1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
|
#+TITLE: Ironclad
#+AUTHOR: The Ironclad developers
#+DATE:
#+EMAIL:
#+LANGUAGE: en
#+OPTIONS: num:nil toc:nil html-style:nil html-postamble:nil html-scripts:nil
#+HTML_DOCTYPE: html5
#+HTML_HEAD: <style type="text/css">
#+HTML_HEAD: body { margin: 1em 5% 1em 5%; }
#+HTML_HEAD: p { margin-top: 0.5em; margin-bottom: 0.5em; }
#+HTML_HEAD: pre { padding: 0; margin: 0; }
#+HTML_HEAD: h1, h2 { border-bottom: 2px solid #449977; }
#+HTML_HEAD: h1, h2, h3, h4, h5, h6 { font-family: sans-serif; line-height: 1.3; }
#+HTML_HEAD: a:link { color: #449977; }
#+HTML_HEAD: a:visited { color: purple; }
#+HTML_HEAD: a { text-decoration: none; padding: 1px 2px; }
#+HTML_HEAD: a:hover { text-decoration: none; padding: 1px; border: 1px solid #000000; }
#+HTML_HEAD: pre.src-lisp { margin-right: 10%; margin-top: 1.5em; margin-bottom: 1.5em; border: 1px solid #449977; background: #eeeeee; padding: 1em; }
#+HTML_HEAD: pre.example { margin-right: 10%; margin-top: 1.5em; margin-bottom: 1.5em; border: 1px solid black; padding: 1em; }
#+HTML_HEAD: .underline { margin-top: 1.5em; margin-bottom: 1.5em; font-family: sans-serif; font-size: 1.1em; font-weight: bold; text-decoration: underline; }
#+HTML_HEAD: </style>
#+ATTR_HTML: :style width: 0; height: 0; padding: 0; margin: 0; border: 0; overflow: hidden;
[[https://github.com/sharplispers/ironclad/workflows/CI/badge.svg?branch=master][file:https://github.com/sharplispers/ironclad/workflows/CI/badge.svg?branch=master]]
Ironclad is a cryptography library written entirely in Common Lisp. It
includes support for several popular [[#ciphers][ciphers]], [[#digests][digests]], [[#message-authentication-codes][MACs]] and
[[#public-key-cryptography][public key cryptography]] algorithms. For several implementations that
support Gray streams, support is included for convenient [[#gray-streams][stream wrappers]].
Most of the algorithms were written with efficiency for specific
Common Lisp implementations in mind, although portable code is
provided as an alternative in nearly all instances. The framework
should be flexible enough to accommodate implementation-specific
optimizations when possible.
Test vectors for many of the algorithms are included to provide
a level of confidence in the correctness of the implementations.
#+TOC: headlines 1
* Warnings
:PROPERTIES:
:CUSTOM_ID: warning
:END:
*Ironclad should not be considered safe against side channel attacks.*
Some algorithms can be safe against side channel attacks on some
architectures using some Common Lisp implementations, but in the
general case it can't be guaranteed. This is due to the fact that
integers and arithmetic functions of Common Lisp implementations are
usually not safe against side channel attacks.
*Ironclad's digest, MAC and cipher objects should not be considered thread
safe.*
Creating a digest, a MAC or a cipher object and using it in several threads at
the same time can lead to an undefined result. If you need to do that, you must
put locks in your application where necessary.
*Ironclad's pseudo random number generation should only be considered thread
safe with bordeaux-threads.*
If you have a multi-threaded application in which you want to use functions
requiring some random numbers (key derivation, key generation, public key
encryption, signature, etc.) in several threads, each of these threads must have
its own PRNG, or they might generate the same "random" numbers. If the threads
are created using the *bordeaux-threads* library (or by a library using
*bordeaux-threads*, like *lparallel*), this is done automatically. However, if
you are using the threading functions of your Common Lisp implementation
directly, you have to bind the ~*prng*~ special variable to a new PRNG in each
thread. There is an example showing how it can be done in the section about
[[make-prng][make-prng]].
* Installation
:PROPERTIES:
:CUSTOM_ID: installation
:END:
The current version of Ironclad is 0.61. It can be downloaded
at [[https://github.com/sharplispers/ironclad/archive/v0.61.tar.gz]].
If you are feeling adventurous, you can download a bleeding-edge version
at [[https://github.com/sharplispers/ironclad]].
It comes with an ASDF system definition, so ~(asdf:load-system "ironclad")~
should be all that you need to get started. The testsuite can be run
by substituting ~asdf:test-system~ for ~asdf:load-system~ in the form above.
If you are using [[https://www.quicklisp.org][Quicklisp]] to manage your libraries, just use
~(ql:quickload "ironclad")~.
When Ironclad is loaded, its functions are in the ~ironclad~ package (e.g.
~(ironclad:make-cipher ...)~). If you prefer, you can also use the ~crypto~
nickname (e.g. ~(crypto:make-cipher ...)~).
Ironclad has been tested in the following implementations:
- SBCL x86/linux, x86-64/linux (primary development platforms)
- SBCL x86-64/solaris, x86/darwin
- CMUCL x86/linux
- ABCL with Sun's 1.5.0 JVM
- Lispworks 5.0.1 x86/linux
- Lispworks 5.1.2 x86-64/darwin x86/windows
- Allegro 8.0 x86/linux
- Allegro 8.1 x86/linux, x86-64/linux, sparc/solaris
- CLISP 2.41 x86/linux, x86/cygwin
- Clozure Common Lisp 1.11 x86-64/Linux
- Clozure Common Lisp 1.10 x86-64/darwin
- ECL 16.1.3 x86-64/linux
All included tests should pass successfully. If you use a platform not
listed above, please send your platform information so that it can be
added to the above list. If the tests do not all pass, you have found
a bug; please report it.
By default, Ironclad uses some implementation dependent low-level code to make
some functions run much faster (currently, some assembly for SBCL and CCL, some
C code for ECL). If for some reason you want to disable these optimisations and
use the generic Lisp code, it can be achieved by commenting out the
~(pushnew :ironclad-assembly *features*)~ line in the /src/package.lisp/ file.
* License
:PROPERTIES:
:CUSTOM_ID: license
:END:
Ironclad is released under a MIT-like license; you can do pretty much
anything you want to with the code except claim that you wrote it.
* Ciphers
:PROPERTIES:
:CUSTOM_ID: ciphers
:END:
#+NAME: make-cipher
#+BEGIN_SRC lisp
(make-cipher name &key key mode initialization-vector padding tweak) => cipher
#+END_SRC
Return a cipher object suitable for use for both encryption and decryption.
/name/ denotes the encryption algorithm to use. [[list-all-ciphers][list-all-ciphers]] will tell you
the names of all supported ciphers. They are:
- 3des
- aes
- arcfour (rc4)
- aria
- blowfish
- camellia
- cast5
- chacha
- chacha/12
- chacha/8
- des
- idea
- kalyna128
- kalyna256
- kalyna512
- kuznyechik
- misty1
- rc2
- rc5
- rc6
- salsa20
- salsa20/12
- salsa20/8
- seed
- serpent
- sm4
- sosemanuk
- square
- tea
- threefish1024
- threefish256
- threefish512
- twofish
- xchacha
- xchacha/12
- xchacha/8
- xor (not a real cipher, use only for testing)
- xsalsa20
- xsalsa20/12
- xsalsa20/8
- xtea
/name/ can be a symbol in the ~keyword~ package or in the ~ironclad~ package;
~:aes~ for AES, ~ironclad:arcfour~ for RC4, and so forth.
/mode/ describes the mode of operation for the cipher. Stream ciphers
such as Arcfour can operate in only one mode, ~stream~. Block ciphers
such as AES and DES can operate in several different modes:
- ecb
- cbc
- ofb
- cfb (note that Ironclad's CFB mode is /n/-bit CFB, where /n/ is the [[block-length][block-length]] of the cipher)
- cfb8 (this seems to be the mode other crypto packages call CFB)
- ctr
/mode/ should be a symbol in the ~keyword~ or ~ironclad~ packages;
~:stream~, ~ironclad:ofb~, and so forth. An error will be signaled if
/mode/ is not appropriate for the cipher /name/.
/initialization-vector/ (IV) should be supplied only if /mode/ requires one.
/initialization-vector/ should be a ~(simple-array (unsigned-byte 8) (*))~.
The supplied IV should be the same length as the [[block-length][block-length]] of /name/.
The Chacha and Salsa20 stream ciphers also use an initialization
vector (nonce). It should be 8 or 12 bytes long for Chacha, 8 bytes long
for Salsa20, and 24 bytes long for XChacha and XSalsa20.
/key/ is, of course, the key for the cipher.
/key/ should be a ~(simple-array (unsigned-byte 8) (*))~.
If /padding/ is supplied, the specified padding method will be used by [[encrypt][encrypt]]
and [[decrypt][decrypt]] to handle short blocks when the ~:handle-final-block~ argument is
supplied. /padding/ will only be used if the mode is ECB or CBC. The possible
values for /padding/ are ~:pkcs7~, ~:ansi-x923~ and ~:iso-7816-4~.
If the cipher can use a tweak (e.g. threefish), it can be specified
with the /tweak/ key parameter.
#+NAME: encrypt
#+BEGIN_SRC lisp
(encrypt cipher plaintext ciphertext &key plaintext-start plaintext-end ciphertext-start handle-final-block) => n-bytes-consumed, n-bytes-produced
#+END_SRC
Encrypts data according to /cipher/ from /plaintext/ starting at
/plaintext-start/ and continuing until /plaintext-end/. The encrypted
data is placed in /ciphertext/ starting at /ciphertext-start/.
#+NAME: decrypt
#+BEGIN_SRC lisp
(decrypt cipher ciphertext plaintext &key ciphertext-start ciphertext-end plaintext-start handle-final-block) => n-bytes-consumed, n-bytes-produced
#+END_SRC
Decrypts data according to /cipher/ from /ciphertext/ starting at
/ciphertext-start/ and continuing until /ciphertext-end/. The decrypted
data is placed in /plaintext/ starting at /plaintext-start/.
#+NAME: encrypt-in-place
#+BEGIN_SRC lisp
(encrypt-in-place cipher text &key start end) => n-bytes-consumed, n-bytes-produced
#+END_SRC
#+NAME: decrypt-in-place
#+BEGIN_SRC lisp
(decrypt-in-place cipher text &key start end) => n-bytes-consumed, n-bytes-produced
#+END_SRC
Encrypts or decrypts data in /text/ between /start/ and /end/ "in-place"
according to /cipher/. These functions are shorthand for:
#+BEGIN_EXAMPLE
(encrypt cipher text text :plaintext-start start :plaintext-end end :ciphertext-start start)
(decrypt cipher text text :ciphertext-start start :ciphertext-end end :plaintext-start start)
#+END_EXAMPLE
_Note:_ [[encrypt-in-place][encrypt-in-place]] and [[decrypt-in-place][decrypt-in-place]] do not support
a /handle-final-block/ parameter as [[encrypt][encrypt]] and [[decrypt][decrypt]] do. If you
need the functionality that /handle-final-block/ provides, then you
need to use [[encrypt][encrypt]] and [[decrypt][decrypt]].
_Note:_ /n-bytes-consumed/ and /n-bytes-produced/ may not always be
equal to the length of the data specified in the call to
[[encrypt-in-place][encrypt-in-place]] or [[decrypt-in-place][decrypt-in-place]]. This subtlely is also present in
[[encrypt][encrypt]] or [[decrypt][decrypt]].
#+BEGIN_SRC lisp
(encrypt-message cipher message &key start end &allow-other-keys) => encrypted-message
#+END_SRC
Return the /message/ between /start/ and /end/ encrypted with the /cipher/; the
class of /cipher/ determines the algorithm used to encrypt the message.
#+BEGIN_SRC lisp
(decrypt-message cipher message &key start end &allow-other-keys) => decrypted-message
#+END_SRC
Return the /message/ between /start/ and /end/ decrypted by the /cipher/; the
class of /cipher/ determines the algorithm used to decrypt the message.
** Inquiry functions
#+NAME: list-all-ciphers
#+BEGIN_SRC lisp
(list-all-ciphers) => list
#+END_SRC
Returns a list of cipher-names that may be validly passed to [[make-cipher][make-cipher]].
#+NAME: cipher-supported-p
#+BEGIN_SRC lisp
(cipher-supported-p name) => boolean
#+END_SRC
Returns ~t~ if /name/ would be in the list returned by [[list-all-ciphers][list-all-ciphers]],
~nil~ otherwise.
#+NAME: key-lengths
#+BEGIN_SRC lisp
(key-lengths cipher) => list
#+END_SRC
Return a list of valid key lengths for /cipher/.
#+NAME: block-length
#+BEGIN_SRC lisp
(block-length cipher) => number
#+END_SRC
Return the number of octets /cipher/ processes at a time. This
function always returns 1 for stream ciphers.
** Key stream position
Block ciphers in CTR mode and some stream ciphers have the ability to change the
current position within the key stream in constant time instead of having to
consume all the bytes until the desired position is reached.
#+NAME: keystream-position
#+BEGIN_SRC lisp
(keystream-position cipher &optional position) => number or boolean
#+END_SRC
Return or change the current /position/ within the key stream of a /cipher/.
When /position/ is not supplied, [[keystream-position][keystream-position]] returns the current position
in the key stream, or /nil/ if it can't be determined. When /position/ is
supplied, the key stream position of the /cipher/ is set to that /position/ if
possible. [[keystream-position][keystream-position]] returns /t/ if the repositioning is performed
successfully, or /nil/ otherwise.
[[keystream-position][keystream-position]] can be used with the following ciphers:
- all the block ciphers (aes, twofish, etc.) in CTR mode
- chacha
- chacha/12
- chacha/8
- salsa20
- salsa20/12
- salsa20/8
- xchacha
- xchacha/12
- xchacha/8
- xsalsa20
- xsalsa20/12
- xsalsa20/8
* Digests
:PROPERTIES:
:CUSTOM_ID: digests
:END:
Digest functions, also known as hash functions, produce fixed-length
output (a /digest/ or /hash/) from a variable-length message. The
simplest example of a digest function is one that adds up all the
bytes in the message modulo 256. This digest function fails one test
of a cryptographically secure hash function: it must be difficult to
find a message with a given digest. It also fails the other test: it
must be difficult to find two messages with the same digest.
Ironclad provides several cryptographically secure digest functions
and several non-cryptographically secure digest functions.
_Note:_ In the functions below, messages or parts thereof are provided
as octet vectors; Ironclad has no facilities for producing digests of
strings. If you need to obtain the digest of a string, then you need
to figure out how to convert it to an octet vector first. This is
a deliberate design decision. Characters are not equivalent to bytes.
See your local Unicode guru for more details.
#+NAME: make-digest
#+BEGIN_SRC lisp
(make-digest digest-name &rest keys &key &allow-other-keys) => digester
#+END_SRC
Returns a digest object. /digest-name/ is a keyword naming the
algorithm you wish /digester/ to use. The supported digest names can be found
by calling [[list-all-digests][list-all-digests]]. They are:
- adler32
- blake2
- blake2/160
- blake2/256
- blake2/384
- blake2s
- blake2s/128
- blake2s/160
- blake2s/224
- crc24
- crc32
- crc32c
- groestl
- groestl/224
- groestl/256
- groestl/384
- jh
- jh/224
- jh/256
- jh/384
- keccak
- keccak/224
- keccak/256
- keccak/384
- kupyna
- kupyna/256
- md2
- md4
- md5
- ripemd-128
- ripemd-160
- sha1
- sha224
- sha256
- sha3
- sha3/224
- sha3/256
- sha3/384
- sha384
- sha512
- shake128
- shake256
- skein1024
- skein1024/384
- skein1024/512
- skein256
- skein256/128
- skein256/160
- skein256/224
- skein512
- skein512/128
- skein512/160
- skein512/224
- skein512/256
- skein512/384
- sm3
- streebog
- streebog/256
- tiger
- tree-hash
- whirlpool
Like for [[make-cipher][make-cipher]], /digest-name/ should be a symbol in the
~keyword~ or ~ironclad~ packages.
Some algorithms (e.g. shake128 and shake256) can produce digests of
any size. The size of the digest in bytes can be specified with the
/output-length/ key parameter:
#+BEGIN_EXAMPLE
(make-digest :shake256 :output-length 123)
#+END_EXAMPLE
#+NAME: update-digest
#+BEGIN_SRC lisp
(update-digest digester thing &key &allow-other-keys) => (values)
#+END_SRC
Updates the internal state of /digester/ with the contents of /thing/.
The exact method is determined by the type of /thing/.
There are several methods defined on this generic function that take
a particular digester and a ~(simple-array (unsigned-byte 8) (*))~ as
well as the usual /start/ and /end/ keyword arguments. These methods
update the state of /digester/ with the subsequence of the array
denoted by /start/ and /end/. They are not listed here because there's
one method for every type of digest that Ironclad provides, and
listing them would get very tedious for no benefit. An example should
suffice.
#+BEGIN_EXAMPLE
(let ((digester (ironclad:make-digest :sha1))
(array (make-array 16 :element-type '(unsigned-byte 8) :initial-element 0)))
;; Update with 16 zeroes.
(ironclad:update-digest digester array)
;; Update with 8 ones.
(fill array 1 :start 2 :end 10)
(ironclad:update-digest digester array :start 2 :end 10))
#+END_EXAMPLE
#+BEGIN_SRC lisp
(update-digest digester (stream stream) &key buffer start end &allow-other-keys) => digester
#+END_SRC
Update the internal state of /digester/ with the contents of /stream/,
which must respond to ~read-byte~ or ~read-sequence~ with
a ~(simple-array (unsigned-byte 8) (*))~ and return /digester/. It
differs from [[digest-stream][digest-stream]], below, in that you may need to digest data
before or after the contents of /stream/ (this happens, for instance,
when signing the contents of some file).
#+NAME: produce-digest
#+BEGIN_SRC lisp
(produce-digest digester &key digest digest-start) => digest
#+END_SRC
Return the digest of the data processed by /digester/ so far.
If /digest/ is provided, the computed digest will be placed into
/digest/ starting at /digest-start/. /digest/ must be a
~(simple-array (unsigned-byte 8) (*))~. An [[insufficient-buffer-space][insufficient-buffer-space]]
error will be signaled if there is insufficient space in /digest/.
** High-level convenience functions
Several high-level convenience functions that encapsulate common
sequences of [[make-digest][make-digest]], [[update-digest][update-digest]] and [[produce-digest][produce-digest]] are
provided by Ironclad as well. They come in two flavors: the first
takes a digest name as would be provided to [[make-digest][make-digest]]. The second
way to call these functions is to provide an actual digest object as
the first argument. So one can say:
#+BEGIN_EXAMPLE
(ironclad:digest-sequence :md5 *buffer*)
#+END_EXAMPLE
or, equivalently:
#+BEGIN_EXAMPLE
(let ((digester (ironclad:make-digest :md5)))
(ironclad:digest-sequence digester *buffer*))
#+END_EXAMPLE
The second form comes in handy if you plan on [[*Miscellaneous][reusing the digest object]].
#+NAME: digest-sequence
#+BEGIN_SRC lisp
(digest-sequence digest-spec sequence &rest args &key start end digest digest-start) => digest
#+END_SRC
Returns the digest of the subsequence of /sequence/ bounded by /start/
and /end/, according to /digest-name/. /sequence/ must be
a ~(vector (unsigned-byte 8))~. /digest/ and /digest-start/
are as in [[produce-digest][produce-digest]].
#+NAME: digest-stream
#+BEGIN_SRC lisp
(digest-stream digest-spec stream &rest args &key buffer start end digest digest-start) => digest
#+END_SRC
Returns the digest of the contents of the stream specified by
/stream/. ~read-byte~ must be a legal operation on /stream/ and return
an ~(unsigned-byte 8)~. In a similar fashion, ~read-sequence~ on
/stream/ must support reading into a ~(simple-array (unsigned-byte 8) (*))~.
/digest/ and /digest-start/ are as in [[produce-digest][produce-digest]].
If /buffer/ is provided, it must be a ~(simple-array (unsigned-byte 8) (*))~;
the portion of /buffer/ between /start/ and /end/ will be used to read
the data from the stream.
#+NAME: digest-file
#+BEGIN_SRC lisp
(digest-file digest-spec pathname &rest args &key buffer start end digest digest-start) => digest
#+END_SRC
Returns the digest of the contents of the file named by /pathname/.
/digest/ and /digest-start/ are as in [[produce-digest][produce-digest]].
If /buffer/ is provided, it must be a ~(simple-array (unsigned-byte 8) (*))~;
the portion of /buffer/ between /start/ and /end/ will be used to read
the data from the stream.
** Inquiry functions
#+NAME: list-all-digests
#+BEGIN_SRC lisp
(list-all-digests) => list
#+END_SRC
Returns a list whose elements may be validly passed to [[make-digest][make-digest]].
#+NAME: digest-supported-p
#+BEGIN_SRC lisp
(digest-supported-p name) => boolean
#+END_SRC
Returns ~t~ if /name/ would be in the list returned by [[list-all-digests][list-all-digests]],
~nil~ otherwise.
#+NAME: digest-length
#+BEGIN_SRC lisp
(digest-length digest) => number
#+END_SRC
Returns the length of the digest computed by /digest/, which may be
a digest-name or a digest instance.
** Miscellaneous
Ironclad digests are CLOS objects; the interesting thing about this
for most purposes is that functions like ~reinitialize-instance~ are
supported. This means one can write a fairly efficient clone of the
=md5sum= program like so:
#+BEGIN_EXAMPLE
(defun digest-sum-files (digest-name &rest files)
(unless files
(error "no files given to digest"))
(loop with buffer = (make-array 8192 :element-type '(unsigned-byte 8))
with digest = (make-array (ironclad:digest-length digest-name)
:element-type '(unsigned-byte 8))
for file in files
for digester = (ironclad:make-digest digest-name)
then (reinitialize-instance digester)
do (ironclad:digest-file digester file :buffer buffer :digest digest)
(format t "~A ~A~%" (file-namestring file)
(ironclad:byte-array-to-hex-string digest))))
#+END_EXAMPLE
** Tree hashes
Ironclad supports tree hashes, as described in [[http://web.archive.org/web/20080316033726/http://www.open-content.net/specs/draft-jchapweske-thex-02.html][Tree Hash EXchange format]].
You create tree hashes as if you were creating a digest:
#+BEGIN_EXAMPLE
(ironclad:make-digest :tree-hash)
#+END_EXAMPLE
By default, this creates a tree hash that uses the Tiger digest
algorithm internally and a segment size of 1024. Since using the Tiger
digest algorithm is so common, a convenience function that makes your
intent obvious has also been provided:
#+BEGIN_EXAMPLE
(ironclad:make-tiger-tree-hash)
#+END_EXAMPLE
You may indicate that you wish to use a different algorithm than
Tiger:
#+BEGIN_EXAMPLE
(ironclad:make-digest '(:treehash :digest :sha256))
#+END_EXAMPLE
Or you might wish to use a different segment size:
#+BEGIN_EXAMPLE
(ironclad:make-digest '(:tree-hash :block-length 16384))
#+END_EXAMPLE
There is currently no interface for obtaining the intermediate hashes
computed while computing the final tree hash.
* Message authentication codes
:PROPERTIES:
:CUSTOM_ID: message-authentication-codes
:END:
A message authentication code is a cryptographic function of some data
and a user-specified key. Only a person knowing the key can recompute
the MAC for the given message. A MAC is useful where maintaining data
integrity is required, but the secrecy of the data is not paramount.
Ironclad provides different kinds of MACs:
- HMAC, specified in [[http://www.ietf.org/rfc/rfc2104.txt][RFC 2104]]
- CMAC, specified in [[http://www.ietf.org/rfc/rfc4493.txt][RFC 4493]] and NIST document 800-38B
- GMAC, specified in NIST document 800-38D
- Blake2 and Blake2s MAC
- Poly1305
- SipHash
- Skein MAC
#+NAME: make-mac
#+BEGIN_SRC lisp
(make-mac mac-name key &rest args) => mac
#+END_SRC
Return a MAC object initialized with a secret /key/. /mac-name/ is
a keyword naming the algorithm you wish /mac/ to use. The supported
MACs can be found by calling [[list-all-macs][list-all-macs]]. They are:
- blake2-mac
- blake2s-mac
- cmac
- gmac
- hmac
- poly1305
- siphash
- skein-mac
Like for [[make-digest][make-digest]], /mac-name/ should be a symbol in the ~keyword~
or ~ironclad~ packages.
Some MACs take extra arguments that can be specified in /args/.
#+BEGIN_EXAMPLE
(make-mac :blake2-mac key &key digest-length)
(make-mac :blake2s-mac key &key digest-length)
(make-mac :cmac key cipher-name)
(make-mac :gmac key cipher-name initialization-vector)
(make-mac :hmac key digest-name)
(make-mac :poly1305 key)
(make-mac :siphash key &key compression-rounds finalization-rounds digest-length)
(make-mac :skein-mac key &key block-length digest-length)
#+END_EXAMPLE
When making a Blake2 MAC, the length of the /key/ passed to [[make-mac][make-mac]]
must be 64 bytes.
When making a Blake2s MAC, the length of the /key/ passed to [[make-mac][make-mac]]
must be 32 bytes.
When making a CMAC, /cipher-name/ must have a [[block-length][block-length]] of either 8, 16, 32,
64 or 128; this restriction is satisfied by many ciphers in Ironclad with the
notable exception of stream ciphers. /key/ must be an acceptable key for
/cipher-name/.
When making a GMAC, /cipher-name/ must have a [[block-length][block-length]] of 16. /key/ must be
an acceptable key for /cipher-name/.
When making a Poly1305 MAC, the length of the /key/ passed to [[make-mac][make-mac]] must be
32 bytes.
When making a SipHash MAC, the length of the /key/ passed to [[make-mac][make-mac]] must be 16
bytes. /digest-length/ is 8 by default, but it can also be set to 16. By
default, /compression-rounds/ is 2 and /finalization-rounds/ is 4.
When making a Skein MAC, /block-length/ can be 32 (to use the Skein256
hash function internally), 64 (to use Skein512) or 128 (to use
Skein1024). /digest-length/ can be any length you want the computed
digest to be. By default, /block-length/ is 64 and /digest-length/
is 64.
MAC objects support ~reinitialize-instance~:
#+BEGIN_SRC lisp
(reinitialize-instance mac &rest initargs &key key &allow-other-keys) => mac
#+END_SRC
The /:key/ argument is the secret key, as provided to [[make-mac][make-mac]].
#+NAME: update-mac
#+BEGIN_SRC lisp
(update-mac mac thing &key &allow-other-keys) => (values)
#+END_SRC
Updates the internal state of /mac/ with the contents of /thing/.
The exact method is determined by the type of /thing/.
There are several methods defined on this generic function that take
a particular MAC and a ~(simple-array (unsigned-byte 8) (*))~ as
well as the usual /start/ and /end/ keyword arguments. These methods
update the state of /mac/ with the subsequence of the array
denoted by /start/ and /end/. They are not listed here because there's
one method for every type of MAC that Ironclad provides, and
listing them would get very tedious for no benefit. An example should
suffice.
#+BEGIN_EXAMPLE
(let* ((key (random-data 32))
(mac (ironclad:make-mac :hmac key :sha256))
(array (make-array 16 :element-type '(unsigned-byte 8) :initial-element 0)))
;; Update with 16 zeroes.
(ironclad:update-mac mac array)
;; Update with 8 ones.
(fill array 1 :start 2 :end 10)
(ironclad:update-mac mac array :start 2 :end 10))
#+END_EXAMPLE
#+NAME: produce-mac
#+BEGIN_SRC lisp
(produce-mac mac &key digest digest-start) => digest
#+END_SRC
Return the digest of the data processed by /mac/ so far. The internal
state of /mac/ is not modified; this feature makes it possible to
compute a "rolling MAC" of a document.
If /digest/ is provided, the computed digest will be placed into
/digest/ starting at /digest-start/. /digest/ must be a
~(simple-array (unsigned-byte 8) (*))~. An [[insufficient-buffer-space][insufficient-buffer-space]]
error will be signaled if there is insufficient space in /digest/.
The length of the digest returned by [[produce-mac][produce-mac]] is determined by the
kind of MAC and the extra arguments passed to [[make-mac][make-mac]]:
- blake2-mac: from 1 to 64 bytes (64 by default)
- blake2s-mac: from 1 to 32 bytes (32 by default)
- cmac: [[block-length][block-length]] of the /cipher-name/ passed to [[make-mac][make-mac]]
- gmac: 16 bytes
- hmac: [[digest-length][digest-length]] of the /digest-name/ passed to [[make-mac][make-mac]]
- poly1305: 16 bytes
- siphash: /digest-length/ passed to [[make-mac][make-mac]] (8 by default)
- skein-mac: /digest-length/ passed to [[make-mac][make-mac]] (64 by default)
** Inquiry functions
#+NAME: list-all-macs
#+BEGIN_SRC lisp
(list-all-macs) => list
#+END_SRC
Returns a list whose elements may be validly passed to [[make-mac][make-mac]].
#+NAME: mac-supported-p
#+BEGIN_SRC lisp
(mac-supported-p name) => boolean
#+END_SRC
Returns ~t~ if /name/ would be in the list returned by [[list-all-macs][list-all-macs]],
~nil~ otherwise.
* Authenticated encryption
:PROPERTIES:
:CUSTOM_ID: authenticated-encryption
:END:
#+NAME: make-authenticated-encryption-mode
#+BEGIN_SRC lisp
(make-authenticated-encryption-mode name &rest args) => mode
#+END_SRC
Return an authenticated encryption object suitable for use for both encryption
and decryption.
/name/ denotes the mode to use. [[list-all-authenticated-encryption-modes][list-all-authenticated-encryption-modes]] will
tell you the names of all the supported modes. They are:
- eax (Encrypt then authenticate then translate)
- etm (Encrypt then MAC)
- gcm (Galois counter mode)
/name/ can be a symbol in the ~keyword~ or ~ironclad~ packages.
/args/ depends on the chosen authenticated encryption mode.
#+BEGIN_EXAMPLE
(make-authenticated-encryption-mode :eax &key tag cipher-name key initialization-vector)
(make-authenticated-encryption-mode :etm &key tag cipher mac)
(make-authenticated-encryption-mode :gcm &key tag cipher-name key initialization-vector)
#+END_EXAMPLE
If /tag/ is specified, it will be used at the end of decryption (when the
/handle-final-block/ flag is ~t~) to check the authenticity of the data.
A ~bad-authentication-tag~ error will be signaled if the data is not authentic.
If you don't specify it, you will have to call [[produce-tag][produce-tag]] after decryption and
check that the tags match (e.g. using [[constant-time-equal][constant-time-equal]]).
When using EAX, /key/ must be a suitable key for the chosen /cipher-name/.
When using ETM, /cipher/ must be a cipher object created by [[make-cipher][make-cipher]].
/mac/ must be a mac object created by [[make-mac][make-mac]].
When using GCM, /cipher-name/ must have a [[block-length][block-length]] of 16 bytes. /key/ must be a suitable key
for the chosen cipher.
#+NAME: process-associated-data
#+BEGIN_SRC lisp
(process-associated-data mode data &key start end) => (values)
#+END_SRC
Update the internal state of /mode/ with the contents of /data/ between /start/
and /end/ so that they are taken into consideration in the authentication tag.
An authenticated encryption object can be used with the [[encrypt][encrypt]], [[decrypt][decrypt]],
[[encrypt-message][encrypt-message]] and [[decrypt-message][decrypt-message]] functions.
#+BEGIN_EXAMPLE
(encrypt mode plaintext ciphertext &key plaintext-start plaintext-end ciphertext-start handle-final-block)
(decrypt mode ciphertext plaintext &key ciphertext-start ciphertext-end plaintext-start handle-final-block)
(encrypt-message mode message &key start end associated-data associated-data-start associated-data-end)
(decrypt-message mode message &key start end associated-data associated-data-start associated-data-end)
#+END_EXAMPLE
#+NAME: produce-tag
#+BEGIN_SRC lisp
(produce-tag mode &key tag tag-start) => tag
#+END_SRC
Return the authentication tag of the data processed by /mode/ so far. If /tag/
is provided, the computed tag will be placed into /tag/ starting at /tag-start/.
/tag/ must be a ~(simple-array (unsigned-byte 8) (*))~. An
[[insufficient-buffer-space][insufficient-buffer-space]] error will be signaled if there is insufficient space
in /tag/.
** Inquiry functions
#+NAME: list-all-authenticated-encryption-modes
#+BEGIN_SRC lisp
(list-all-authenticated-encryption-modes) => list
#+END_SRC
Returns a list whose elements may be validly passed to
[[make-authenticated-encryption-mode][make-authenticated-encryption-mode]].
#+NAME: authenticated-encryption-mode-supported-p
#+BEGIN_SRC lisp
(authenticated-encryption-mode-supported-p name) => boolean
#+END_SRC
Returns ~t~ if /name/ would be in the list returned by
[[list-all-authenticated-encryption-modes][list-all-authenticated-encryption-modes]] ~nil~ otherwise.
* Key derivation functions
:PROPERTIES:
:CUSTOM_ID: key-derivation-functions
:END:
Ironclad comes with a few key derivation functions:
- Argon2 (only variants without parallelism are implemented)
- Bcrypt
- Bcrypt-pbkdf
- PBKDF1
- PBKDF2
- Scrypt
- HMAC
#+NAME: derive-key
#+BEGIN_SRC lisp
(derive-key kdf passphrase salt iteration-count key-length) => digest
#+END_SRC
Given a key derivation function object (produced by [[make-kdf][make-kdf]]),
a password and salt (both must be of type
~(simple-array (unsigned-byte 8) (*))~), and number of iterations,
returns the password digest as a byte array of length /key-length/.
For bcrypt, the /salt/ must be 16 bytes long, the /iteration-count/ must be
a power of 2 between 2^4 and 2^31, and the /key-length/ must be 24.
Scrypt and HMAC ignore the /iteration-count/ parameter.
For bcrypt-pbkdf, the /key-length/ must be between 1 and 1024.
#+NAME: make-kdf
#+BEGIN_SRC lisp
(make-kdf kind &key digest n r p block-count additional-key additional-data) => kdf
#+END_SRC
Returns a key derivation function instance.
/kind/ denotes the key derivation function to use. They are:
- argon2d
- argon2i
- argon2id
- bcrypt
- bcrypt-pbkdf
- pbkdf1
- pbkdf2
- scrypt-kdf
- hmac-kdf
/kind/ can be a symbol in the ~keyword~ or ~ironclad~ packages.
The Argon2 key derivations use the /block-count/, /additional-key/
and /additional-data/ parameters (/block-count/ is the number of 1 KiB
memory blocks used by the function and it must be at least 8,
/additional-key/ and /additional-data/ are optional).
The PBKDF algorithms use /digest/.
The Scrypt key derivation uses cost parameters /N/, /r/ and /p/ (/N/
is a CPU cost parameter that must be a power of 2, /r/ and /p/ are
memory cost parameters that must be defined such that
/r/ * /p/ <= 2^30).
The default Scrypt parameters are /N/ = 4096, /r/ = 8, and /p/ = 2.
Please note that depending on the values of /N/ and /r/,
[[derive-key][derive-key]] may not be able to allocate sufficient space for its
temporary arrays.
The HMAC-KDF algorithm uses the /digest/ parameter to precise what
hash function is used. It also optionally uses the /additional-data/
to precise the ~info~ vector from the [[https://tools.ietf.org/html/rfc5869][RFC]].
#+NAME: list-all-kdfs
#+BEGIN_SRC lisp
(list-all-kdfs) => list
#+END_SRC
Returns a list of KDF kinds that may be validly passed to [[make-kdf][make-kdf]].
** PBKDF convenience functions
Ironclad comes with convenience functions for using PBKDF1 and PBKDF2
to store passwords.
#+NAME: pbkdf2-hash-password
#+BEGIN_SRC lisp
(pbkdf2-hash-password password &key salt digest iterations) => password
#+END_SRC
Convenience function for hashing passwords using the PBKDF2 algorithm.
Returns the derived hash of the password, and the original salt, as
byte vectors.
#+NAME: pbkdf2-hash-password-to-combined-string
#+BEGIN_SRC lisp
(pbkdf2-hash-password-to-combined-string password &key salt digest iterations) => password
#+END_SRC
Convenience function for hashing passwords using the PBKDF2 algorithm.
Returns the derived hash of the password as a single string that
encodes the given salt and PBKDF2 algorithm parameters.
#+NAME: pbkdf2-check-password
#+BEGIN_SRC lisp
(pbkdf2-check-password password combined-salt-and-digest) => boolean
#+END_SRC
Given a /password/ byte vector and a combined salt and digest string
produced by [[pbkdf2-hash-password-to-combined-string][pbkdf2-hash-password-to-combined-string]], checks whether
the password is valid.
* Public key cryptography
:PROPERTIES:
:CUSTOM_ID: public-key-cryptography
:END:
Ironclad includes support for a few public key cryptography algorithms.
Encryption algorithms:
- Elgamal
- RSA
Signature algorithms:
- DSA
- Ed25519
- Ed448
- Elgamal
- RSA
- Secp256k1
- Secp256r1 (a.k.a. NIST P-256)
- Secp384r1 (a.k.a. NIST P-384)
- Secp521r1 (a.k.a. NIST P-521)
Diffie-Hellman key exchange:
- Curve25519
- Curve448
- Elgamal
- Secp256k1
- Secp256r1 (a.k.a. NIST P-256)
- Secp384r1 (a.k.a. NIST P-384)
- Secp521r1 (a.k.a. NIST P-521)
** Key pair generation
#+NAME: generate-key-pair
#+BEGIN_SRC lisp
(generate-key-pair kind &key num-bits &allow-other-keys) => private-key, public-key
#+END_SRC
Return a key pair according to /kind/. The generation of DSA, Elgamal
and RSA key pairs can take some time. If /kind/ is ~:dsa~ or ~:rsa~,
the /num-bits/ key argument indicating the size of the keys to
generate must be specified. If /kind/ is ~:elgamal~, /num-bits/ must
be specified unless /compatible-with-key/ is specified, in which case
the group parameters are taken from the specified key instead of being
generated.
For example, if Alice wants to generate a key pair for
a Diffie-Hellman exchange with Bob's Elgamal key pair:
#+BEGIN_EXAMPLE
(generate-key-pair :elgamal :compatible-with-key bob-public-key)
#+END_EXAMPLE
#+NAME: list-all-key-pair-kinds
#+BEGIN_SRC lisp
(list-all-key-pair-kinds) => list
#+END_SRC
Returns a list of key pair kinds that may be validly passed to
[[generate-key-pair][generate-key-pair]].
*** Key construction
#+NAME: make-public-key
#+BEGIN_SRC lisp
(make-public-key kind &key &allow-other-keys) => public-key
#+END_SRC
Return a public key according to /kind/. The /&key/
arguments vary according to /kind/. The interesting bits are in the
methods that specialize on /kind/, below.
#+BEGIN_EXAMPLE
(make-public-key :curve25519 &key y) => public-key
(make-public-key :curve448 &key y) => public-key
(make-public-key :dsa &key p q g y) => public-key
(make-public-key :ed25519 &key y) => public-key
(make-public-key :ed448 &key y) => public-key
(make-public-key :elgamal &key p g y) => public-key
(make-public-key :rsa &key e n) => public-key
(make-public-key :secp256k1 &key y) => public-key
(make-public-key :secp256r1 &key y) => public-key
(make-public-key :secp384r1 &key y) => public-key
(make-public-key :secp521r1 &key y) => public-key
#+END_EXAMPLE
#+NAME: make-private-key
#+BEGIN_SRC lisp
(make-private-key kind &key &allow-other-keys) => private-key
#+END_SRC
Return a private key according to /kind/. The /&key/ arguments vary
according to /kind/. The interesting bits are in the methods that
specialize on /kind/, below.
#+BEGIN_EXAMPLE
(make-private-key :curve25519 &key x y) => private-key
(make-private-key :curve448 &key x y) => private-key
(make-private-key :dsa &key p q g y x) => private-key
(make-private-key :ed25519 &key x y) => private-key
(make-private-key :ed448 &key x y) => private-key
(make-private-key :elgamal &key p g y x) => private-key
(make-private-key :rsa &key d n p q) => private-key
(make-private-key :secp256k1 &key x y) => private-key
(make-private-key :secp256r1 &key x y) => private-key
(make-private-key :secp384r1 &key x y) => private-key
(make-private-key :secp521r1 &key x y) => private-key
#+END_EXAMPLE
For Curve25519, Curve448, Ed25519, Ed448 keys, Secp256k1, Secp256r1, Secp384r1
and Secp521r1, the type of the parameters is
~(simple-array (unsigned-byte 8) (*))~:
- /x/, the secret key
- /y/, the public key
For DSA and Elgamal keys, the type of the parameters is ~integer~:
- /p/, the prime number defining the DL group
- /q/, the prime number defining the DL sub-group
- /g/, the generator
- /y/, the public key
- /x/, the private key
For RSA keys, the type of the parameters is ~integer~:
- /n/, the modulus
- /e/, the public key
- /d/, the private key
- /p/, the first prime factor of /n/
- /q/, the second prime factor of /n/
*** Key destructuring
The [[destructure-public-key][destructure-public-key]] and [[destructure-private-key][destructure-private-key]] functions can
be useful if you need to store keys somewhere for future use.
#+NAME: destructure-public-key
#+BEGIN_SRC lisp
(destructure-public-key public-key) => plist
#+END_SRC
Return the elements of a public key in a plist. The indicators of the
plist match the /&key/ arguments of the [[make-public-key][make-public-key]] method.
#+NAME: destructure-private-key
#+BEGIN_SRC lisp
(destructure-private-key private-key) => plist
#+END_SRC
Return the elements of a private key in a plist. The indicators of the
plist match the /&key/ arguments of the [[make-private-key][make-private-key]] method.
** Digital signatures
#+NAME: sign-message
#+BEGIN_SRC lisp
(sign-message key message &key start end &allow-other-keys) => signature
#+END_SRC
Return a signature of /message/ between /start/ and /end/ signed with
/key/; the class of /key/ determines the algorithm used to create the
/signature/.
_Note:_ The [[sign-message][sign-message]] does not perform the hashing of the data. You
should hash your data using your favorite hash function, and then use
this hash as the /message/ passed to [[sign-message][sign-message]].
#+NAME: verify-signature
#+BEGIN_SRC lisp
(verify-signature key message signature &key start end &allow-other-keys) => boolean
#+END_SRC
Verify whether /signature/ is a valid signature of /message/ between
/start/ and /end/ using /key/. Return ~t~ is the signature is valid
and ~nil~ otherwise.
*** Padding
To be secure, RSA signature requires the message to be padded.
The /pss/ key parameter is provided to pad (or unpad) the message
during signature (or verification) with the PSS scheme of PKCS-1.
The value of the /pss/ key parameter can be either a digest name
or ~t~ (which will use the sha1 digest).
#+BEGIN_EXAMPLE
(sign-message rsa-private-key message :pss t) => signature
(verify-signature rsa-public-key message signature :pss t) => boolean
#+END_EXAMPLE
The functions /pss-encode/ and /pss-decode/ can also be used by hand if
necessary.
*** Signature nonce
DSA, Elgamal and ECDSA (Secp256k1, Secp256r1, Secp384r1 and Secp521r1)
signatures require the generation of a nonce. You must never sign two different
messages with the same key and the same nonce, or anyone having these two
signatures will be able compute your private key. Ironclad uses the
[[generate-signature-nonce][generate-signature-nonce]] method which by default generates random nonces.
#+NAME: generate-signature-nonce
#+BEGIN_SRC lisp
(generate-signature-nonce (key message &optional parameters)) => nonce
#+END_SRC
For DSA, /parameters/ is /q/. For Elgamal, /parameters/ is /p/. For ECDSA,
/parameters/ is ~nil~.
If instead of random nonces, you want to have deterministic nonces (e.g. like
in RFC 6979), you will have to redefine [[generate-signature-nonce][generate-signature-nonce]]. For example,
to have deterministic nonces for Secp256k1 ECDSA signatures, you could do
something like:
#+BEGIN_EXAMPLE
(defmethod generate-signature-nonce ((key secp256k1-private-key) message &optional parameters)
(declare (ignore parameters))
(compute-deterministic-nonce key message))
#+END_EXAMPLE
*** Format of signatures
[[sign-message][sign-message]] returns signatures as octet vectors. When the signature
contains several values (e.g. the R and S values of DSA signatures),
the octet vector is the concatenation of these values (e.g. the first
half of the vector is the R value, the second half is the S value).
You can use the [[make-signature][make-signature]] and [[destructure-signature][destructure-signature]] functions if
you need access to the elements of a signature (e.g. to use
a different kind of serialization).
#+NAME: make-signature
#+BEGIN_SRC lisp
(make-signature kind &key &allow-other-keys) => signature
#+END_SRC
Return an octet vector representing a signature. The /&key/ arguments
vary according to /kind/. The interesting bits are in the methods that
specialize on /kind/, below.
#+BEGIN_EXAMPLE
(make-signature :dsa &key r s n-bits) => signature
(make-signature :ed25519 &key r s) => signature
(make-signature :ed448 &key r s) => signature
(make-signature :elgamal &key r s n-bits) => signature
(make-signature :rsa &key s n-bits) => signature
(make-signature :secp256k1 &key r s) => signature
(make-signature :secp256r1 &key r s) => signature
(make-signature :secp384r1 &key r s) => signature
(make-signature :secp521r1 &key r s) => signature
#+END_EXAMPLE
For Ed25519, Ed448, Secp256k1, Secp256r1, Secp384r1 and Secp521r1 signatures,
the type of the parameters /r/ and /s/ is
~(simple-array (unsigned-byte 8) (*))~.
For DSA and Elgamal signatures, the type of the parameters /r/, /s/
and /n-bits/ is ~integer~.
For RSA signatures, the type of the parameters /s/ and /n-bits/ is
~integer~.
#+NAME: destructure-signature
#+BEGIN_SRC lisp
(destructure-signature kind signature) => plist
#+END_SRC
Return the elements of a signature in a plist. The indicators of the
plist match the /&key/ arguments of the [[make-signature][make-signature]] method.
** Encryption and decryption
#+NAME: encrypt-message
#+BEGIN_SRC lisp
(encrypt-message key message &key start end &allow-other-keys) => encrypted-message
#+END_SRC
Return the /message/ between /start/ and /end/ encrypted with the /key/;
the class of /key/ determines the algorithm used to encrypt the message.
#+NAME: decrypt-message
#+BEGIN_SRC lisp
(decrypt-message key message &key start end n-bits &allow-other-keys) => decrypted-message
#+END_SRC
Return the /message/ between /start/ and /end/ decrypted by the /key/;
the class of /key/ determines the algorithm used to decrypt the message.
/n-bits/ can be used to indicate the expected size of the decrypted
message (e.g. a small byte vector starting with zeros encrypted
without padding, which is probably a bad idea, c.f. Padding section).
*** Padding
To be secure, RSA encryption requires the message to be padded. The
/oaep/ key parameter is provided to pad (or unpad) the message during
encryption (or decryption) with the OAEP scheme of PKCS-1.
The value of the /oaep/ key parameter can be either a digest name
or ~t~ (which will use the sha1 digest).
#+BEGIN_EXAMPLE
(encrypt-message rsa-public-key message :oaep t) => encrypted-message
(decrypt-message rsa-private-key message :oaep t) => decrypted-message
#+END_EXAMPLE
The functions /oaep-encode/ and /oaep-decode/ can also be used by hand if
necessary.
*** Format of messages
[[encrypt-message][encrypt-message]] returns encrypted messages as octet vectors. When the
message contains several values (e.g. the C1 and C2 values of Elgamal
messages), the octet vector is the concatenation of these values (e.g.
the first half of the vector is the big-endian representation of the
C1 value, the second half is the C2 value). You can use the
[[make-message][make-message]] and [[destructure-message][destructure-message]] functions if you need access to
the elements of a message (e.g. to use a different kind of
serialization).
#+NAME: make-message
#+BEGIN_SRC lisp
(make-message kind &key &allow-other-keys) => message
#+END_SRC
Return an octet vector representing a message. The /&key/ arguments
vary according to /kind/. The interesting bits are in the methods that
specialize on /kind/, below.
#+BEGIN_EXAMPLE
(make-message :elgamal &key c1 c2 n-bits) => message
(make-message :rsa &key m n-bits) => message
#+END_EXAMPLE
For Elgamal messages, the type of the parameters /c1/, /c2/ and
/n-bits/ is ~integer~.
For RSA signatures, the type of the parameters /m/ and /n-bits/ is
~integer~.
#+NAME: destructure-message
#+BEGIN_SRC lisp
(destructure-message kind message) => plist
#+END_SRC
Return the elements of a message in a plist. The indicators of the
plist match the /&key/ arguments of the [[make-message][make-message]] method.
** Diffie-Hellman key exchange
#+NAME: diffie-hellman
#+BEGIN_SRC lisp
(diffie-hellman private-key public-key) => bytes
#+END_SRC
Return a secret shared by two users Alice and Bob, computed from
Alice's private key and Bob's public key (these keys must be
compatible, i.e. have the same group parameters).
** Elliptic curve operations
#+NAME: ec-make-point
#+BEGIN_SRC lisp
(ec-make-point kind &key &allow-other-keys) => point
#+END_SRC
Return a point of /kind/, initialized according to the specified coordinates.
The interesting bits are in the methods that specialize on /kind/, below.
#+BEGIN_EXAMPLE
(ec-make-point :curve25519 &key x)
(ec-make-point :curve448 &key x)
(ec-make-point :ed25519 &key x y)
(ec-make-point :ed448 &key x y)
(ec-make-point :secp256k1 &key x y)
(ec-make-point :secp256r1 &key x y)
(ec-make-point :secp384r1 &key x y)
(ec-make-point :secp521r1 &key x y)
#+END_EXAMPLE
The /x/ and /y/ parameters must be integers.
#+NAME: ec-destructure-point
#+BEGIN_SRC lisp
(ec-destructure-point p) => plist
#+END_SRC
Return a plist containing the coordinates of the point /P/. The indicators of
the plist match the /&key/ arguments of the [[ec-make-point][ec-make-point]] method.
#+NAME: ec-point-on-curve
#+BEGIN_SRC lisp
(ec-point-on-curve p) => boolean
#+END_SRC
Return ~t~ if the point /P/ is on the curve.
#+NAME: ec-point-equal
#+BEGIN_SRC lisp
(ec-point-equal p q) => boolean
#+END_SRC
Return ~t~ if /P/ and /Q/ represent the same point.
#+NAME: ec-double
#+BEGIN_SRC lisp
(ec-double p) => point
#+END_SRC
Return the point 2 * /P/.
#+NAME: ec-add
#+BEGIN_SRC lisp
(ec-add p q) => point
#+END_SRC
Return the point /P/ + /Q/.
#+NAME: ec-scalar-mult
#+BEGIN_SRC lisp
(ec-scalar-mult p e) => point
#+END_SRC
Return the point /e/ * /P/.
#+NAME: ec-scalar-inv
#+BEGIN_SRC lisp
(ec-scalar-inv kind n) => integer
#+END_SRC
Return the modular inverse of /n/.
#+NAME: ec-encode-scalar
#+BEGIN_SRC lisp
(ec-encode-scalar kind n) => vector
#+END_SRC
Return an octet vector representing the integer /n/.
#+NAME: ec-decode-scalar
#+BEGIN_SRC lisp
(ec-decode-scalar kind octets) => integer
#+END_SRC
Return the integer represented by the /octets/.
#+NAME: ec-encode-point
#+BEGIN_SRC lisp
(ec-encode-point p) => vector
#+END_SRC
Return an octet vector representing the point /P/.
#+NAME: ec-decode-point
#+BEGIN_SRC lisp
(ec-decode-point kind octets) => point
#+END_SRC
Return the point represented by the /octets/.
* Pseudo-random number generation
:PROPERTIES:
:CUSTOM_ID: pseudo-random-number-generation
:END:
The =*prng*= special variable indicates which pseudo-random number
generator is used by default by functions that need to generate some
random data. It defaults to a sensible OS-specific value.
The vast, vast vast number of users should just use the default
~os-prng~ (which uses =/dev/urandom= on Unix and ~CryptGenRandom~ on
Windows). For users who need /deterministic/,
high-quality-random-seeming numbers (e.g. for Monte Carlo
simulations), ~fortuna-generator~ is provided. Finally, if you're
running on a platform without a decent PRNG (these are few and far
between now), you may require the full ~fortuna-prng~. When in doubt,
use ~os-prng~, which is the default.
#+NAME:make-prng
#+BEGIN_SRC lisp
(make-prng name &key seed) => prng
#+END_SRC
Create a pseudo-random number generator.
/name/ denotes the style of PRNG to use. [[list-all-prngs][list-all-prngs]] will tell you
the names of all supported PRNGs. Currently supported PRNGs are:
- OS
- Fortuna
- Fortuna-generator
/name/ can be a symbol in the ~keyword~ package or in the ~ironclad~
package.
/seed/ is a *seed descriptor*. If ~nil~, the PRNG will not be seeded
(which may prevent it from generating output until it is seeded,
depending on the PRNG in question). If ~:random~ then the PRNG will be
seeded with the OS's cryptographically-secure PRNG. If ~:urandom~ then
the PRNG will be seeded with the OS's fast-but-potentially-less-secure
PRNG, if available (if not, will fallback to ~:random~). If it is
a pathname indicator, a seed will be read from the indicated file,
then a new seed will be generated and written back to the file
(over-writing the old seed). Finally, if it is a byte vector, it will
be used to seed the PRNG.
In single-threaded applications, you should very rarely need to call [[make-prng][make-prng]];
the default OS-provided PRNG should be appropriate in nearly all cases.
In multi-threaded applications, each thread that will use functions requiring
random data must have its own PRNG, or several threads might generate the same
"random" data. If the threads are created using the *bordeaux-threads* library
(or by a library using *bordeaux-threads*, like *lparallel*), this is done
automatically. However, if you are using the threading functions of your Common
Lisp implementation directly, you have to bind the ~*prng*~ special variable to
a new PRNG in each thread. For example:
#+BEGIN_EXAMPLE
(make-thread (lambda ()
(let ((crypto:*prng* (crypto:make-prng :os)))
(forms-for-thread-1))))
(make-thread (lambda ()
(let ((crypto:*prng* (crypto:make-prng :os)))
(forms-for-thread-2))))
#+END_EXAMPLE
#+NAME: list-all-prngs
#+BEGIN_SRC lisp
(list-all-prngs) => list
#+END_SRC
List all known PRNG types.
#+NAME: random-data
#+BEGIN_SRC lisp
(random-data num-bytes &optional prng) => bytes
#+END_SRC
Generate /num-bytes/ bytes of random data from /prng/. Updates the
state of the generator.
#+NAME: random-bits
#+BEGIN_SRC lisp
(random-bits num-bits &optional prng) => integer
#+END_SRC
Generate an integer with /num-bits/ bits.
#+NAME: strong-random
#+BEGIN_SRC lisp
(strong-random limit &optional prng) => number
#+END_SRC
A drop-in replacement for ~common-lisp:random~, [[strong-random][strong-random]]
generates a number (an integer if /limit/ is an integer and a float if
it is a float) between 0 and /limit/ - 1 in an unbiased fashion.
#+NAME: read-os-random-seed
#+BEGIN_SRC lisp
(read-os-random-seed source &optional prng) => reseed-count
#+END_SRC
Read an OS-provided random seed (from =/dev/urandom= or =/dev/random=
on Unix; ~CryptGenRandom~ on Windows) and reseed /prng/.
/source/ may be ~:random~, which indicates =/dev/random= or
~:urandom~, which indicates =/dev/urandom=. On Windows,
~CryptGenRandom~ is always used.
#+NAME: read-seed
#+BEGIN_SRC lisp
(read-seed path &optional prng) => t
#+END_SRC
Read enough bytes from /path/ to reseed /prng/, then generate
a pseudo-random seed and write it back to /path/. If /path/ doesn't
exist, calls [[read-os-random-seed][read-os-random-seed]] to get a truly random seed from the
OS. Note that reseeding does *not* reset the generator's state to the
seed value; rather, it *combines* the generator's state with the seed
to form a new state.
#+NAME: write-seed
#+BEGIN_SRC lisp
(write-seed path &optional prng) => t
#+END_SRC
Generate enough random data to reseed /prng/, then write it to /path/.
** Example
#+BEGIN_EXAMPLE
(crypto:random-data 16)
=> #(61 145 133 130 220 200 90 86 0 101 62 169 0 40 101 78)
(crypto:strong-random 16)
=> 3
(crypto:random-bits 16)
=> 41546
#+END_EXAMPLE
** Fortuna
You should only use the Fortuna PRNG if your OS does not provided
a sufficiently-good PRNG. If you use a Unix or Unix-like OS (e.g.
Linux), macOS or Windows, it does. Only use the Fortuna PRNG if you
know for certain that you need it.
Fortuna is a cryptographically-secure random number presented by
Ferguson, Schneier and Kohno in /Cryptography Engineering/. It is
built around 32 entropy pools, which are used with decreasing
frequency for each reseed (e.g. pool 0 is used in each reseed, pool
1 in every other reseed, pool 2 in every fourth reseed and so forth).
Pools are seeded with data from up to 256 sources.
Each application should have one or more entropy sources (say, one for
each OS random number source, one for the low bits of the current
time, one for the output of a particular command or group of commands
and so forth). A source should be used to add randomness to each pool
in order, so source 0 should top up pool 0, then pool 1, and so forth
up to pool 31, then loop back to pool 1 again. Be very careful to
spread entropy across all 32 pools.
Fortuna automatically feeds entropy from the pools back into its
random state when [[random-data][random-data]] is called, using a method designed to
make it resistant to various avenues of attack; even in case of
generator compromise it will return to a safe state within a bounded
time.
For purposes of reseeding, Fortuna will not reseed until the first
pool contains 128 bits of entropy; ~+min-pool-size+~ sets the number
of bytes this is; it defaults to a very conservative 128, meaning that
by default each byte of event is assumed to contain a single bit of
randomness.
It also will not reseed more than ten times per second.
#+NAME: add-random-event
#+BEGIN_SRC lisp
(add-random-event source pool-id event &optional prng) => pool-length
#+END_SRC
Add entropy to /prng/.
/source/ is an integer in the range 0-255 specifiying the event's
application-defined source.
/pool-id/ is an integer in the range 0-31 specifying the pool to top
up.
/event/ is up to 32 bytes of data (for longer events, hash them down
or break them up into chunks).
* Gray streams
:PROPERTIES:
:CUSTOM_ID: gray-streams
:END:
Ironclad includes support for several convenient stream abstractions
based on Gray streams. Gray streams support in Ironclad is included
for SBCL, CMUCL, OpenMCL/CCL, Lispworks, ABCL, ECL, Clisp and Allegro.
** Octet streams
Octet streams are very similar to Common Lisp's ~string-stream~ except
they deal in octets instead of characters.
#+NAME: make-octet-input-stream
#+BEGIN_SRC lisp
(make-octet-input-stream buffer &optional start end) => octet-input-stream
#+END_SRC
As ~make-string-input-stream~, only with octets instead of characters.
#+NAME: make-octet-output-stream
#+BEGIN_SRC lisp
(make-octet-output-stream) => octet-output-stream
#+END_SRC
As ~make-string-output-stream~, only with octets instead of characters.
#+NAME: get-output-stream-octets
#+BEGIN_SRC lisp
(get-output-stream-octets stream) => octet-vector
#+END_SRC
As ~get-output-stream-string~, only with an octet output-steam instead
of a string output-stream.
#+NAME: with-octet-input-stream
#+BEGIN_SRC lisp
(with-octet-input-stream ((var buffer &optional (start 0) end) &body body))
#+END_SRC
Within /body/, /var/ is bound to an octet input stream. Reading from
/var/ gives the bytes between the indexes /start/ and /end/ of
/buffer/. The result of the last form of /body/ is returned.
#+NAME: with-octet-output-stream
#+BEGIN_SRC lisp
(with-octet-output-stream ((var) &body body)) => bytes
#+END_SRC
Within /body/, /var/ is bound to an octet output stream. After all the
forms in /body/ have been executed, the data that has been written to
/var/ (and that hasn't been consumed by a call to
[[get-output-stream-octets][get-output-stream-octets]] within /body/) is returned.
** Digest streams
Digest streams compute a digest of the data written to them according
to a specific digest algorithm.
Example:
#+BEGIN_EXAMPLE
(defun frobbing-function (stream)
;; We want to compute a digest of the data being written to STREAM
;; without involving our callees in the process.
(let* ((digesting-stream (crypto:make-digesting-stream :sha1))
(stream (make-broadcast-stream stream digesting-stream)))
;; Feed data to STREAM.
(frob-guts stream)
;; Do something with the digest computed.
(... (crypto:produce-digest digesting-stream) ...)
...))
#+END_EXAMPLE
#+NAME: make-digesting-stream
#+BEGIN_SRC lisp
(make-digesting-stream digest &rest args) => stream
#+END_SRC
Make a stream that computes a digest of the data written to it
according to the algorithm /digest/. The parameters that can be used
by some algorithms can be specified as /args/.
[[produce-digest][produce-digest]] may be used to obtain a digest of all the data written
to the stream.
_Note:_ Calling [[produce-digest][produce-digest]] on a digest stream does not alter
the internal state of the digest.
#+NAME: with-digesting-stream
#+BEGIN_SRC lisp
(with-digesting-stream (var digest-name &rest args) &body body) => digest
#+END_SRC
Within /body/, /var/ is bound to a digesting stream for the
/digest-name/ algorithm. After all the forms in /body/ have been
executed, the digest of the data that has been written to /var/ is
returned.
** Cipher streams
Cipher streams encrypt or decrypt the data written to or read from
them according to a specific cipher algorithm.
#+NAME: make-encrypting-stream
#+BEGIN_SRC lisp
(make-encrypting-stream stream cipher mode key &key initialization-vector direction) => stream
#+END_SRC
Make a stream wrapped around the binary stream /stream/ that encrypts
data according to the algorithm /cipher/ initialized with a /mode/,
a /key/ and an /initialization-vector/.
If /direction/ is ~:input~, the data read from the created input
stream is the encryption of the data coming from /stream/.
If /direction/ is ~:output~, the data written to the created output
stream is encrypted before being sent to /stream/.
#+NAME: make-decrypting-stream
#+BEGIN_SRC lisp
(make-decrypting-stream stream cipher mode key &key initialization-vector direction) => stream
#+END_SRC
Make a stream wrapped around the binary stream /stream/ that decrypts
data according to the algorithm /cipher/ initialized with a /mode/,
a /key/ and an /initialization-vector/.
If /direction/ is ~:input~, the data read from the created input
stream is the decryption of the data coming from /stream/.
If /direction/ is ~:output~, the data written to the created output
stream is decrypted before being sent to /stream/.
_Note:_ Only stream ciphers and block ciphers in CTR, CFB, CFB8 or OFB mode are
supported by [[make-encrypting-stream][make-encrypting-stream]] and [[make-decrypting-stream][make-decrypting-stream]].
#+NAME: with-encrypting-stream
#+BEGIN_SRC lisp
(with-encrypting-stream ((var stream cipher mode key &key initialization-vector direction) &body body))
#+END_SRC
Within /body/, /var/ is bound to an encrypting stream. The result of
the last form of /body/ is returned.
#+NAME: with-decrypting-stream
#+BEGIN_SRC lisp
(with-decrypting-stream ((var stream cipher mode key &key initialization-vector direction) &body body))
#+END_SRC
Within /body/, /var/ is bound to a decrypting stream. The result of
the last form of /body/ is returned.
** MAC streams
MAC streams compute a message authentication code of the data written
to them according to a specific MAC algorithm.
#+NAME: make-authenticating-stream
#+BEGIN_SRC lisp
(make-authenticating-stream mac key &rest args) => stream
#+END_SRC
Make a stream that computes a MAC of the data written to it according
to the algorithm /mac/ initialized with a /key/. The parameters used
to create the MAC can be specified as /args/.
[[produce-mac][produce-mac]] may be used to obtain a MAC of all the data written to the
stream.
_Note:_ Calling [[produce-mac][produce-mac]] on a MAC stream does not alter the
internal state of the MAC.
Example: encrypt some data and compute a MAC of the ciphertext
#+BEGIN_EXAMPLE
(let* ((data ...)
(output-stream ...)
(encryption-key ...)
(authentication-key ...)
(iv ...)
(mac-stream (make-authenticating-stream :hmac
authentication-key
:sha3))
(stream (make-broadcast-stream output-stream mac-stream))
(cipher-stream (make-encrypting-stream stream
:chacha
:stream
encryption-key
:initialization-vector iv)))
(write-sequence data cipher-stream)
...
(let ((mac (produce-mac mac-stream)))
...))
#+END_EXAMPLE
#+NAME: with-authenticating-stream
#+BEGIN_SRC lisp
(with-authenticating-stream (var mac-name key &rest args) &body body) => mac
#+END_SRC
Within /body/, /var/ is bound to an authenticating stream for the
/mac-name/ algorithm. After all the forms in /body/ have been
executed, the message authentication code of the data that has been
written to /var/ is returned.
* Utility functions
:PROPERTIES:
:CUSTOM_ID: utility-functions
:END:
#+NAME: ub-ref-le
#+BEGIN_SRC lisp
(ub16ref/le vector index) => value
(ub32ref/le vector index) => value
(ub64ref/le vector index) => value
#+END_SRC
This family of functions accesses an unsigned 16-bit, 32-bit or 64-bit
value stored in little-endian order starting at /index/ in /vector/.
/vector/ must be a ~(simple-array (unsigned-byte 8) (*))~. These
functions are SETFable.
#+NAME: ub-ref-be
#+BEGIN_SRC lisp
(ub16ref/be vector index) => value
(ub32ref/be vector index) => value
(ub64ref/be vector index) => value
#+END_SRC
As the above, only the value is stored in big-endian order.
#+NAME: array-hex-string
#+BEGIN_SRC lisp
(byte-array-to-hex-string vector &key start end element-type) => string
(hex-string-to-byte-array string &key start end) => string
(ascii-string-to-byte-array string &key start end) => vector
#+END_SRC
[[array-hex-string][byte-array-to-hex-string]] converts the bytes of /vector/ between
/start/ and /end/ into a hexadecimal string. It is useful for
converting digests to a more readable form. /element-type/ indicates
the element-type of the returned string.
[[array-hex-string][hex-string-to-byte-array]] parses a substring of /string/ delimited
/start/ and /end/ of hexadecimal digits into a byte array.
[[array-hex-string][ascii-string-to-byte-array]] is provided as a quick and dirty way to
convert a string to a byte array suitable for feeding to [[update-digest][update-digest]]
or [[encrypt][encrypt]]. Care should be taken to ensure that the provided string is
actually an ASCII string. /start/ and /end/ have their usual
interpretations.
#+NAME: octets-integer
#+BEGIN_SRC lisp
(octets-to-integer octet-vec &key start end big-endian n-bits) => number
(integer-to-octets bignum &key n-bits big-endian) => vector
#+END_SRC
[[octets-integer][octets-to-integer]] converts the bytes of /octet-vec/ between /start/
and /end/ to an integer as though the bytes denoted a number in
base 256. /big-endian/ is a boolean indicating whether the bytes are
to be read in big-endian or little-endian order. /n-bits/ specifies
how many bits should be considered as significant in the resulting
number.
[[octets-integer][integer-to-octets]] is the reverse operation.
#+NAME: expt-mod
#+BEGIN_SRC lisp
(expt-mod n exponent modulus) => number
(expt-mod/unsafe n exponent modulus) => number
#+END_SRC
Raises /n/ to the /exponent/ power modulo /modulus/ in a more
efficient fashion than ~(mod (expt n exponent) modulus)~.
[[expt-mod][expt-mod]] is using the Montgomery ladder algorithm to be more robust
against timing attacks.
[[expt-mod][expt-mod/unsafe]] runs faster than [[expt-mod][expt-mod]] but is not safe against
timing attacks; don't use it on secret data.
#+NAME: prime-p
#+BEGIN_SRC lisp
(prime-p n &optional prng) => boolean
#+END_SRC
[[prime-p][prime-p]] returns ~t~ if /n/ has a high probability of being a prime number, and
~nil~ if it is a composite number. The probable primality is determined by
first doing trial divisions with small primes, then running several
Miller-Rabin tests with random bases, and finally doing a Lucas test. The
number of Miller-Rabin tests can be configured using the
~*number-of-miller-rabin-tests*~ variable. It is 64 by default, which makes the
probability of returning ~t~ for a composite number to be at most 1/2^128.
#+NAME: make-random-salt
#+BEGIN_SRC lisp
make-random-salt &optional size => bytes
#+END_SRC
Generate a byte vector of /size/ (default 16) random bytes, suitable
for use as a password salt.
#+NAME: constant-time-equal
#+BEGIN_SRC lisp
constant-time-equal data1 data2 => boolean
#+END_SRC
Check whether the contents of the byte arrays /data1/ and /data2/ are
the same. This function runs in constant time (for a given array
length) to prevent timing attacks. It can be used to compare passwords
or MACs.
* Conditions
:PROPERTIES:
:CUSTOM_ID: conditions
:END:
#+NAME: ironclad-error
#+BEGIN_SRC lisp
ironclad-error
#+END_SRC
All errors signaled by Ironclad are of this type. This type is
a direct subtype of ~simple-error~ without any extra slots or options.
#+NAME: initialization-vector-not-supplied
#+BEGIN_SRC lisp
initialization-vector-not-supplied
#+END_SRC
This error is signaled by [[make-cipher][make-cipher]] when an initialization vector is
not provided and the requested mode requires an initialization vector.
#+NAME: invalid-initialization-vector
#+BEGIN_SRC lisp
invalid-initialization-vector
#+END_SRC
This error is signaled when an invalid initialization vector is
supplied to [[make-cipher][make-cipher]] (e.g. when the length of the initialization
vector does not match the block length of the cipher).
#+NAME: invalid-key-length
#+BEGIN_SRC lisp
invalid-key-length
#+END_SRC
This error is signaled when the key provided to [[make-cipher][make-cipher]] is not of
an acceptable length for the requested cipher.
#+NAME: unsupported-cipher
#+BEGIN_SRC lisp
unsupported-cipher
#+END_SRC
This error is signaled when the /cipher-name/ provided to [[make-cipher][make-cipher]]
is not [[cipher-supported-p][cipher-supported-p]].
#+NAME: unsupported-mode
#+BEGIN_SRC lisp
unsupported-mode
#+END_SRC
This error is signaled when the /mode/ provided to
[[make-cipher][make-cipher]] is not /mode-supported-p/.
#+NAME: unsupported-padding
#+BEGIN_SRC lisp
unsupported-padding
#+END_SRC
This error is signaled when the /padding/ provided to [[make-cipher][make-cipher]] is not
supported.
#+NAME: unsupported-digest
#+BEGIN_SRC lisp
unsupported-digest
#+END_SRC
This error is signaled when the /digest-name/ provided to
[[make-digest][make-digest]] is not [[digest-supported-p][digest-supported-p]].
#+NAME: unsupported-mac
#+BEGIN_SRC lisp
unsupported-mac
#+END_SRC
This error is signaled when the /mac-name/ provided to
[[make-mac][make-mac]] is not [[mac-supported-p][mac-supported-p]].
#+NAME: insufficient-buffer-space
#+BEGIN_SRC lisp
insufficient-buffer-space
#+END_SRC
This error is signaled when Ironclad needs to stuff some data into
a buffer (e.g. when the user provides /digest/ to [[produce-digest][produce-digest]] and
there is insufficient space).
#+NAME: key-not-supplied
#+BEGIN_SRC lisp
key-not-supplied
#+END_SRC
This error is signaled when a /:key/ argument is not provided
to [[make-cipher][make-cipher]].
#+NAME: unsupported-kdf
#+BEGIN_SRC lisp
unsupported-kdf
#+END_SRC
This error is signaled when an invalid KDF name is provided
to [[make-kdf][make-kdf]].
#+NAME: unsupported-scrypt-cost-factors
#+BEGIN_SRC lisp
unsupported-scrypt-cost-factors
#+END_SRC
This error is signaled when invalid Scrypt cost factors are provided
to [[make-kdf][make-kdf]].
#+NAME: unsupported-argon2-cost-factors
#+BEGIN_SRC lisp
unsupported-argon2-cost-factors
#+END_SRC
This error is signaled when invalid Argon2 parameters are provided
to [[make-kdf][make-kdf]].
#+NAME: invalid-padding
#+BEGIN_SRC lisp
invalid-padding
#+END_SRC
This error is signaled when padding in a block is determined to be
invalid.
#+NAME: invalid-mac-parameter
#+BEGIN_SRC lisp
invalid-mac-parameter
#+END_SRC
This error is signaled when an invalid parameter is provided
to [[make-mac][make-mac]].
#+NAME: invalid-signature-length
#+BEGIN_SRC lisp
invalid-signature-length
#+END_SRC
This error is signaled when a signature with an invalid length is provided
to [[verify-signature][verify-signature]] or [[destructure-signature][destructure-signature]].
#+NAME: invalid-message-length
#+BEGIN_SRC lisp
invalid-message-length
#+END_SRC
This error is signaled when a message with an invalid length is provided
to [[encrypt-message][encrypt-message]], [[decrypt-message][decrypt-message]] or [[destructure-message][destructure-message]].
#+NAME: missing-key-parameter
#+BEGIN_SRC lisp
missing-key-parameter
#+END_SRC
This error is signaled when it is determined that a parameter is
missing in a call to [[make-public-key][make-public-key]] or [[make-private-key][make-private-key]].
#+NAME: missing-message-parameter
#+BEGIN_SRC lisp
missing-message-parameter
#+END_SRC
This error is signaled when it is determined that a parameter is
missing in a call to [[make-message][make-message]].
#+NAME: missing-signature-parameter
#+BEGIN_SRC lisp
missing-signature-parameter
#+END_SRC
This error is signaled when it is determined that a parameter is
missing in a call to [[make-signature][make-signature]].
#+NAME: incompatible-keys
#+BEGIN_SRC lisp
incompatible-keys
#+END_SRC
This error is signaled when incompatible keys are provided to
[[diffie-hellman][diffie-hellman]].
#+NAME: invalid-curve-point
#+BEGIN_SRC lisp
invalid-curve-point
#+END_SRC
This error is signaled when trying to use an invalid curve point.
#+NAME: invalid-public-key-length
#+BEGIN_SRC lisp
invalid-public-key-length
#+END_SRC
This error is signaled when a public key with an invalid length is
provided to [[verify-signature][verify-signature]].
#+NAME: oaep-decoding-error
#+BEGIN_SRC lisp
oaep-decoding-error
#+END_SRC
This error is signaled when the OAEP decoding of a message fails.
#+NAME: unsupported-authenticated-encryption-mode
#+BEGIN_SRC lisp
unsupported-authenticated-encryption-mode
#+END_SRC
This error is signaled when an invalid mode name is provided to
[[make-authenticated-encryption-mode][make-authenticated-encryption-mode]].
#+NAME: bad-authentication-tag
#+BEGIN_SRC lisp
bad-authentication-tag
#+END_SRC
This error is signaled when the verification of authenticity of a message fails.
* Subsystems (experimental)
:PROPERTIES:
:CUSTOM_ID: subsystems
:END:
Instead of loading the complete Ironclad system, you can load only the
subsystems of the algorithms you need.
For example if you need only AES and SHA256:
#+BEGIN_EXAMPLE
(asdf:load-system "ironclad/cipher/aes")
(asdf:load-system "ironclad/digest/sha256")
#+END_EXAMPLE
** Available subsystems
- ironclad
- ironclad/core
- ironclad/ciphers
- ironclad/cipher/aes
- ironclad/cipher/arcfour
- ironclad/cipher/aria
- ironclad/cipher/blowfish
- ironclad/cipher/camellia
- ironclad/cipher/cast5
- ironclad/cipher/chacha
- ironclad/cipher/des
- ironclad/cipher/idea
- ironclad/cipher/kalyna
- ironclad/cipher/keystream
- ironclad/cipher/kuznyechik
- ironclad/cipher/misty1
- ironclad/cipher/rc2
- ironclad/cipher/rc5
- ironclad/cipher/rc6
- ironclad/cipher/salsa20
- ironclad/cipher/seed
- ironclad/cipher/serpent
- ironclad/cipher/sm4
- ironclad/cipher/sosemanuk
- ironclad/cipher/square
- ironclad/cipher/tea
- ironclad/cipher/threefish
- ironclad/cipher/twofish
- ironclad/cipher/xchacha
- ironclad/cipher/xor
- ironclad/cipher/xsalsa20
- ironclad/cipher/xtea
- ironclad/digests
- ironclad/digest/adler32
- ironclad/digest/blake2
- ironclad/digest/blake2s
- ironclad/digest/crc24
- ironclad/digest/crc32
- ironclad/digest/groestl
- ironclad/digest/jh
- ironclad/digest/kupyna
- ironclad/digest/md2
- ironclad/digest/md4
- ironclad/digest/md5
- ironclad/digest/ripemd-128
- ironclad/digest/ripemd-160
- ironclad/digest/sha1
- ironclad/digest/sha256
- ironclad/digest/sha3
- ironclad/digest/sha512
- ironclad/digest/skein
- ironclad/digest/sm3
- ironclad/digest/streebog
- ironclad/digest/toger
- ironclad/digest/tree-hash
- ironclad/digest/whirlpool
- ironclad/macs
- ironclad/mac/blake2-mac
- ironclad/mac/blake2s-mac
- ironclad/mac/cmac
- ironclad/mac/gmac
- ironclad/mac/hmac
- ironclad/mac/poly1305
- ironclad/mac/siphash
- ironclad/mac/skein-mac
- ironclad/prngs
- ironclad/prng/fortuna
- ironclad/aeads
- ironclad/aead/eax
- ironclad/aead/etm
- ironclad/aead/gcm
- ironclad/kdfs
- ironclad/kdf/argon2
- ironclad/kdf/bcrypt
- ironclad/kdf/hmac
- ironclad/kdf/password-hash
- ironclad/kdf/pkcs5
- ironclad/kdf/scrypt
- ironclad/public-keys
- ironclad/public-key/curve25519
- ironclad/public-key/curve448
- ironclad/public-key/dsa
- ironclad/public-key/ed25519
- ironclad/public-key/ed448
- ironclad/public-key/elgamal
- ironclad/public-key/rsa
- ironclad/public-key/secp256k1
- ironclad/public-key/secp256r1
- ironclad/public-key/secp384r1
- ironclad/public-key/secp521r1
|