documentation "A node with many ordered children is a vector"))
(defmethod children ((node many-ordered-child-node))
(collect-elements node))
(defclass* many-unordered-child-node (many-child-node
contents-as-list-mixin)
((contents nil ia))
(:documentation "Children are unordered"))
;;; Binary-Search-Trees
;; we sort keys of the nodes using sorter; we test equality with test.
(defclass* binary-search-tree (container-uses-nodes-mixin
initial-contents-mixin
sorted-container-mixin
findable-container-mixin
iteratable-container-mixin
rooted-tree-container
concrete-container)
((tree-size 0 iar))
(:default-initargs
:key 'identity
:test 'eq
:sorter '<))
(defclass* bst-node (two-child-node)
((tree nil ia)))
(defmethod make-node-for-container ((tree binary-search-tree) (item t) &key)
(if item
(make-instance 'bst-node
:element item)
nil))
(defmethod node-empty-p ((node bst-node))
(null node))
(defmethod node-empty-p ((node (eql nil)))
t)
(defmethod print-object ((o bst-node) stream)
(print-unreadable-object (o stream :type t)
(format stream "~A" (element o))))
;;; Standard container operations for BST's
(defmethod size ((tree binary-search-tree))
(tree-size tree))
(defmethod size ((node bst-node))
(let ((count 0))
(walk-tree node
#'(lambda (item)
(declare (ignore item))
(incf count)))
count))
(defmethod empty-p ((tree binary-search-tree))
(node-empty-p (root tree)))
(defmethod empty! ((tree binary-search-tree))
(setf (root tree) (make-node-for-container tree nil))
(setf (tree-size tree) 0)
(values))
;;; Search, max, min, etc.
(defmethod find-item ((tree binary-search-tree) (item bst-node))
(let* ((key (key tree))
(test (test tree))
(sorter (sorter tree))
(key-item (funcall key (element item)))
(current (root tree))
(not-found? nil))
(loop while (and (not (node-empty-p current))
(setf not-found?
(not (funcall test
key-item
(funcall key (element current)))))) do
(if (funcall sorter key-item
(funcall key (element current)))
(setf current (left-child current))
(setf current (right-child current))))
(if (and (not (node-empty-p current)) (not not-found?))
current
nil)))
(defmethod find-successor-item ((tree binary-search-tree) (item bst-node))
"Find the item equal to or the next greater than item"
(with-slots (key test sorter) tree
(let ((key-item (funcall key (element item))))
(labels ((node-equal-p (current)
(funcall test key-item
(funcall key (element current))))
(compare-lt (current)
(funcall sorter key-item
(funcall key (element current))))
(final-node (prior)
(if (compare-lt prior) prior
(let ((s (successor tree prior)))
(if (node-empty-p s) nil s))))
(find-successor (current prior)
(cond ((node-empty-p current)
(when prior (final-node prior)))
((node-equal-p current) current)
((compare-lt current)
(find-successor (left-child current) current))
(t (find-successor (right-child current) current)))))
(find-successor (root tree) nil)))))
(defmethod find-node ((tree binary-search-tree) (item t))
(find-item tree (make-node-for-container tree item)))
(defmethod find-successor-node ((tree binary-search-tree) (item t))
(find-successor-item tree (make-node-for-container tree item)))
(defmethod first-element ((node bst-node))
(element (first-node node)))
(defmethod first-node ((node bst-node))
(let ((current node))
(loop while (not (node-empty-p (left-child current))) do
(setf current (left-child current)))
current))
(defmethod (setf first-element) (value (node bst-node))
(let ((current node))
(loop while (not (node-empty-p (left-child current))) do
(setf current (left-child current)))
(setf (element current) value)))
(defmethod first-element ((tree binary-search-tree))
(first-element (root tree)))
(defmethod first-node ((tree binary-search-tree))
(first-node (root tree)))
(defmethod (setf first-element) (value (tree binary-search-tree))
(setf (first-element (root tree)) value))
(defmethod last-element ((node bst-node))
(element (last-node node)))
(defmethod last-node ((node bst-node))
(let ((current node))
(loop while (not (node-empty-p (right-child current))) do
(setf current (right-child current)))
current))
(defmethod last-node ((tree binary-search-tree))
(last-node (root tree)))
(defmethod last-element ((tree binary-search-tree))
(last-element (root tree)))
(defmethod (setf last-element) (value (node bst-node))
(let ((current node))
(loop while (not (node-empty-p (right-child current))) do
(setf current (right-child current)))
(setf (element current) value)))
(defmethod (setf last-element) (value (tree binary-search-tree))
(setf (last-element (root tree)) value))
(defmethod successor ((tree binary-search-tree) (node bst-node))
(if (not (node-empty-p (right-child node)))
(first-node (right-child node))
(let ((y (parent node)))
(loop while (and (not (node-empty-p y))
(eq node (right-child y))) do
(setf node y
y (parent y)))
y)))
(defmethod predecessor ((tree binary-search-tree) (node bst-node))
(if (not (node-empty-p (left-child node)))
(last-node (left-child node))
(let ((y (parent node)))
(loop while (and (not (node-empty-p y))
(eq node (left-child y))) do
(setf node y
y (parent y)))
y)))
;;; Insertion and deletion
(defmethod insert-item ((tree binary-search-tree) (item bst-node))
(loop with key = (key tree)
with y = (make-node-for-container tree nil)
; with test = (test tree)
with sorter = (sorter tree)
and x = (root tree)
and key-item = (funcall key (element item))
while (not (node-empty-p x))
do
(progn
;(format t "~A ~A~%" x y)
(setf y x)
(if (funcall sorter key-item (funcall key (element x)))
(setf x (left-child x))
(setf x (right-child x))))
finally (progn
(setf (parent item) y
(tree item) tree)
(incf (tree-size tree))
(if (node-empty-p y)
(setf (root tree) item)
(if (funcall sorter key-item (funcall key (element y)))
(setf (left-child y) item)
(setf (right-child y) item)))))
tree)
(defmethod delete-node ((tree binary-search-tree) (node bst-node))
(let* ((y (if (or (node-empty-p (left-child node))
(node-empty-p (right-child node)))
node
(successor tree node)))
(x (if (left-child y)
(left-child y)
(right-child y))))
(when x
(setf (parent x) (parent y)))
(if (node-empty-p (parent y))
(setf (root tree) x)
(if (equal y (left-child (parent y)))
(setf (left-child (parent y)) x)
(setf (right-child (parent y)) x)))
(if (not (equal y node))
(setf (element node) (element y)))
y))
(defmethod delete-node :after ((tree binary-search-tree) (node bst-node))
(decf (tree-size tree)))
(defmethod delete-item ((tree binary-search-tree) (node bst-node))
(delete-node tree node))
(defmethod delete-item ((tree binary-search-tree) (item t))
(let ((found (find-node tree item)))
(if found
(delete-node tree found)
tree)))
(defmethod delete-item-if (test (tree binary-search-tree))
"Iterate over the nodes of the tree, deleting them if they match
test."
;; As a first implementation, we use an inorder-walk to collect
;; matching nodes into a list and then delete them one at a time.
(let ((to-delete nil))
(walk-tree-nodes (root tree)
#'(lambda (node)
(when (funcall test (element node))
(push node to-delete)))
:inorder)
(loop for node in to-delete do
(delete-item tree node))))
(defmethod iterate-nodes ((tree binary-search-tree) fn)
(inorder-walk-nodes tree fn))
;;; Tree walking
(defmethod inorder-walk ((tree binary-search-tree) walk-fn)
(walk-tree (root tree) walk-fn :inorder))
(defmethod preorder-walk ((tree binary-search-tree) walk-fn)
(walk-tree (root tree) walk-fn :preorder))
(defmethod postorder-walk ((tree binary-search-tree) walk-fn)
(walk-tree (root tree) walk-fn :postorder))
(defmethod inorder-walk-nodes ((tree binary-search-tree) walk-fn)
(walk-tree-nodes (root tree) walk-fn :inorder))
(defmethod preorder-walk-nodes ((tree binary-search-tree) walk-fn)
(walk-tree-nodes (root tree) walk-fn :preorder))
(defmethod postorder-walk-nodes ((tree binary-search-tree) walk-fn)
(walk-tree-nodes (root tree) walk-fn :postorder))
(defmethod walk-tree ((node bst-node) walk-fn &optional (mode :inorder))
(walk-tree-nodes node
(lambda (x)
(funcall walk-fn (element x)))
mode))
(defmethod walk-tree ((node (eql nil)) walk-fn &optional (mode :inorder))
"Special case..."
(declare (ignore mode walk-fn)))
(defmethod walk-tree-nodes ((node bst-node) walk-fn &optional (mode :inorder))
(when (eq mode :preorder)
(funcall walk-fn node))
(walk-tree-nodes (left-child node) walk-fn mode)
(when (eq mode :inorder)
(funcall walk-fn node))
(walk-tree-nodes (right-child node) walk-fn mode)
(when (eq mode :postorder)
(funcall walk-fn node)))
(defmethod walk-tree-nodes ((node (eql nil)) walk-fn &optional (mode :inorder))
"Special case..."
(declare (ignore walk-fn mode)))
;;; Red-Black Trees
;;;
;;; A Red-black tree is a binary search tree whose nodes have a color
;;; the insert and delete operations preserve certain properties of this
;;; color that ensure that the tree stays balanced and therefore that all
;;; operations are O( lg n )
;;;
;;; Note that we use *rbt-empty-node* (instead of nil) to signal an empty
;;; node. This makes delete-item cleaner but means that you need to be careful
;;; in the rest of the code to use node-empty-p instead of just assuming that
;;; a node will be nil.
(defconstant +rbt-color-black+ 0)
(defconstant +rbt-color-red+ 1)
(defclass rbt-empty-node (red-black-node)
()
(:documentation "Subclass the empty node so that it's possible to
quickly determine if a node is empty using TYPEP."))
(defclass* red-black-tree (binary-search-tree)
((empty-node :type red-black-node
:initarg :empty-node
:reader empty-node))
(:default-initargs
:key #'identity
:test #'eq
:sorter #'<))
(defmethod initialize-instance :after ((object red-black-tree) &key)
(let ((e (make-instance 'rbt-empty-node
:right-child nil
:left-child nil
:element nil
:tree object
:empty-p t)))
(setf (slot-value object 'empty-node) e)
(setf (slot-value object 'root) e)))
(defclass* red-black-node (bst-node)
((color :initform +rbt-color-black+
:initarg :rbt-color
:accessor rbt-color)
(right-child :initarg :right-child) ; add initargs
(left-child :initarg :left-child)))
(defmethod initialize-instance :after ((node red-black-node) &key parent left-child right-child empty-p)
(let ((e (if empty-p
;; This is the initialisation of the empty node itself
node
;; ELSE: Find the empty node in the tree
(empty-node (tree node)))))
(setf (slot-value node 'parent) (or parent e))
(setf (slot-value node 'left-child) (or left-child e))
(setf (slot-value node 'right-child) (or right-child e))))
(defmethod node-empty-p ((node red-black-node))
(typep node 'rbt-empty-node))
(defmethod make-node-for-container ((tree red-black-tree) (item t) &key)
(if item
(make-instance 'red-black-node
:element item
:tree tree)
(empty-node tree)))
(defmethod print-object ((o red-black-node) stream)
(format stream "#<RB-NODE COLOR: ~A, ~A>"
(if (= (rbt-color o) +rbt-color-black+) "B" "R")
(element o)))
(defmethod rotate-left ((tree binary-search-tree) (x two-child-node))
(assert (not (eq (right-child x) (empty-node tree))))
(let ((y (right-child x)))
;; turn y's left subtree into x's right subtree
(setf (right-child x) (left-child y))
(when (not (node-empty-p (left-child y)))
(setf (parent (left-child y)) x))
;; Link's x's parent to y
(setf (parent y) (parent x))
(if (node-empty-p (parent x))
(setf (root tree) y)
(if (eq x (left-child (parent x)))
(setf (left-child (parent x)) y)
(setf (right-child (parent x)) y)))
;; put x on y's left
(setf (left-child y) x
(parent x) y)))
(defmethod rotate-right ((tree binary-search-tree) (x two-child-node))
(assert (not (eq (left-child x) (empty-node tree))))
(let ((y (left-child x)))
;; turn y's right subtree into x's left subtree
(setf (left-child x) (right-child y))
(when (not (node-empty-p (right-child y)))
(setf (parent (right-child y)) x))
;; Link's x's parent to y
(setf (parent y) (parent x))
(if (node-empty-p (parent x))
(setf (root tree) y)
(if (eq x (right-child (parent x)))
(setf (right-child (parent x)) y)
(setf (left-child (parent x)) y)))
;; put x on y's left
(setf (right-child y) x
(parent x) y)))
(defmethod insert-item :after ((tree red-black-tree) (item bst-node))
(assert item)
(setf (rbt-color item) +rbt-color-red+)
(let ((y nil))
(loop while (and (not (eq item (root tree)))
(= (rbt-color (parent item)) +rbt-color-red+)) do
(if (eq (parent item) (left-child (parent (parent item))))
(progn
(setf y (right-child (parent (parent item))))
(if (= (rbt-color y) +rbt-color-red+)
(progn
(setf (rbt-color (parent item)) +rbt-color-black+
(rbt-color y) +rbt-color-black+
(rbt-color (parent (parent item))) +rbt-color-red+
item (parent (parent item))))
;; ELSE
(progn
(when (eq item (right-child (parent item)))
(setf item (parent item))
(rotate-left tree item))
(setf (rbt-color (parent item)) +rbt-color-black+
(rbt-color (parent (parent item))) +rbt-color-red+)
(rotate-right tree (parent (parent item))))))
;; ELSE
(progn
(setf y (left-child (parent (parent item))))
(if (= (rbt-color y) +rbt-color-red+)
(progn
(setf (rbt-color (parent item)) +rbt-color-black+
(rbt-color y) +rbt-color-black+
(rbt-color (parent (parent item))) +rbt-color-red+
item (parent (parent item))))
;; ELSE
(progn
(when (eq item (left-child (parent item)))
(setf item (parent item))
(rotate-right tree item))
(setf (rbt-color (parent item)) +rbt-color-black+
(rbt-color (parent (parent item))) +rbt-color-red+)
(rotate-left tree (parent (parent item))))))))
(setf (rbt-color (root tree)) +rbt-color-black+)))
(defmethod delete-node ((tree red-black-tree) (item red-black-node))
(let ((e (empty-node tree))
(y nil)
(x nil))
(if (or (eq (left-child item) e)
(eq (right-child item) e))
(setf y item)
(setf y (successor tree item)))
(if (eq (left-child y) e)
(setf x (right-child y))
(setf x (left-child y)))
(setf (parent x) (parent y))
(if (eq (parent y) e)
(setf (root tree) x)
(if (eq y (left-child (parent y)))
(setf (left-child (parent y)) x)
(setf (right-child (parent y)) x)))
(when (not (eq y item))
(setf (element item) (element y)))
(when (= (rbt-color y) +rbt-color-black+)
;(break)
(rb-delete-fixup tree x))
y))
(defmethod rb-delete-fixup ((tree red-black-tree) (x red-black-node))
(let ((w nil))
(loop while (and (not (eq x (root tree)))
(eq (rbt-color x) +rbt-color-black+)) do
; (format t "~&RBDF: ~A " x)
(if (eq x (left-child (parent x)))
(progn
(setf w (right-child (parent x)))
; (format t "RC ~A " w)
(if (= (rbt-color w) +rbt-color-red+)
(progn
(setf (rbt-color w) +rbt-color-black+
(rbt-color (parent x)) +rbt-color-red+)
(rotate-left tree (parent x))
(setf w (right-child (parent x)))))
(if (and (eq (rbt-color (left-child w)) +rbt-color-black+)
(eq (rbt-color (right-child w)) +rbt-color-black+))
(progn
(setf (rbt-color w) +rbt-color-red+)
(setf x (parent x)))
(progn
(if (= (rbt-color (right-child w)) +rbt-color-black+)
(progn
(setf (rbt-color (left-child w)) +rbt-color-black+
(rbt-color w) +rbt-color-red+)
(rotate-right tree w)
(setf w (right-child (parent x)))))
(setf (rbt-color w) (rbt-color (parent x))
(rbt-color (parent x)) +rbt-color-black+
(rbt-color (right-child w)) +rbt-color-black+)
(rotate-left tree (parent x))
(setf x (root tree)))))
;; ELSE
(progn
(setf w (left-child (parent x)))
;(format t "LC ~A " w)
;(break)
(if (= (rbt-color w) +rbt-color-red+)
(progn
(setf (rbt-color w) +rbt-color-black+
(rbt-color (parent x)) +rbt-color-red+)
(rotate-right tree (parent x))
(setf w (left-child (parent x)))))
(if (and (eq (rbt-color (right-child w)) +rbt-color-black+)
(eq (rbt-color (left-child w)) +rbt-color-black+))
(progn
(setf (rbt-color w) +rbt-color-red+)
(setf x (parent x)))
(progn
(if (= (rbt-color (left-child w)) +rbt-color-black+)
(progn
(setf (rbt-color (right-child w)) +rbt-color-black+
(rbt-color w) +rbt-color-red+)
(rotate-left tree w)
(setf w (left-child (parent x)))
;(break)
))
(setf (rbt-color w) (rbt-color (parent x))
(rbt-color (parent x)) +rbt-color-black+
(rbt-color (left-child w)) +rbt-color-black+)
(rotate-right tree (parent x))
(setf x (root tree)))))))
(setf (rbt-color x) +rbt-color-black+)))
;;; Misc
(defmethod walk-tree-nodes ((node rbt-empty-node) walk-fn
&optional (mode :inorder))
"Special case..."
(declare (ignore walk-fn mode)))
(defmethod walk-tree ((node rbt-empty-node) walk-fn &optional
(mode :inorder))
"Special case..."
(declare (ignore walk-fn mode)))
(defmethod height ((node two-child-node))
(let ((result 0))
(loop while node do
(incf result)
(setf node (parent node)))
result))
(defmethod height ((tree binary-search-tree))
(let ((result 0))
(walk-tree-nodes (root tree)
#'(lambda (n)
(let ((h (height n)))
(when (> h result)
(setf result h)))))
result))
;;; Splay Tree
;;;
;;; A splay tree implementation based on openmcl implementation
;;; and Goodrich and Tamassia "Algorithm Design"
(defmethod item-at ((tree binary-search-tree) &rest indexes)
(declare (dynamic-extent indexes))
(do* ((test (test tree))
(sorter (sorter tree))
(node (root tree)))
((or (null node)
(node-empty-p node)))
(let ((key-of-node (funcall (key tree) (element node))))
(if (funcall test (first indexes) key-of-node)
(return node)
(if (funcall sorter (first indexes) key-of-node)
(setq node (left-child node))
(setq node (right-child node)))))))
(defmethod update-element ((tree binary-search-tree) (value t) &rest indexes)
(declare (dynamic-extent indexes))
(let ((node (item-at tree (first indexes))))
(if node
(setf (element node) value)
(warn "Tree does not contain node with index ~A" (first indexes)))
node))
#+test
(update-element
(let ((tree (make-instance 'binary-search-tree :test #'= :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four))))
'five 2)
(defgeneric bst-node-is-left-child (node)
(:documentation "Is this node the left child of its parent?")
(:method ((node bst-node))
(let ((parent (parent node)))
(and (equal node (left-child parent)))))
(:method (item)
(declare (ignore item))))
(defgeneric bst-node-is-right-child (node)
(:documentation "Is this node the right child of its parent?")
(:method ((node bst-node))
(let ((parent (parent node)))
(and (equal node (right-child parent)))))
(:method (item)
(declare (ignore item))))
(defgeneric bst-node-set-right-child (node new-right)
(:documentation "Set new-right as the right child of node")
(:method ((node bst-node) (new-right bst-node))
(when (setf (right-child node) new-right)
(setf (parent new-right) node)))
(:method ((node bst-node) item)
(declare (ignore item))
(setf (right-child node) nil)))
#+test
(bst-node-set-right-child (make-bst-node "node") nil)
(defgeneric bst-node-set-left-child (node new-left)
(:documentation "Set new-left as the left child of node")
(:method ((node bst-node) (new-left bst-node))
(when (setf (left-child node) new-left)
(setf (parent new-left) node)))
(:method ((node bst-node) item)
(declare (ignore item))
(setf (left-child node) nil)))
#+test
(bst-node-set-left-child (make-bst-node "foo") nil)
(defgeneric bst-node-replace-child (node old-node new-node)
(:documentation "Replace the child of this node.")
(:method ((node bst-node) (old-node bst-node) (new-node bst-node))
(if (equal old-node (left-child node))
(bst-node-set-left-child node new-node)
(bst-node-set-right-child node new-node))))
(defclass* splay-tree (binary-search-tree)
()
(:default-initargs
:key 'identity
:test 'eq
:sorter '<))
(defgeneric splay-tree-rotate (tree node)
(:documentation "rotate the node (and maybe the parent) until the node is
the root of the tree")
(:method ((tree binary-search-tree) (node bst-node))
(when (and node (null (equal node (root tree))))
(let* ((parent (parent node))
(grandparent (if parent (parent parent)))
(was-left (bst-node-is-left-child node)))
(if grandparent
(bst-node-replace-child grandparent parent node)
(setf (root tree) node
(parent node) nil))
(if was-left
(progn
(bst-node-set-left-child parent (right-child node))
(bst-node-set-right-child node parent))
(progn
(bst-node-set-right-child parent (left-child node))
(bst-node-set-left-child node parent))))))
(:method ((tree binary-search-tree) item)
(declare (ignore item))))
(defgeneric splay-tree-splay (tree node)
(:documentation "Preform the splay operation on the tree about this node
rotating the node until it becomes the root")
(:method ((tree binary-search-tree) item)
(declare (ignore item)))
(:method ((tree binary-search-tree) (node bst-node))
(do* ()
((equal node (root tree)))
(let* ((parent (parent node))
(grandparent (parent parent)))
(cond ((null grandparent)
(splay-tree-rotate tree node)) ; node is now root
((eq (bst-node-is-left-child node)
(bst-node-is-left-child parent))
(splay-tree-rotate tree parent)
(splay-tree-rotate tree node))
(t
(splay-tree-rotate tree node)
(splay-tree-rotate tree node)))))))
(defmethod insert-item :after ((tree splay-tree) (node bst-node))
(splay-tree-splay tree node))
#+test
(let ((tree (make-instance 'splay-tree :test #'equal :key #'first
:sorter #'string-lessp)))
(insert-item tree (make-bst-node '("s" south)))
(insert-item tree (make-bst-node '("n" north)))
(insert-item tree (make-bst-node '("e" east)))
(insert-item tree (make-bst-node '("w" west))))
#+test
(let ((tree (make-instance 'splay-tree :test #'= :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four))))
(defmethod item-at ((tree splay-tree) &rest indexes)
(declare (dynamic-extent indexes))
(do* ((test (test tree))
(sorter (sorter tree))
(node (root tree)))
((null node))
(let ((key-of-node (funcall (key tree) (element node))))
(if (funcall test (first indexes) key-of-node)
(progn
(splay-tree-splay tree node)
(return node))
(if (funcall sorter (first indexes) key-of-node)
(setq node (left-child node))
(setq node (right-child node)))))))
(defmethod update-element ((tree splay-tree) (value t) &rest indexes)
(declare (dynamic-extent indexes))
(let ((node (item-at tree (first indexes))))
(if node
(setf (element node) value)
(warn "Tree does not contain node with index ~A" (first indexes)))
node))
#+test
(update-element
(let ((tree (make-instance 'splay-tree :test #'equal :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four))))
'five 4)
(defmethod find-item ((tree splay-tree) (node bst-node))
(do* ((test (test tree))
(sorter (sorter tree))
(key (key tree))
(current (root tree)))
((null current))
(let ((key-of-current (funcall key (element current)))
(element-of-current (element current)))
(if (and (funcall test (funcall key (element node))
key-of-current)
(funcall test (element node) element-of-current))
(progn
(splay-tree-splay tree current)
(return current))
(if (funcall sorter (funcall key (element node)) key-of-current)
(setq current (left-child current))
(setq current (right-child current)))))))
#+test
(find-item (let ((tree (make-instance 'splay-tree :test #'equal :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four))))
'(3 three))
#+test
(find-item (let ((tree (make-instance 'splay-tree :test #'equal :key #'first
:sorter #'string-lessp)))
(insert-item tree (make-bst-node '("s" south)))
(insert-item tree (make-bst-node '("n" north)))
(insert-item tree (make-bst-node '("e" east)))
(insert-item tree (make-bst-node '("w" west))))
'("s" south))
(defgeneric right-most-child (node)
(:documentation "Walk down the right side of the tree until a leaf node is
found, then return that node")
(:method ((node bst-node))
(if (right-child node)
(right-most-child (right-child node))
node)))
;;; must call find-item first to ensure proper amortized
;;; analysis - jjm
(defmethod delete-node ((tree splay-tree) (node bst-node))
(if (find-item tree node)
(let* ((old-root (root tree))
(new-root (right-most-child (left-child old-root)))
(new-root-parent (parent new-root)))
(bst-node-set-right-child (parent new-root) nil)
(bst-node-set-left-child new-root (left-child old-root))
(bst-node-set-right-child new-root (right-child old-root))
(setf (parent new-root) nil
(root tree) new-root)
(splay-tree-splay tree new-root-parent)
old-root)
(warn "Item ~A not found in splay-tree" node)))
(defmethod delete-item ((tree splay-tree) (item t))
(delete-node tree (make-node-for-container tree item)))
#+test
(let ((tree (make-instance 'splay-tree
:test #'equal :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four)))
(insert-item tree (make-bst-node '(5 five)))
(insert-item tree (make-bst-node '(6 six)))
(insert-item tree (make-bst-node '(7 seven)))
(insert-item tree (make-bst-node '(8 eight)))
(insert-item tree (make-bst-node '(10 ten)))
(insert-item tree (make-bst-node '(11 eleven)))
;;(item-at tree 7)
;;(item-at tree 6)
;;(item-at tree 5)
;;(item-at tree 4)
(item-at tree 3)
(item-at tree 10)
(item-at tree 8)
(delete-item tree '(8 eight))
tree)
(defmethod delete-item-at ((tree splay-tree) &rest indexes)
(declare (dynamic-extent indexes))
(delete-item tree (item-at tree (first indexes))))
#+test
(let ((tree (make-instance 'splay-tree
:test #'equal :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four)))
(insert-item tree (make-bst-node '(5 five)))
(insert-item tree (make-bst-node '(6 six)))
(insert-item tree (make-bst-node '(7 seven)))
(insert-item tree (make-bst-node '(8 eight)))
(insert-item tree (make-bst-node '(10 ten)))
(insert-item tree (make-bst-node '(11 eleven)))
;;(item-at tree 7)
;;(item-at tree 6)
;;(item-at tree 5)
;;(item-at tree 4)
(item-at tree 3)
(item-at tree 10)
(item-at tree 8)
(delete-item-at tree 8)
tree)
#+test
(let ((tree (make-instance 'splay-tree :test #'= :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four))))
#+test
(item-at (let ((tree (make-instance 'splay-tree :test #'= :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four)))) 1)
#+test
(walk-tree
(root (let ((tree (make-instance 'splay-tree :test #'= :key #'first
:sorter #'<)))
(insert-item tree (make-bst-node '(1 one)))
(insert-item tree (make-bst-node '(2 two)))
(insert-item tree (make-bst-node '(3 three)))
(insert-item tree (make-bst-node '(4 four)))
(item-at tree 4)
tree))
#'(lambda (node)
(format t "~%~A"
node)))
;;; end splay tree
;;; ***************************************************************************
;;; * End of File *
;;; ***************************************************************************
|