1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
;;; graph-matrix.lisp --- build and manipulate matrix graph representations
;; Copyright (C) Eric Schulte and Tom Dye 2013
;; Licensed under the Gnu Public License Version 3 or later
;;; Commentary
;; Functions for manipulating matrix graph representations.
;;; Code:
(defpackage #:graph/matrix
(:use :common-lisp
:alexandria
:metabang-bind
:named-readtables
:curry-compose-reader-macros
:graph
:fl.function)
;; shadow functions defined in alexandria, fl.function, and graph
(:shadow :copy :factorial :standard-deviation :variance :median :mean :degree)
(:export
:matrix
:fast-matrix
:matrix-ref
:matrix-n-rows
:matrix-n-cols
:matrix-same-size-p
:matrix-symmetric-p
:matrix-entries-different-p
:matrix-copy
:matrix-transpose
:make-universal-matrix
:make-identity-matrix
:make-zeros-matrix
:to-adjacency-matrix
:to-reachability-matrix
:reachablep
:reachable-from
:to-strong-component-matrix
:strong-component-of
:to-distance-matrix
:distance-from-to
:reflexivep
:irreflexivep
:symmetricp
:asymmetricp
:transitivep
:intransitivep
:completep
:relational-structure
:infinite
:infinitep))
(in-package :graph/matrix)
(in-readtable :curry-compose-reader-macros)
(defclass matrix ()
((self :initarg :self :accessor self :initform nil)))
(defclass fast-matrix (matrix) ())
(defgeneric infinite (matrix)
(:documentation "Return the most-positive value for the element type
of MATRIX."))
(defmethod infinite ((matrix matrix))
most-positive-fixnum)
(defmethod infinite ((matrix fast-matrix))
most-positive-single-float)
(defgeneric infinitep (value matrix)
(:documentation "Non-nil if VALUE is the most-positive value that
can be held in MATRIX."))
(defmethod infinitep (value (matrix matrix))
(= value (infinite matrix)))
(defgeneric matrix-ref (matrix row col)
(:documentation "Return the value at ROW and COL in MATRIX."))
(defmethod matrix-ref ((matrix matrix) row col)
(aref (self matrix) row col))
(defmethod matrix-ref ((fm fast-matrix) row col)
(fl.function::mref (self fm) row col))
(defgeneric (setf matrix-ref) (new matrix row col)
(:documentation "Make matrix-ref setf-able."))
(defmethod (setf matrix-ref) (new (matrix matrix) row col)
(setf (aref (self matrix) row col) new))
(defmethod (setf matrix-ref) (new (fm fast-matrix) row col)
(setf (fl.function::mref (self fm) row col) new))
(defgeneric matrix-n-rows (matrix)
(:documentation "Return the number of rows in MATRIX."))
(defmethod matrix-n-rows ((matrix matrix))
(if (self matrix)
(array-dimension (self matrix) 0)
0))
(defmethod matrix-n-rows ((matrix fast-matrix))
(if (self matrix)
(fl.function::nrows (self matrix))
0))
(defgeneric matrix-n-cols (matrix)
(:documentation "Return the number of columns in MATRIX."))
(defmethod matrix-n-cols ((matrix matrix))
(if (self matrix)
(array-dimension (self matrix) 1)
0))
(defmethod matrix-n-cols ((matrix fast-matrix))
(if (self matrix)
(fl.function::ncols (self matrix))
0))
(defun matrix-same-size-p (m1 m2)
"Return t if matrix M1 has the same number of rows and columns as
matrix M2, nil otherwise."
(and (= (matrix-n-rows m1) (matrix-n-rows m2))
(= (matrix-n-cols m1) (matrix-n-cols m2))))
(defun matrix-entries-different-p (m1 m2)
"Returns nil if the entries in matrix M1 and matrix M2 do not differ
from one another. Returns 1 if the sizes of matrix M1 and matrix M2
differ. Otherwise, returns a list of lists containing discrepant
entries. "
(let ((result))
(if (matrix-same-size-p m1 m2)
(let ((m (matrix-n-rows m1))
(n (matrix-n-cols m1)))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(unless (= (matrix-ref m1 i j)
(matrix-ref m2 i j))
(push (list i j) result))))
(when result (reverse result)))
(setf result 1))
result))
(defun matrix-symmetric-p (matrix)
"Return t if matrix MATRIX is symmetric, nil otherwise."
(not (matrix-entries-different-p matrix (matrix-transpose matrix))))
(defgeneric matrix-copy (matrix)
(:documentation "Return a copy of MATRIX."))
(defmethod matrix-copy ((matrix matrix))
(let* ((m (matrix-n-rows matrix))
(n (matrix-n-cols matrix))
(result (make-zeros-matrix (make-instance 'matrix) m n)))
(when (self matrix)
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(setf (matrix-ref result i j) (matrix-ref matrix i j)))))
result))
(defmethod matrix-copy ((fm fast-matrix))
(let ((result (make-instance 'fast-matrix)))
(when (self fm)
(setf (self result) (fl.function::copy (self fm))))
result))
(defgeneric matrix-sum (m1 m2 &key boolean)
(:documentation "Return the result of adding matrix M1 and matrix
M2. M1 and M2 must be the same size. If BOOLEAN is non-nil, then use
boolean arithmetic, where 1+1=1."))
(defmethod matrix-sum ((m1 matrix) (m2 matrix) &key boolean)
(and (matrix-same-size-p m1 m2)
(let* ((m (matrix-n-rows m1))
(n (matrix-n-cols m1))
(result (make-zeros-matrix (make-instance 'matrix) m n))
(zero 0)
(one 1))
(declare (type fixnum zero))
(declare (type fixnum one))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(setf (matrix-ref result i j)
(if boolean
(if (> (+ (matrix-ref m1 i j)
(matrix-ref m2 i j)) 0) one zero)
(+ (matrix-ref m1 i j)
(matrix-ref m2 i j))))))
result)))
(defmethod matrix-sum ((m1 fast-matrix) (m2 fast-matrix) &key boolean)
(when (matrix-same-size-p m1 m2)
(let ((result (make-instance 'fast-matrix)))
(setf (self result) (fl.function::m+ (self m1) (self m2)))
(when boolean
(let ((m (matrix-n-rows result))
(n (matrix-n-cols result))
(one 1.0s0))
(declare (type single-float one))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(if (> (matrix-ref result i j) 0)
(setf (matrix-ref result i j) one))))))
result)))
(defgeneric matrix-difference (m1 m2)
(:documentation "Return the result of subtracting M2 from M1. M1 and
M2 must be the same size."))
(defmethod matrix-difference ((m1 matrix) (m2 matrix))
(and (matrix-same-size-p m1 m2)
(let ((result (matrix-copy m1))
(m (matrix-n-rows m1))
(n (matrix-n-cols m1)))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(setf (matrix-ref result i j)
(- (matrix-ref result i j)
(matrix-ref m2 i j)))))
result)))
(defgeneric matrix-elementwise-product (m1 m2 &key boolean)
(:documentation "Return the result of multiplying the elements of
matrix M1 and matrix M2. M1 and M2 must be the same size."))
(defmethod matrix-elementwise-product ((m1 matrix) (m2 matrix) &key boolean)
(and (matrix-same-size-p m1 m2)
(let ((result (matrix-copy m1))
(m (matrix-n-rows m1))
(n (matrix-n-cols m1)))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(setf (matrix-ref result i j)
(if boolean
(if (* (matrix-ref result i j)
(matrix-ref m2 i j)) 1 0)
(* (matrix-ref result i j)
(matrix-ref m2 i j))))))
result)))
(defgeneric matrix-product (m1 m2)
(:documentation "Return the result of multiplying matrix M1 and
matrix M2. The number of columns of M1 must equal the number of rows
of M2."))
(defmethod matrix-product ((m1 matrix) (m2 matrix))
(and (= (matrix-n-cols m1) (matrix-n-rows m2))
(loop
:with m = (matrix-n-rows m1)
:with n = (matrix-n-cols m1)
:with l = (matrix-n-cols m2)
:with c = (make-zeros-matrix (make-instance 'matrix) m l)
:for i :below m :do
(loop :for k :below l :do
(setf (matrix-ref c i k)
(loop :for j :below n
:sum (* (matrix-ref m1 i j)
(matrix-ref m2 j k)))))
:finally (return c))) )
(defmethod matrix-product ((m1 fast-matrix) (m2 fast-matrix))
(and (= (matrix-n-cols m1) (matrix-n-rows m2))
(let ((result (make-instance 'fast-matrix)))
(setf (self result) (fl.function::m* (self m1) (self m2)))
result)))
(defgeneric matrix-transpose (matrix)
(:documentation "Return a new matrix that interchanges the rows and
columns of MATRIX."))
(defmethod matrix-transpose ((matrix matrix))
(let ((m (matrix-n-rows matrix))
(n (matrix-n-cols matrix))
(result (make-instance 'matrix)))
(setf result (make-zeros-matrix result n m))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below n :do
(setf (matrix-ref result j i)
(matrix-ref matrix i j))))
result))
(defmethod matrix-transpose ((fm fast-matrix))
(let ((result (make-instance 'fast-matrix)))
(setf (self result) (fl.function::transpose (self fm)))
result))
(defgeneric make-zeros-matrix (matrix rows cols)
(:documentation "Return matrix MATRIX with ROWS rows and COLS
columns of zeros."))
(defmethod make-zeros-matrix ((matrix matrix) rows cols)
(setf (self matrix) (make-array (list rows cols)
:element-type 'fixnum
:initial-element 0))
matrix)
(defmethod make-zeros-matrix ((fm fast-matrix) rows cols)
(setf (self fm) (fl.function::zeros rows cols 'single-float))
fm)
(defgeneric make-universal-matrix (matrix rows cols)
(:documentation "Return a universal matrix with ROWS rows and COLS columns."))
(defmethod make-universal-matrix ((matrix matrix) rows cols)
(setf (self matrix) (make-array (list rows cols)
:element-type 'fixnum
:initial-element 1))
matrix)
(defmethod make-universal-matrix ((fm fast-matrix) rows cols)
(setf (self fm) (fl.function::ones rows cols 'single-float))
fm)
(defgeneric make-infinity-matrix (matrix rows cols)
(:documentation "Return a matrix of ROWS rows and COLS cols with
each entry set to infinity"))
(defmethod make-infinity-matrix ((matrix matrix) rows cols)
(progn
(setf (self matrix) (make-array (list rows cols)
:element-type 'fixnum
:initial-element (infinite matrix)))
matrix))
(defmethod make-infinity-matrix ((fm fast-matrix) rows cols)
(progn
(setf (self fm) (fl.function::zeros rows cols 'single-float))
(fl.function::fill! (self fm) (infinite fm))
;; (loop :for i :from 0 :below rows :do
;; (loop :for j :from 0 :below cols :do
;; (setf (matrix-ref fm i j) infinity)))
fm))
(defgeneric make-identity-matrix (matrix order)
(:documentation "Return an identity matrix of order ORDER."))
(defmethod make-identity-matrix ((matrix matrix) order)
(setf matrix (make-zeros-matrix matrix order order))
(loop :for i :from 0 :below order :do
(setf (matrix-ref matrix i i) 1))
matrix)
(defmethod make-identity-matrix ((fm fast-matrix) order)
(setf (self fm) (fl.function::eye order order 'single-float))
fm)
;; Adapted from
;; https://rosettacode.org/wiki/Matrix-exponentiation_operator#Common_Lisp
(defgeneric matrix-power (matrix exp)
(:documentation "Raise MATRIX to the power EXP and return the result."))
(defmethod matrix-power ((matrix matrix) exp)
(let ((m-rows (matrix-n-rows matrix)))
(cond
((/= m-rows (matrix-n-cols matrix)) (error "Non-square matrix"))
((zerop exp) (make-identity-matrix matrix m-rows))
((= 1 exp) (matrix-copy matrix))
((zerop (mod exp 2)) (let ((me2 (matrix-power matrix (/ exp 2))))
(matrix-product me2 me2)))
(t (let ((me2 (matrix-power matrix (/ (1- exp) 2))))
(matrix-product matrix (matrix-product me2 me2)))))))
(defgeneric to-adjacency-matrix (graph matrix)
(:documentation "Return the adjacency matrix of GRAPH."))
(defmethod to-adjacency-matrix ((graph graph) (matrix matrix))
(let ((node-index-hash (make-hash-table))
(counter -1))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(setf matrix (make-zeros-matrix matrix (+ counter 1) (+ counter 1)))
(mapc (lambda-bind ((a b))
(setf (matrix-ref matrix
(gethash a node-index-hash)
(gethash b node-index-hash))
1)
(setf (matrix-ref matrix
(gethash b node-index-hash)
(gethash a node-index-hash))
1))
(edges graph))
matrix))
(defmethod to-adjacency-matrix ((graph digraph) (matrix matrix))
(let ((node-index-hash (make-hash-table))
(counter -1))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(setf matrix (make-zeros-matrix matrix (+ counter 1) (+ counter 1)))
(mapc (lambda-bind ((a b))
(setf (matrix-ref matrix
(gethash a node-index-hash)
(gethash b node-index-hash))
1))
(edges graph))
matrix))
(defmethod to-adjacency-matrix ((graph graph) (matrix fast-matrix))
(let ((node-index-hash (make-hash-table))
(counter -1)
(one 1.0s0))
(declare (type single-float one))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(setf matrix (make-zeros-matrix matrix (+ counter 1) (+ counter 1)))
(mapc (lambda-bind ((a b))
(setf (matrix-ref matrix
(gethash a node-index-hash)
(gethash b node-index-hash))
one)
(setf (matrix-ref matrix
(gethash b node-index-hash)
(gethash a node-index-hash))
one))
(edges graph))
matrix))
(defmethod to-adjacency-matrix ((graph digraph) (matrix fast-matrix))
(let ((node-index-hash (make-hash-table))
(counter -1)
(one 1.0s0))
(declare (type single-float one))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(setf matrix (make-zeros-matrix matrix (+ counter 1) (+ counter 1)))
(mapc (lambda-bind ((a b))
(setf (matrix-ref matrix
(gethash a node-index-hash)
(gethash b node-index-hash))
one))
(edges graph))
matrix))
(defgeneric to-reachability-matrix (graph matrix &key limit)
(:documentation "Return the reachability matrix of the graph GRAPH.
With the optional argument LIMIT set to an integer in the range 2 to
two less than the number of nodes in GRAPH, produces a limited
reachability matrix with paths of length LIMIT or less."))
(defmethod to-reachability-matrix ((graph graph) (matrix matrix) &key limit)
(let ((n (length (nodes graph))))
(assert (or (not limit)
(and (integerp limit) (> limit 1) (< limit (- n 1))))
(limit)
"~S must be an integer between 2 and ~S"
limit (- n 2))
(let* ((result (make-identity-matrix (make-instance 'matrix) n))
(max-power (or limit (- n 1)))
(adjacency (to-adjacency-matrix graph (make-instance 'matrix)))
(adjacency-powers (matrix-copy adjacency)))
(setf result (matrix-sum adjacency result :boolean t))
(loop :for i :from 2 :to max-power :do
(setf adjacency-powers (matrix-product adjacency-powers adjacency))
(setf result (matrix-sum adjacency-powers result :boolean t)))
result)))
(defmethod to-reachability-matrix ((graph graph) (matrix fast-matrix) &key limit)
(let ((n (length (nodes graph))))
(assert (or (not limit)
(and (integerp limit) (> limit 1) (< limit (- n 1))))
(limit)
"~S must be an integer between 2 and ~S"
limit (- n 2))
(let* ((result (make-identity-matrix (make-instance 'fast-matrix) n))
(max-power (or limit (- n 1)))
(adjacency (to-adjacency-matrix graph (make-instance 'fast-matrix)))
(adjacency-powers (matrix-copy adjacency)))
(setf result (matrix-sum adjacency result :boolean t))
(loop :for i :from 2 :to max-power :do
(setf adjacency-powers (matrix-product adjacency-powers adjacency))
(setf result (matrix-sum adjacency-powers result :boolean t)))
result)))
(defgeneric reachablep (graph rd from to)
(:documentation "Given a graph GRAPH and a reachability matrix RD,
returns t if node TO is reachable from node FROM, nil otherwise."))
(defmethod reachablep ((graph graph) (rd matrix) from to)
(let ((node-index-hash (make-hash-table))
(counter -1))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(= 1 (matrix-ref rd (gethash from node-index-hash)
(gethash to node-index-hash)))))
(defgeneric reachable-from (graph rd from)
(:documentation "Given a reachability matrix RD, return a list of
the nodes in graph GRAPH reachable from node FROM."))
(defmethod reachable-from ((graph graph) (rd matrix) from)
(let ((node-index-hash (make-hash-table))
(counter -1)
(result))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(maphash #'(lambda (k v)
(unless
(= 0 (matrix-ref rd (gethash from node-index-hash) v))
(push k result)))
node-index-hash)
(reverse result)))
(defgeneric to-strong-component-matrix (rd)
(:documentation "Given a reachability matrix of a digraph, RD,
return a matrix in which the strong component of GRAPH containing
node_i is given by the entries of 1 in the ith row (or column)."))
(defmethod to-strong-component-matrix ((rd matrix))
(matrix-elementwise-product rd (matrix-transpose rd)))
(defgeneric strong-component-of (node graph strong-components)
(:documentation "Return a list of nodes from graph GRAPH in the
strong component that contains node NODE, as given by the strong
component matrix STRONG-COMPONENTS."))
(defmethod strong-component-of (node (graph graph) (strong-components matrix))
(let ((node-index-hash (make-hash-table))
(counter -1)
(result))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(maphash #'(lambda (k v)
(unless (= 0 (matrix-ref
strong-components
(gethash node node-index-hash) v))
(push k result)))
node-index-hash)
(reverse result)))
(defgeneric to-distance-matrix (graph nd)
(:documentation "Return the distance matrix ND of graph GRAPH."))
(defmethod to-distance-matrix ((graph graph) (nd matrix))
(let* ((a (to-adjacency-matrix graph (make-instance 'matrix)))
(a-power (to-adjacency-matrix graph (make-instance 'matrix)))
(m (matrix-n-rows a))
(finished)
(zero 0)
(one 1))
(declare (type fixnum one))
(declare (type fixnum zero))
(setf nd (make-infinity-matrix nd m m))
(loop :for i :from 0 :below m :do
(setf (matrix-ref nd i i) zero))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below m :do
(when (= (matrix-ref a i j) one)
(setf (matrix-ref nd i j) one))))
(loop :for i :from 2 :to m :unless finished :do
(setf a-power (matrix-product a a-power))
(setf finished t)
(loop :for j :from 0 :below m :do
(loop :for k :from 0 :below m :do
(when (and (infinitep (matrix-ref nd j k) nd)
(> (matrix-ref a-power j k) zero))
(setf (matrix-ref nd j k) (coerce i 'fixnum))
(setf finished nil)))))
nd))
(defmethod to-distance-matrix ((graph graph) (nd fast-matrix))
(let* ((a (to-adjacency-matrix graph (make-instance 'fast-matrix)))
(a-power (to-adjacency-matrix graph (make-instance 'fast-matrix)))
(m (matrix-n-rows a))
(finished)
(zero 0.0s0)
(one 1.0s0))
(declare (type single-float one))
(declare (type single-float zero))
(setf nd (make-infinity-matrix nd m m))
(loop :for i :from 0 :below m :do
(setf (matrix-ref nd i i) zero))
(loop :for i :from 0 :below m :do
(loop :for j :from 0 :below m :do
(when (= (matrix-ref a i j) one)
(setf (matrix-ref nd i j) one))))
(loop :for i :from 2 :to m :unless finished :do
(setf a-power (matrix-product a a-power))
(setf finished t)
(loop :for j :from 0 :below m :do
(loop :for k :from 0 :below m :do
(when (and (infinitep (matrix-ref nd j k) nd)
(> (matrix-ref a-power j k) zero))
(setf (matrix-ref nd j k) (coerce i 'single-float))
(setf finished nil)))))
nd))
(defgeneric distance-from-to (graph nd from to)
(:documentation "Returns the number of edges in graph GRAPH from
node FROM to node TO, given the distance matrix ND."))
(defmethod distance-from-to ((graph graph) (nd matrix) from to)
(let ((node-index-hash (make-hash-table))
(counter -1))
(mapc (lambda (node) (setf (gethash node node-index-hash) (incf counter)))
(nodes graph))
(matrix-ref nd
(gethash from node-index-hash)
(gethash to node-index-hash))))
;; Peirce's relational properties
(defun reflexivep (graph matrix)
:documentation "Returns t if GRAPH is reflexive, nil otherwise."
(let ((a (to-adjacency-matrix graph matrix))
(result))
(loop :for j :from 0 :below (matrix-n-rows a) :unless result :do
(setf result (not (= 1 (matrix-ref a j j)))))
(not result)))
(defun irreflexivep (graph matrix)
:documentation "Returns t if GRAPH is irreflexive, nil otherwise."
(let ((a (to-adjacency-matrix graph matrix))
(result))
(loop :for j :from 0 :below (matrix-n-rows a) :unless result :do
(setf result (not (= 0 (matrix-ref a j j)))))
(not result)))
(defun symmetricp (graph matrix)
:documentation "Returns t if GRAPH is symmetric, nil otherwise."
(let* ((a (to-adjacency-matrix graph matrix))
(at (matrix-transpose a)))
(if (matrix-entries-different-p a at) nil t)))
(defun asymmetricp (graph matrix)
:documentation "Returns t if GRAPH is asymmetric, nil otherwise."
(let* ((a (to-adjacency-matrix graph matrix))
(at (matrix-transpose a))
(result))
(loop :for j :from 0 :below (matrix-n-rows a) :unless result :do
(loop :for k :from 0 :below (matrix-n-rows a) :unless result :do
(setf result (and (not (eq j k))
(eq (matrix-ref a j k) 1)
(eq (matrix-ref at j k) 1)))))
(not result)))
(defun transitivep (graph matrix)
:documentation "Returns t if GRAPH is transitive, nil otherwise."
(let* ((a (to-adjacency-matrix graph matrix))
(a2 (matrix-product a a))
(two-path)
(no-match))
(loop :for j :from 0 :below (matrix-n-rows a) :do
(loop :for k :from 0 :below (matrix-n-rows a) :do
(and (not two-path) (eq (matrix-ref a2 j k) 1)
(setf two-path j))
(and (not no-match) (eq (matrix-ref a2 j k) 1)
(eq (matrix-ref a j k) 0)
(setf no-match j))))
(and two-path (not no-match))))
(defun intransitivep (graph matrix)
:documentation "Returns t if GRAPH is intransitive, nil otherwise."
(let* ((a (to-adjacency-matrix graph matrix))
(a2 (matrix-product a a))
(two-path)
(match))
(loop :for j :from 0 :below (matrix-n-rows a) :do
(loop :for k :from 0 :below (matrix-n-rows a) :do
(and (not two-path) (eq (matrix-ref a2 j k) 1)
(setf two-path j))
(and (not match) (not (eq j k))
(eq (matrix-ref a2 j k) 1)
(eq (matrix-ref a j k) 1)
(setf match j))))
(and two-path (not match))))
(defun completep (graph matrix)
:documentation "Returns t if GRAPH is complete, nil otherwise."
(let* ((a (to-adjacency-matrix graph matrix))
(at (matrix-transpose a))
(result))
(loop :for j :from 0 :below (matrix-n-rows a) :unless result :do
(loop :for k :from 0 :below (matrix-n-rows a)
:unless (or result (eq j k)) :do
(setf result (and (eq (graph/matrix::matrix-ref a j k) 0)
(eq (graph/matrix::matrix-ref at j k) 0)))))
(not result)))
(defun relational-structure (graph matrix)
:documentation "Returns a string with the name of a relational
structure whose axiom system GRAPH satisfies, or nil if no
relational structure axiom system is satisfied."
(let ((rnobar (reflexivep graph matrix))
(rbar (irreflexivep graph matrix))
(snobar (symmetricp graph matrix))
(sbar (asymmetricp graph matrix))
(tnobar (transitivep graph matrix))
(tbar (intransitivep graph matrix))
(cnobar (completep graph matrix)))
(or
(when (and rbar
(not (or snobar sbar tnobar tbar cnobar))) "digraph")
(when (and rbar snobar
(not (or tnobar tbar cnobar))) "graph")
(when (and rbar sbar
(not (or tnobar tbar cnobar))) "oriented graph")
(when (and rnobar snobar
(not tnobar)) "similarity relation")
(when (and rnobar snobar tnobar
(not cnobar)) "equivalence relation")
(when (and rbar sbar tnobar
(not cnobar)) "partial order")
(when (and rbar sbar tnobar cnobar) "complete order")
(when (and rbar sbar cnobar
(not (or tnobar tbar))) "tournament")
(when (and rbar snobar tnobar
(not cnobar)) "parity relation")
(when (and rbar sbar tbar
(not cnobar)) "antiequivalence relation")
(when (and rnobar sbar tbar) "antiparity relation"))))
|