Don'’t Loop, Iterate

Jonathan Amsterdam

March 31, 2006

1 Introduction

Above all the wonders of Lisp’s pantheon stand its metalinguistic tools; by
their grace have Lisp’s acolytes been liberated from the rigid asceticism of
lesser faiths. Thanks to Macro and kin, the jolly, complacent Lisp hacker
can gaze through a fragrant cloud of setfs and defstructs at the emaciated
unfortunates below, scraping out their meager code in inflexible notation,
and sneer superciliously. It’s a good feeling.

But all’s not joy in Consville. For—I beg your pardon, but—there really
is no good way to iterate in Lisp. Now, some are happy to map their way
about, whether for real with mapcar and friends, or with the make-believe of
Series; others are so satisfied with do it’s a wonder they’re not C hackers.!
Still others have gotten by with loop, but are getting tired of looking up the
syntax in the manual over and over again. And in the elegant schemes of
some, only tail recursion and lambdas figure. But that still leaves a sizeable
majority of folk—well, me, at least—who would simply like to iterate, thank
you, but in a way that provides nice abstractions, is extensible, and looks
like honest-to-God Lisp.

In what follows I describe a macro package, called iterate, that provides
the power and convenient abstractions of loop but in a more syntactically
palatable way. iterate also has many features that loop lacks, like gener-
ators and better support for nested loops. iterate generates inline code,
so it’s more efficient than using the higher-order function approach. And
iterate is also extensible—it’s easy to add new clauses to its vocabulary in
order to express new patterns of iteration in a convenient way.

'Hey, don’t get mad—T'll be much more polite later, when the real paper starts.



iterate is fully documented in AI Lab Memo No. 1236, The Iterate
Manual.

2 More about Iterate

A Common Lisp programmer who wonders what’s lacking with present-day
iteration features would do well to consider setf. Of course, setf doesn’t
iterate, but it has some other nice properties. It’s easy to use, for one thing.
It’s extensible—you can define new setf methods very easily, so that setf
will work with new forms. setf is also efficient, turning into code that’s
as good as anyone could write by hand. Arguably, setf provides a nice
abstraction: it allows you to view value-returning forms, like (car ...) or
(get ...) as locations that can be stored into. Finally and most obviously,
setf looks like Lisp; it’s got a syntax right out of setq.

iterate attempts to provide all of these properties. Here is a simple use
of iterate that returns all the elements of num-1ist that are greater than
three:



(iterate (for el in num-list)
(when (> el 3)
(collect el)))

An iterate form consists of the symbol iterate followed by some Lisp
forms. Any legal Lisp form is allowed, as well as certain forms that iterate
treats specially, called clauses. for...in and collect are the two clauses
in the above example. An iterate clause can appear anywhere a Lisp form
can appear; iterate walks its body, looking inside every form, processing
iterate clauses when it finds them. It even expands macros, so you can
write macros that contain iterate clauses. Almost all clauses use the syntax
of function keyword-argument lists: alternating keywords and arguments.
iterate keywords don’t require a preceding colon, but you can use one if
you like.

iterate provides many convenient iteration abstractions, most of them
familiar to loop users. Iteration-driving clauses (those beginning with for)
can iterate over numbers, lists, arrays, hashtables, packages and files. There
are clauses for collecting values into a list, summing and counting, maxi-
mizing, finding maximal elements, and various other things. Here are a few
examples, for extra flavor.

To sum a list of numbers:

(iterate (for i in list)
(sum i))

To find the length of the shortest element in a list:

(iterate (for el in 1list)
(minimize (length el)))

To find the shortest element in a list:

(iterate (for el in list)
(finding el minimizing (length el)))

To return t only if every other element of a list is odd:

(iterate (for els on list by #’cddr)
(always (oddp (car els))))



To split an association list into two separate lists (this example uses
iterate’s ability to do destructuring):

(iterate (for (key . item) in alist)
(collect key into keys)
(collect item into items)
(finally (return (values keys items))))

3 Comparisons With Other Iteration Meth-
ods

As with any aspect of coding, how to iterate is a matter of taste. I do not
wish to dictate taste or even to suggest that iterate is a “better” way to
iterate than other methods. I would, however, like to examine the options,
and explain why I prefer iterate to its competitors.

3.1 do, dotimes and dolist

The do form has long been a Lisp iteration staple. It provides for binding of
iteration variables, an end-test, and a body of arbitrary code. It can be a bit
cumbersome for simple applications, but the most common special cases—
iterating over the integers from zero and over the members of a list—appear
more conveniently as dotimes and dolist.

do’s major problem is that it provides no abstraction. For example, col-
lection is typically handled by binding a variable to nil, pushing elements
onto the variable, and nreverseing the result before returning it. Such a
common iteration pattern should be easier to write. (It is, using mapcar—
but see below.)

Another problem with do, for me at least, is that it’s hard to read. The
crucial end-test is buried between the bindings and the body, marked off
only by an extra set of parens (and some indentation). It is also unclear,
until after a moment of recollection, whether the end-test has the sense of a
“while” or an “until.”

Despite its flaws, do is superior to the iteration facilities of every other
major programming language except CLU. Perhaps that is the reason many
Lisp programmers don’t mind using it.



3.2 Tail Recursion

Tail-recursive implementations of loops, like those found in Scheme code [1],
are parsimonious and illuminating. They have the advantage of looking like
recursion, hence unifying the notation for two different types of processes. For
example, if only tail-recursion is used, a loop that operates on list elements
from front to back looks very much like a recursion that operates on them
from back to front.

However, using tail-recursion exclusively can lead to cumbersome code
and a proliferation of functions, especially when one would like to embed a
loop inside a function. Tail-recursion also provides no abstraction for itera-
tion; in Scheme, that is typically done with higher-order functions.

3.3 Higher-order Functions

Lisp’s age-old mapping functions, recently revamped for Common Lisp [3],
are another favorite for iteration. They provide a pleasing abstraction, and
it’s easy to write new higher-order functions to express common iteration
patterns. Common Lisp already comes with many such useful functions, for
removing, searching, and performing reductions on lists. Another Common
Lisp advantage is that these functions work on any sequence—vectors as well
as lists.

One problem with higher-order functions is that they are inefficient, re-
quiring multiple calls on their argument function. While the the built-ins,
like map and mapcar, can be open-coded, that cannot be so easily done for
user-written functions. Also, using higher-order functions often results in the
creation of intermediate sequences that could be avoided if the iteration were
written out explicitly.

The second problem with higher-order functions is very much a matter
of personal taste. While higher-order functions are theoretically elegant,
they are often cumbersome to read and write. The unpleasant sharp-quote
required by Common Lisp is particularly annoying here, and even in Scheme,
I find the presence of a lambda with its argument list visually distracting.

Another problem is that it’s difficult to express iteration of sequences of
integers without creating such sequences explicitly as lists or arrays. One
could resort to tail-recursion or dotimes—but then it becomes very messy to
express double iterations where one driver is over integers. Multiple iteration
is easy in iterate, as illustrated by the following example, which creates an



alist of list elements and their positions:

(iterate (for el in list)
(for i from 0)
(collect (cons el i)))

3.4 Streams and Generators

For really heavy-duty iteration jobs, nothing less than a coroutine-like mech-
anism will do. Such mechanisms hide the state of the iteration behind a
convenient abstraction. A generator is a procedure that returns the next
element in the iteration each time it is called. A stream (in the terminology
of [1]) is a data structure which represents the iteration, but which computes
the next element only on demand. Generators and streams support a similar
style of programming. Here, for example, is how you might enumerate the
leaves of a tree (represented as a Lisp list with atoms at the leaves) using
streams:

(defun tree-leaves (tree)
(if (atom tree)
(stream-cons tree empty-stream)
(stream-append (tree-leaves (car tree))
(tree-leaves (cdr tree)))))

Although tree-leaves looks like an ordinary recursion, it will only do
enough work to find the first leaf before returning. The stream it returns can
be accessed with stream-car, which will yield the (already computed) first
leaf of the tree, or with stream-cdr, which will initiate computation of the
next leaf.

Such a computation would be cumbersome to write using iterate, or any
of the other standard iteration constructs; in fact, it is not even technically
speaking an iteration, if we confine that term to processes that take constant
space and linear time. Streams, then, are definitely more powerful than
standard iteration machinery.

Unfortunately, streams are very expensive, since they must somehow save
the state of the computation. Generators are typically cheaper, but are less
powerful and still require at least a function call. So these powerful tools
should be used only when necessary, and that is not very often; most of the
time, ordinary iteration suffices.



There is one aspect of generators that iterate can capture, and that
is the ability to produce elements on demand. Say we wish to create an
alist that pairs the non-null elements of a list with the positive integers.
We saw above that it is easy to iterate over a list and a series of numbers
simultaneously, but here we would like to do something a little different: we
want to iterate over the list of elements, but only draw a number when we
need one (namely, when a list element is non-null). The solution employs the
iterate generate keyword in place of for and the special clause next:

(iterate (for el in list)
(generate i from 1)
(if el
(collect (cons el (mext i)))))

Using next with any driver variable changes how that driver works. In-
stead of supplying its values one at a time on each iteration, the driver
computes a value only when a next clause is executed. This ability to obtain
values on demand greatly increases iterate’s power. Here, el is set to the
next element of the list on each iteration, as usual; but i is set only when
(next i) is executed.

3.5 Series

Richard C. Waters has developed a very elegant notation called Series which
allows iteration to be expressed as sequence-mapping somewhat in the style
of APL, but which compiles to efficient looping code [4].

My reasons for not using Series are, again, matters of taste. Like many
elegant notations, Series can be somewhat cryptic. Understanding what a
Series expression does can require some effort until one has mastered the
idiom. And if you wish to share your code with others, they will have to learn
Series as well. iterate suffers from this problem to some extent, but since the
iteration metaphor it proposes is much more familiar to most programmers
than that of Series, it is considerably easier to learn and read.

3.6 Prog and Go
Oh, don’t be silly.



3.7 Loop

loop is the iteration construct most similar to iterate in appearance. loop
is a macro written originally for MacLisp and in widespread use [2]. It has
been adopted as part of Common Lisp. loop provides high-level iteration
with abstractions for collecting, summing, maximizing and so on. Recall our
first iterate example:

(iterate (for el in num-list)
(when (> el 3)
(collect el)))

Expressed with loop, it would read n

(loop for el in list
when (> el 3)
collect el)

The similarity between the two macros should immediately be appar-
ent. Most of iterate’s clauses were borrowed from loop. But compared to
iterate, loop has a paucity of parens. Though touted as more readable than
heavily-parenthesized code, 1oop’s Pascalish syntax creates several problems.
First, many dyed-in-the-wool Lisp hackers simply find it ugly. Second, it re-
quires learning the syntax of a whole new sublanguage. Third, the absence
of parens makes it hard to parse, both by machine and, more importantly,
by human. Fourth, one often has to consult the manual to recall lesser-used
aspects of the strange syntax. Fifth, there is no good interface with the rest
of Lisp, so loop clauses cannot appear inside Lisp forms and macros cannot
expand to pieces of loop. And Sixth, pretty-printers and indenters that don’t
know about loop will invariably display it wrongly. This is particularly a
problem with program-editor indenters. A reasonably clever indenter, like
that of Gnu Emacs, can indent nearly any normal Lisp form correctly, and
can be easily customized for most new forms. But it can’t at present handle
loop. The syntax of iterate was designed to keep parens to a minimum,
but conform close enough to Lisp so as not to confuse code-display tools.
Gnu Emacs indents iterate reasonably with no modifications.

Indenting is a mere annoyance; loop’s lack of extensibility is a more seri-
ous problem. The original 1oop was completely extensible, but the Symbolics
version only provides for the definition of new iteration-driving clauses, and



the Common Lisp specification does not have any extension mechanism. But
extensibility is a boon. Consider first the problem of adding the elements of
a list together, which can be accomplished with iterate by

(iterate (for el in list)
(sum el))

and in loop with

(loop for el in list
sum el)

But now, say that you wished to compute the sum of the square roots of
the elements. You could of course write, in either 1loop or iterate,

(iterate (for el in list)
(sum (sqrt el)))

But perhaps you find yourself writing such loops often enough to make
it worthwhile to create a new abstraction. There is nothing you can do in
loop, but in iterate you could simply write a macro:

(defmacro (sum-of-sqrts expr &optional into-var)
‘(sum (sqrt ,expr) into ,into-var))

sum-of-sqrts is a perfectly ordinary Lisp macro. Since iterate expands
all macros and processes the results, (sum-of-sqrts el) will behave exactly
as if we’d written (sum (sqrt el)).

There’s also a way to define macros that use iterate’s clause syntax.
It’s fully documented in The Iterate Manual.

4 Implementation

A Common Lisp implementation of iterate has existed for well over a year.
It runs under Lucid for HP 300’s, Sun 3’s and SPARCstations, and on Sym-
bolics Lisp machines. See The Iterate Manual for details.



5 Conclusion

Iteration is a matter of taste. I find iterate more palatable than other
iteration constructs: it’s more readable, more efficient than most, provides
nice abstractions, and can be extended.

If you’re new to Lisp iteration, start with iterate—look before you loop.
If you're already using loop and like the power that it offers, but have had
enough of its syntax and inflexibility, then my advice to you is, don’t 1oop—
iterate.

10



Acknowledgements

Thanks to David Clemens for many helpful suggestions and for the egre-
gious pun near the end. Conversations with Richard Waters prompted me
to add many improvements to iterate. Alan Bawden, Sundar Narasimhan,
and Jerry Roylance also provided useful comments. David Clemens and Oren
Etzioni shared with me the joys of beta-testing.

References

[1] Abelson, Harold and Gerald Jay Sussman. Structure and Interpretation
of Computer Programs. Cambridge, MA: The MIT Press, 1985.

[2] “The loop Iteration Macro.” In Symbolics Common Lisp—Language Con-
cepts, manual 2A of the Symbolics documentation, pp. 541-567.

[3] Steele, Guy L. Common Lisp: The Language. Bedford, MA: Digital Press,
1984.

[4] Waters, Richard C. Optimization of Series Ezpressions: Part I: User’s
Manual for the Series Macro Package. MIT Al Lab Memo No. 1082.

11



