File: genetics-article.xml

package info (click to toggle)
cl-xmls 3.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 764 kB
  • sloc: xml: 7,639; lisp: 1,296; perl: 101; makefile: 39
file content (1538 lines) | stat: -rw-r--r-- 101,173 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
<?xml version="1.0" encoding="UTF-8"?><OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd"><responseDate>2015-05-06T21:47:12Z</responseDate><request verb="GetRecord" identifier="oai:pubmedcentral.nih.gov:3902907" metadataPrefix="pmc">http://www.ncbi.nlm.nih.gov/oai/oai.cgi</request><GetRecord><record><header><identifier>oai:pubmedcentral.nih.gov:3902907</identifier><datestamp>2014-01-27</datestamp><setSpec>nar</setSpec><setSpec>pmc-open</setSpec></header><metadata><article xmlns="http://dtd.nlm.nih.gov/2.0/xsd/archivearticle" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://jats.nlm.nih.gov/archiving/1.0/xsd/JATS-archivearticle1.xsd" article-type="research-article">
  <front>
    <?epub October-7-2013?>
    <journal-meta>
      <journal-id journal-id-type="nlm-ta">Nucleic Acids Res</journal-id>
      <journal-id journal-id-type="iso-abbrev">Nucleic Acids Res</journal-id>
      <journal-id journal-id-type="publisher-id">nar</journal-id>
      <journal-id journal-id-type="hwp">nar</journal-id>
      <journal-title-group>
        <journal-title>Nucleic Acids Research</journal-title>
      </journal-title-group>
      <issn pub-type="ppub">0305-1048</issn>
      <issn pub-type="epub">1362-4962</issn>
      <publisher>
        <publisher-name>Oxford University Press</publisher-name>
      </publisher>
    </journal-meta>
    <article-meta>
      <article-id pub-id-type="accession">PMC3902907</article-id>
      <article-id pub-id-type="pmcid">PMC3902907</article-id>
      <article-id pub-id-type="pmc-uid">3902907</article-id>
      <article-id pub-id-type="pmid">24106086</article-id>
      <article-id pub-id-type="doi">10.1093/nar/gkt903</article-id>
      <article-id pub-id-type="publisher-id">gkt903</article-id>
      <article-categories>
        <subj-group subj-group-type="heading">
          <subject>RNA</subject>
        </subj-group>
      </article-categories>
      <title-group>
        <article-title>Tyrosine phosphorylation of HuR by JAK3 triggers dissociation and degradation of HuR target mRNAs</article-title>
      </title-group>
      <contrib-group>
        <contrib contrib-type="author">
          <name>
            <surname>Yoon</surname>
            <given-names>Je-Hyun</given-names>
          </name>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Abdelmohsen</surname>
            <given-names>Kotb</given-names>
          </name>
          <xref ref-type="corresp" rid="gkt903-COR1">*</xref>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Srikantan</surname>
            <given-names>Subramanya</given-names>
          </name>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Guo</surname>
            <given-names>Rong</given-names>
          </name>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Yang</surname>
            <given-names>Xiaoling</given-names>
          </name>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Martindale</surname>
            <given-names>Jennifer L.</given-names>
          </name>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Gorospe</surname>
            <given-names>Myriam</given-names>
          </name>
          <xref ref-type="corresp" rid="gkt903-COR2">*</xref>
        </contrib>
      </contrib-group>
      <aff>Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA</aff>
      <author-notes>
        <corresp id="gkt903-COR1">*To whom correspondence should be addressed. Tel: <phone>+1 410 558 8589</phone>; Fax: <fax>+1 410 558 8331</fax>; Email: <email>abdelmohsenk@mail.nih.gov</email></corresp>
        <corresp id="gkt903-COR2">Correspondence may also be addressed to Myriam Gorospe. Tel: <phone>+1 410 558 8443</phone>; Fax: <fax>+1 410 558 8331</fax>; Email: <email>gorospem@grc.nia.nih.gov</email></corresp>
        <fn>
          <p>The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.</p>
        </fn>
      </author-notes>
      <pub-date pub-type="ppub">
        <month>1</month>
        <year>2014</year>
      </pub-date>
      <pub-date pub-type="epub">
        <day>6</day>
        <month>10</month>
        <year>2013</year>
      </pub-date>
      <pub-date pub-type="pmc-release">
        <day>6</day>
        <month>10</month>
        <year>2013</year>
      </pub-date>
      <!-- PMC Release delay is 0 months and 0 days and was based on the
							<pub-date pub-type="epub"/>. -->
      <volume>42</volume>
      <issue>2</issue>
      <fpage>1196</fpage>
      <lpage>1208</lpage>
      <history>
        <date date-type="received">
          <day>24</day>
          <month>3</month>
          <year>2013</year>
        </date>
        <date date-type="rev-recd">
          <day>13</day>
          <month>9</month>
          <year>2013</year>
        </date>
        <date date-type="accepted">
          <day>16</day>
          <month>9</month>
          <year>2013</year>
        </date>
      </history>
      <permissions>
        <copyright-statement>Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.</copyright-statement>
        <copyright-year>2013</copyright-year>
      </permissions>
      <abstract>
        <p>In response to stress conditions, many mammalian mRNAs accumulate in stress granules (SGs) together with numerous RNA-binding proteins that control mRNA turnover and translation. However, the signaling cascades that modulate the presence of ribonucleoprotein (RNP) complexes in SGs are poorly understood. Here, we investigated the localization of human antigen R (HuR), an mRNA-stabilizing RNA-binding protein, in SGs following exposure to the stress agent arsenite. Unexpectedly, the mobilization of HuR to SGs was prevented through the activation of Janus kinase 3 (JAK3) by the vitamin K3 analog menadione. JAK3 phosphorylated HuR at tyrosine 200, in turn inhibiting HuR localization in SGs, reducing HuR interaction with targets <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs, and accelerating target mRNA decay. Our findings indicate that HuR is tyrosine-phosphorylated by JAK3, and link this modification to HuR subcytoplasmic localization and to the fate of HuR target mRNAs.</p>
      </abstract>
      <counts>
        <page-count count="13"/>
      </counts>
    </article-meta>
  </front>
  <body><sec><title>INTRODUCTION</title><p>Following transcription, RNA-binding proteins (RBPs) regulate post-transcriptional steps of gene expression, including pre-mRNA splicing, and mRNA transport, storage, stability and translation (<xref rid="gkt903-B1" ref-type="bibr">1</xref>,<xref rid="gkt903-B2" ref-type="bibr">2</xref>). Although some RBPs have general housekeeping functions on mRNAs [e.g. bind the mRNA 5′ cap or poly(A) tail], other specialized RBPs form ribonucleoprotein (RNP) interactions with discrete subsets of mRNAs which share specific sequence elements, and affect their post-transcriptional fate (<xref rid="gkt903-B3" ref-type="bibr">3</xref>). The latter group includes RBPs such as human antigen R (HuR), AU-binding factor 1 (AUF1), nucleolin and T-cell intracellular antigen (TIA)-1 and TIA-1-related (TIAR) proteins, which associate with subsets of target mRNAs and modulate their stability and/or translation rates (<xref rid="gkt903-B1" ref-type="bibr">1</xref>,<xref rid="gkt903-B2" ref-type="bibr">2</xref>). Specialized RBPs are directly involved in changing the patterns of expressed proteins in response to stress conditions, and such stress-response functions often require RBP post-translational modification (as reviewed in <xref rid="gkt903-B4" ref-type="bibr">4–6</xref>).</p><p>HuR has three RNA-recognition motifs (RRMs) through which it binds to a large collection of protein-coding and noncoding RNAs. Although it can interact with pre-mRNA intron sequences and has been linked to regulated splicing (<xref rid="gkt903-B7" ref-type="bibr">7–9</xref>), HuR is best known for stabilizing and modulating the translation of mature mRNAs with which it associates via the 3′-untranslated region (UTR), typically at U-rich sites (<xref rid="gkt903-B9" ref-type="bibr">9</xref>,<xref rid="gkt903-B10" ref-type="bibr">10</xref>). Through binding to subsets of mRNAs encoding proliferative, stress-response and cell survival proteins, HuR has been implicated in cellular processes, such as cell division, survival, senescence and the stress-response, and with pathologies such as cancer (<xref rid="gkt903-B11" ref-type="bibr">11</xref>,<xref rid="gkt903-B12" ref-type="bibr">12</xref>).</p><p>HuR function is regulated at the levels of protein abundance, localization and post-translational modification. HuR levels are reduced by specific microRNAs (e.g. miR-519 and miR-125), by ubiquitination in response to mild heat shock and by caspase-mediated cleavage in response to severe stress (reviewed in <xref rid="gkt903-B13" ref-type="bibr">13</xref>). HuR is predominantly localized in the nucleus, but its effects on mRNA stability and translation are linked to its transport to the cytoplasm, which requires the HuR nucleocytoplasmic shuttling domain (HNS) and transport proteins such as transportins 1 and 2, the chromosome region maintenance 1 and importin-1α (<xref rid="gkt903-B14" ref-type="bibr">14–17</xref>). The transport of HuR across the nuclear envelope is influenced by kinases including the cell cycle-dependent kinase (Cdk)1, AMP-activated protein kinase (AMPK), protein kinase (PK)C and the mitogen-activated protein kinase p38 (<xref rid="gkt903-B18" ref-type="bibr">18–21</xref>). The interaction of HuR with target transcripts is modulated through phosphorylation of serine and threonine residues by several kinases; phosphorylation by checkpoint kinase (Chk)2 generally reduced HuR interaction with mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B23" ref-type="bibr">23</xref>), whereas phosphorylation by activated p38 and PKC generally promoted HuR binding to mRNAs (<xref rid="gkt903-B4" ref-type="bibr">4</xref>,<xref rid="gkt903-B24" ref-type="bibr">24</xref>,<xref rid="gkt903-B25" ref-type="bibr">25</xref>).</p><p>Besides altering the ratio of cytoplasmic-to-nuclear HuR and the interaction of HuR with target mRNAs, a number of stress agents (e.g. heat shock, irradiation with ultraviolet light and treatment with hydrogen peroxide) can also enhance the aggregation of HuR in cytoplasmic RNP foci named stress granules (SGs) (<xref rid="gkt903-B14" ref-type="bibr">14</xref>,<xref rid="gkt903-B26" ref-type="bibr">26–29</xref>). SGs assemble in response to cell-damaging conditions to halt the translation of housekeeping mRNAs and to selectively allow stress-response and repair proteins to be translated (<xref rid="gkt903-B30" ref-type="bibr">30</xref>). Besides HuR, SGs also contain numerous other RBPs, such as poly(A)-binding protein (PABP), staufen, tristetraprolin, TIA-1, TIAR, RasGAP-associated endoribonuclease (G3BP), fragile X mental retardation syndrome, survival of motor neuron and cytoplasmic polyadenylation element binding proteins (<xref rid="gkt903-B30" ref-type="bibr">30</xref>). SGs are dynamic RNP structures that assemble rapidly when the cell encounters stress and disassemble in a timely manner after the stress discontinues. SGs are believed to be the sites of mRNA ‘triage’ where decisions are made on the stability of individual mRNAs while the global cellular translation is halted.</p><p>Despite the key role of HuR in the cellular stress-response, the mechanisms that control HuR localization in SGs and their possible impact on expression of HuR target stress-response mRNAs are unknown. Here, we report that in human cervical carcinoma cells, the arsenite-triggered accumulation of HuR in SGs is accompanied by increased HuR binding to target transcripts <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs and by stabilization of these mRNAs. Unexpectedly, the accumulation of HuR in SGs was blocked by treatment with menadione, a drug that activated the tyrosine kinase Janus kinase 3 (JAK3). JAK3 phosphorylated three HuR tyrosine residues <italic>in vitro</italic>; mutagenesis to prevent HuR phosphorylation specifically at Y200 restored HuR accumulation in SGs, preserved HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs and rescued their stability. These studies link HuR presence in SGs with the fate of target mRNAs, and highlight a novel function of tyrosine kinase JAK3 as regulator of HuR function.</p></sec><sec sec-type="materials|methods"><title>MATERIALS AND METHODS</title><sec><title>Cell culture, chemicals, transfection, small interfering RNAs and plasmids</title><p>Human HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% (v/v) Fetal Bovine Serum (FBS) and antibiotics. All plasmids were transfected using Lipofectamine-2000 (Invitrogen) and analyzed 48 h later. JAK3 and Chk2 siRNAs were from Santa Cruz Biotechnology. For mRNA stability assays, HeLa cells were treated with actinomycin D (2.5 μg/ml) to inhibit <italic>de novo</italic> transcription. Actinomycin D, arsenite (sodium arsenite) and menadione were from Sigma; pateamine A (used at 50 nM) was a gift from I.E. Gallouzi. A site-directed mutagenesis kit (Stratagene) was used to introduce point mutations in HuR expression vectors.</p></sec><sec><title>Western blot analysis</title><p>Whole-cell lysates, prepared in Radioimmunoprecipitation assay (RIPA) buffer, were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and transferred onto Polyvinylidene fluoride (PVDF) membranes (Invitrogen iBlot Stack). Primary antibodies recognizing HuR, PABP, TIA-1, JAK3, p(Y980)JAK3, p(T68)Chk2, Chk2, Tubulin, eIF2α and phosphorylated (p-)eIF2α were from Santa Cruz Biotechnology. Antibodies recognizing phosphotyrosine (pY) residues and Flag were from Cell Signaling and Sigma, respectively. HRP-conjugated secondary antibodies were from GE Healthcare.</p></sec><sec><title>Immunoprecipitation assays</title><p>For immunoprecipitation (IP) of endogenous RNP complexes from whole-cell extracts (<xref rid="gkt903-B22" ref-type="bibr">22</xref>), cells were lysed in 20 mM Tris-HCl at pH 7.5, 100 mM KCl, 5 mM MgCl<sub>2</sub> and 0.5% NP-40 for 10 min on ice and centrifuged at 10 000 <italic>g</italic> for 15 min at 4°C. The supernatants were incubated with protein A-Sepharose beads coated with antibodies that recognized HuR, Jak3 or Flag or with control IgG (Santa Cruz Biotechnology) for 1 h at 4°C. After the beads were washed with NT2 buffer (50 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1 mM MgCl<sub>2</sub> and 0.05% NP-40), the complexes were incubated with 20 U of RNase-free DNase I (15 min at 37°C) and further incubated with 0.1% sodium dodecyl sulphate/0.5 mg/ml proteinase K (15 min at 55°C) to remove DNA and proteins, respectively. The RNPs isolated from the IP materials were further assessed by reverse transcription (RT) using random hexamers and Maxima Reverse Transcriptase (Thermo Scientific) and real-time, quantitative (q) polymerase chain reaction (PCR) using gene-specific primers (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Table S1</ext-link>) as well as by western blot (WB) analysis.</p></sec><sec><title>RNA analysis</title><p>Trizol (Invitrogen) was used to extract total RNA, and acidic phenol (Ambion) was used to extract RNA for RIP analysis (<xref rid="gkt903-B22" ref-type="bibr">22</xref>). RT-qPCR analysis was performed using gene-specific primers (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Table S1</ext-link>) and SYBR green master mix (Kapa Biosystems), in an Applied Biosystems 7300 instrument. For polyribosome distribution analysis, cells were treated with cycloheximide (100 μg/ml, 15 min), and the resulting lysates (500 μl) were separated by ultracentrifugation through 10–50% linear sucrose gradients. The relative absorbance at UV 254 nm was recorded to trace the amount of RNAs throughout the gradients.</p></sec><sec><title>Biotin pulldown analysis</title><p>Recombinant maltose-binding protein (MBP)-HuR was incubated with a buffer containing 20 mM Tris-HCl at pH 7.5, 100 mM KCl, 5 mM MgCl<sub>2</sub> and 0.5% NP-40. Biotinylated <italic>SIRT1</italic> and <italic>GAPDH</italic> 3′-untranslated regions were synthesized by PCR amplification of cDNA using forward primers that contained the T7 RNA polymerase promoter sequence (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Table S1</ext-link>) in the presence of biotinylated CTP and T7 RNA polymerase, as described (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B31" ref-type="bibr">31</xref>). Proteins present in the pulldown material were studied by WB analysis.</p></sec><sec><title><italic>In vitro</italic> kinase assay</title><p>To analyze the phosphorylation of HuR <italic>in vitro</italic>, MBP-HuR purified from <italic>Escherichia </italic><italic>coli</italic> was incubated with JAK3 protein immunoprecipitated from HeLa cells or purchased from Millipore. The assay was performed in kinase reaction buffer as described previously (<xref rid="gkt903-B31" ref-type="bibr">31</xref>).</p></sec><sec><title>Liquid chromatography-tandem mass spectrometry analysis</title><p>Protein samples were processed using the ‘Filter-Assisted Sample Preparation’ (FASP) method (<xref rid="gkt903-B32" ref-type="bibr">32</xref>). Briefly, protein samples were dissolved in urea (9 M) and subjected to reduction [5 mM Tris-(2-Carboxyethyl)phosphine, hydrochloride (TCEP), Sigma] at 60°C for 45 min and to alkylation (20 mM C<sub>2</sub>H<sub>4</sub>INO, Sigma) at 25°C for 15 min. Protein samples were cleaned using a 30-kDa Amicon Filter (UFC503096, Millipore) with urea (9 M) and NH<sub>4</sub>HCO<sub>3</sub> (30 mM). Samples were then proteolyzed with trypsin (Promega) and chymotrypsin (Roche) for 12 h at 37°C (1: 20 ratio). The digested peptides were desalted and eluted with 0.1% trifluoroacetic acid in 60% acetonitrile. Dry extracted peptides were resuspended in 7 µl 0.1% formic acid for Liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. Tandem mass spectrometry analysis of the peptides was conducted on LTQ-Orbitrap Velos interfaced with a 2D nanoLC system nanoACQUITY UltraPerformance LC System. Precursor and fragment ions were analyzed at 30 000 and 7500 resolutions, respectively. Peptide sequences were identified from isotopically resolved masses in MS and MS/MS spectra extracted with and without deconvolution using Thermo Scientific Xtract software. The data were analyzed using Proteome Discoverer 1.3 (Thermo Scientific) software configured with Mascot and Sequest search nodes and searched against Refseq version 46, human entries with oxidation on methionine, deamidation on residues N and Q, phosphorylation of Ser/Thr/Tyr residues as different variable modifications and carbamidomethyl group on cysteine residue as fixed modification. Mass tolerances on precursor and fragment masses were set to 15 ppm and 0.03 Da, respectively. Peptide validator node was used for peptide confirmation, and a 1% false discovery rate cutoff was used to filter the data.</p></sec><sec><title>Immunofluorescence assay</title><p>Cells were fixed with 2% (v/v) formaldehyde, permeabilized with 0.2% (v/v) Triton X-100, blocked with 5% (w/v) bovine serum albumin and incubated with primary antibodies recognizing HuR (Santa Cruz Biotechnology), TIA-1 (Santa Cruz Biotechnology), eIF3b (Santa Cruz Biotechnology), G3BP (BD biosciences) or Flag (Sigma). Alexa 488- or Alexa 568-conjugated secondary antibodies (Invitrogen) were used to detect primary antibody-antigen complexes with different color combinations as needed. Images were acquired using Axio Observer microscope (ZEISS) with AxioVision 4.7 Zeiss image-processing software or with LSM 510 Meta (ZEISS).</p></sec></sec><sec sec-type="results"><title>RESULTS</title><sec><title>JAK3 phosphorylates HuR and prevents its accumulation in SGs</title><p>HuR is normally a nuclear protein, as seen in HeLa cells (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A, control), but it can translocate to the cytoplasm on stress. In response to specific stress conditions, such as arsenite treatment, HuR was further mobilized to cytoplasmic SGs (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A). While performing experiments to test the presence of HuR in SGs after stress, we made the serendipitous discovery that 15 μM menadione (a chemotherapeutic agent that causes oxidative damage) enhanced HuR presence in the cytoplasm, but did not trigger HuR-positive SGs. Unexpectedly, menadione also prevented SG formation following exposure to 250 μM arsenite (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A, <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1A</ext-link>). The combined treatment with arsenite and menadione caused oxidative damage, as assessed by monitoring fluorescence after incubation with dihydrocalcein, an indicator of reactive oxygen species (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1B</ext-link>). Although treatment with arsenite and menadione did not elicit immediate signs of apoptotic cell death by 4 h after treatment (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>), some cell loss and evidence of apoptosis were detectable by 24 h following treatment (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>). The formation of SGs appeared to be generally suppressed under these conditions, as other markers used to visualize SGs [e.g. G3BP and TIA-1 (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>B)] similarly failed to aggregate in SGs. However, we could not exclude the possibility that SGs might have been visualized by testing for other SG markers, that SG formation was delayed or that SGs were too small for detection. Arsenite treatment blocked translation globally (<xref rid="gkt903-B33" ref-type="bibr">33</xref>); however, despite impairing SG formation, menadione did not rescue the translationally inhibited state, as evidenced by the fact that polysomes remained globally suppressed, eIF2α was still phosphorylated and HuR remained bound to PABP (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S2</ext-link>). To test whether menadione prevented the recruitment of HuR to SGs that formed in an eIF2α-dependent or -independent manner, we studied the effect of 50 nM pateamine A, a drug that induces SG formation independently of eIF2α phosphorylation (<xref rid="gkt903-B34" ref-type="bibr">34</xref>). As shown (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>C), pateamine A-triggered SGs were not blocked by menadione treatment, suggesting that menadione blocked the recruitment of HuR to SGs triggered by eIF2α phosphorylation.
<fig id="gkt903-F1" position="float"><label>Figure 1.</label><caption><p>Menadione prevents the accumulation of HuR in arsenite-triggered SGs. (<bold>A</bold>) HeLa cells were treated with sodium arsenite (250 μM) with or without menadione (15 µM) for 45 min, and SGs (arrowheads) were assessed by microscopy. HuR was visualized by immunofluorescence (green), and nuclei were visualized by staining with 4′,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (blue). (<bold>B</bold>) SG markers TIA-1 and G3BP were visualized by immunofluorescence staining (Materials and Methods) in cells treated as explained in (A); nuclei were visualized with DAPI. (<bold>C</bold>) HeLa cells were treated with menadione and/or pateamine A (50 nM), whereupon SG formation was assessed by immunofluorescence.</p></caption><graphic xlink:href="gkt903f1p"/></fig></p><p>To investigate the mechanisms underlying the dynamics of HuR assembly in SGs, we screened a library of kinase inhibitors (described in <xref rid="gkt903-B35" ref-type="bibr">35</xref>) for restoration of HuR-positive SGs. Among the compounds in the library, only the JAK3 inhibitor ZM 449829 was capable of reversing the effect of menadione and restoring SGs in cells treated concomitantly with arsenite and menadione (<xref ref-type="fig" rid="gkt903-F2">Figure 2</xref>A andB). Because inhibitors are not totally specific, we also tested whether reducing JAK3 levels [achieved by using small interfering (si)RNAs] influenced SG formation after arsenite and menadione treatments. As shown in <xref ref-type="fig" rid="gkt903-F2">Figure 2</xref>C, 48 h after transfecting JAK3 siRNA in HeLa cells, JAK3 abundance was substantially lower. Importantly, in these cells, menadione treatment no longer blocked arsenite-triggered HuR-containing SGs, whereas in control (Ctrl) siRNA-transfected cells, menadione continued to block the formation of arsenite-triggered SGs (<xref ref-type="fig" rid="gkt903-F2">Figure 2</xref>D). In contrast, another stress-activated kinase that can phosphorylate HuR, Chk2, was not found to be implicated in the effects of arsenite and/or menadione (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S3</ext-link>). The finding that JAK3 silencing mirrored the effect of inhibiting JAK3 lends further support to the notion that activation of JAK3 by menadione prevents the assembly of HuR-containing SGs.
<fig id="gkt903-F2" position="float"><label>Figure 2.</label><caption><p>JAK3 inhibits HuR presence in SGs. (<bold>A</bold>) HeLa cells were pre-incubated for 1 h with the JAK3 inhibitor ZM449829 (10 μM) before treatment with arsenite and/or menadione and immunostaining as described in <xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A. (<bold>B</bold>) Percentage of HeLa cells with visible SGs (at least one SG per cell) after treatment as in (A); data are the means + SD from three independent experiments. (<bold>C</bold> and <bold>D</bold>) Forty-eight hours after transfection of HeLa cells with either JAK3 or Ctrl siRNAs, the levels of JAK3 (as well as the levels of loading control tubulin) were assessed by WB analysis (C); the formation of SGs was visualized after treating and staining cells as explained in <xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>D.</p></caption><graphic xlink:href="gkt903f2p"/></fig></p><p>The rescue of HuR-positive SGs in HeLa cells after inhibiting JAK3, a tyrosine kinase, raised the intriguing possibility that tyrosine phosphorylation might affect HuR localization in response to arsenite treatment. Even though HuR has not been previously reported to be a tyrosine-phosphorylated protein, we examined whether phosphotyrosine (pY)-HuR was detected in HeLa cells treated with arsenite, with menadione or with both compounds. As shown in <xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>A, IP of HuR from HeLa cells followed by WB analysis of phosphotyrosine residues using an anti-pY antibody revealed positive pY-HuR signals in menadione-treated cells. To gain further evidence that JAK3 might directly phosphorylate HuR, lysates from HeLa cells that had been treated with arsenite and/or menadione were used to immunoprecipitate JAK3 and recombinant purified MBP-HuR was used as substrate in an <italic>in vitro</italic> kinase assay. This analysis revealed that MBP-HuR was preferentially phosphorylated by JAK3 prepared by IP from menadione-treated cells and further showed that menadione treatment triggered the phosphorylation of JAK3 at residue Y980 (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>B). In addition, IP followed by WB analysis revealed that pY-HuR levels were strongly suppressed in HeLa cells treated with the JAK3 inhibitor ZM 449829 and in HeLa cells in which JAK3 levels were lowered by silencing (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>C). Together, these results indicate that the menadione-activated JAK3 phosphorylates HuR at one or several tyrosines and that this modification is linked to the loss of HuR-positive SGs.
<fig id="gkt903-F3" position="float"><label>Figure 3.</label><caption><p>JAK3 phosphorylates HuR at tyrosine residues. (<bold>A</bold>) After treatment with arsenite and/or menadione, HeLa cell lysates were subjected to IP using anti-HuR antibody, and the resulting IP material was assayed by WB analysis using anti-phosphotyrosine (pY) antibody. (<bold>B</bold>) After treatment of cells as in (A), JAK3 was isolated by IP from HeLa cell lysates, and the IP material was used for an <italic>in vitro</italic> kinase assay using recombinant MBP-HuR protein (2 μg) in the presence of ATP; the reaction product was subjected to WB analysis to detect tyrosine-phosphorylated HuR as well as JAK3 phosphorylation at Y980. (<bold>C</bold>) After treatment with menadione and/or JAK3 inhibitor (left), and menadione and/or JAK3 siRNA (right), pY-HuR was detected by IP using anti-HuR antibody and WB using anti-pY antibody. (<bold>D</bold>) Recombinant purified JAK3 kinase (Millipore) was used in <italic>in vitro</italic> kinase assay using recombinant MBP-HuR protein (2 μg) in the presence of ATP; the reaction mixtures were subjected to WB analysis to detect tyrosine-phosphorylated HuR. (<bold>E</bold>) Top: LC–MS/MS analysis to map pY HuR residues phosphorylated by JAK3. MBP-HuR was incubated with or without JAK3 kinase domain (Millipore) in the presence of ATP. The resulting reaction mixtures were digested with trypsin for mass spectrometry analysis. Mass shifts after phosphorylation were shown as Y + 80. Bottom: schematic representation of pY sites on HuR; <italic>RRM</italic>, RNA-recognition motif; <italic>HNS</italic>, HuR nucleocytoplasmic shuttling domain. Data in (A–D) are representative of three independent experiments.</p></caption><graphic xlink:href="gkt903f3p"/></fig></p></sec><sec><title>JAK3 phosphorylates HuR at tyrosine residues</title><p>To identify the tyrosine residues of HuR that were phosphorylated by JAK3, we performed an <italic>in vitro</italic> kinase assay using recombinant purified JAK3 kinase (Millipore) and MBP-HuR purified from <italic>E. coli</italic> (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>D). Mass spectrometry analysis (Materials and Methods) of the phosphorylated HuR revealed three tyrosines phosphorylated by JAK3: two residing in the RNA-recognition motif 1 (RRM1), Y63 and Y68, and one residing within the hinge region (Y200) surrounding the HNS (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>E).</p><p>To investigate the possible impact of these modifications on HuR function, we changed the tyrosines into phenylalanines by site-directed mutagenesis (Y200F, Y68F and Y63F) and expressed the respective point mutants as Flag-HuR proteins from plasmids pFlag-HuR[wild-type (WT)], pFlag-HuR(Y63F), pFlag-HuR(Y68F) and pFlag-HuR(Y200F). Transfection of each plasmid followed by menadione treatment revealed that Flag-HuR(WT) and Flag-HuR(Y63F) were still tyrosine phosphorylated, but Flag-HuR(Y68F) and Flag-HuR(Y200F) were not (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>A), suggesting that menadione elicited phosphorylation of HuR at Y68 and Y200 <italic>in vivo</italic>. It was interesting to note that Y68F and Y200F each completely inhibited phosphorylation, suggesting that perhaps phosphorylation of one of these two tyrosine residues facilitates or is required for phosphorylation of the other tyrosine residue. The basal and menadione-triggered tyrosine phosphorylation of Flag-HuR(WT), Flag-HuR(Y63F), Flag-HuR(Y68F) and Flag-HuR(Y200F) are shown (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>B). Immunofluorescent detection of the Flag tag in cells transfected with these expression plasmids showed that all three Flag-tagged HuR proteins localized to SGs on arsenite treatment (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>C). Interestingly, however, when cells were treated with both arsenite + menadione, Flag-HuR(WT) and Flag-HuR(Y68F) did not localize in visible SGs, whereas Flag-HuR(Y200F) mutant did (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>C). The SG marker TIA-1 colocalized with HuR(Y200F) in SGs of cells treated with arsenite + menadione, supporting the notion that the HuR foci seen under these conditions were <italic>bona fide</italic> SGs (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S4A</ext-link>). Technical limitations associated with the ability to detect endogenous and ectopic proteins in this experiment precluded a more definitive analysis of SGs (kinetics of assembly/disassembly, size and number) forming in the presence of WT and Y200F mutant HuR. Thus, the extent to which menadione inhibited the recruitment of HuR to SGs or more broadly impaired SG formation could not be determined. However, our results did show that menadione induces the phosphorylation of HuR by JAK3 on tyrosine residues and that phosphorylation at HuR Y200 specifically impacts on HuR subcellular localization.
<fig id="gkt903-F4" position="float"><label>Figure 4.</label><caption><p>HuR phosphorylation at Y200 blocks its localization in SGs. (<bold>A</bold>) Top: schematic representation of Flag-tagged HuR WT and point mutants Y63F, Y68F and Y200F. (<bold>B</bold>) Forty-eight hours after transfecting HeLa cells with the plasmids shown in (A), cell lysates were prepared, and pY-HuR signals were detected for each Flag-HuR mutant under the conditions shown. (<bold>C</bold>) Plasmids expressing Flag-tagged HuR WT and tyrosine mutants (A) were transfect into HeLa cells; 48 h later, cells were treated with arsenite and/or menadione and distribution of Flag-HuR (WT or point mutants Y68F or Y200F) was characterized using anti-Flag antibody; DAPI staining was included to visualize the nuclei. Data in (A–C) are representative of three independent experiments.</p></caption><graphic xlink:href="gkt903f4p"/></fig></p></sec><sec><title>Phosphorylation at Y200 influences HuR binding to target mRNAs</title><p>Because phosphorylation of HuR by other kinases affects HuR binding to target mRNAs, as explained above, we investigated whether phosphorylation by JAK3 influenced HuR binding to target mRNAs. For this, we focused on two well-established HuR target transcripts with abundant expression in HeLa cells, <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B36" ref-type="bibr">36</xref>), encoding the protein deacetylase sirtuin 1 (Sirt1) and the tumor suppressor protein von Hippel-Lindau, respectively. We studied the interaction of HuR with these mRNAs by RIP (ribonucleoprotein immunoprecipitation) analysis of endogenous HuR using an anti-HuR antibody; the efficiency of IP of the endogenous HuR protein was assessed (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S4B</ext-link>). After isolation of the RNA present in HuR RNP complexes, the levels of specific mRNAs were measured by RT followed by real-time quantitative (q)PCR analysis. As shown (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>A and B), endogenous HuR displayed robust binding to these mRNAs in the absence of additional treatments (‘Control’ group), but the concentration of these complexes increased strongly after arsenite treatment [and increased even further at higher doses, <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S5</ext-link>)]. Following the addition of menadione, with or without arsenite, this heightened interaction was lost and HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs returned to the levels seen in the ‘Control’ group.
<fig id="gkt903-F5" position="float"><label>Figure 5.</label><caption><p>Tyrosine phosphorylation of HuR at Y200 reduces its interactions with target mRNAs. (<bold>A, B</bold>) After treatment of HeLa cells with arsenite and/or menadione as explained in <xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>, RIP (IP followed by RT-qPCR) analysis was used to measure the levels of enrichment of <italic>SIRT1</italic> mRNA (A) and <italic>VHL</italic> mRNA (B) associated with HuR; the samples were normalized using <italic>GAPDH</italic> mRNA, and the data represented as enrichment of each mRNA in HuR IP were compared with IgG IP. (<bold>C, D</bold>) After transfection and treatment, RIP analysis was used to measure the interaction between Flag-HuR (WT, Y68F, Y200F) and <italic>SIRT1</italic> mRNA (C) and <italic>VHL</italic> mRNA (D); <italic>GAPDH</italic> mRNA was measured for normalization, and data are represented as enrichment of the mRNAs in Flag IP samples relative to the levels in IgG IP samples. The graphs represent the means and SD from three independent experiments.</p></caption><graphic xlink:href="gkt903f5p"/></fig></p><p>To examine whether HuR phosphorylation at Y200 was involved in these interactions, we transfected plasmids pFlag-HuR(WT), pFlag-HuR(Y68F) and pFlag-HuR(Y200F) and tested the binding of the tagged HuR with <italic>SIRT1</italic> mRNA (<italic>left</italic>) and <italic>VHL</italic> mRNA (<italic>right</italic>) again by RIP analysis, but by using anti-Flag antibody. The efficiency of IP of the Flag-tagged proteins was also monitored (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S4B</ext-link>). Interestingly, although proteins Flag-HuR(WT) and Flag-HuR(Y68F) showed the same pattern of binding as the endogenous HuR, Flag-HuR(Y200F) binding to the mRNAs was no longer repressed after menadione treatment (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>C andD). These results suggest that HuR phosphorylation at Y200 not only prevented HuR localization in SGs, but it also reduced binding of HuR with target <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs.</p></sec><sec><title>HuR tyrosine phosphorylation influences target mRNA turnover</title><p>Because HuR is known to stabilize <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B36" ref-type="bibr">36</xref>), we examined the effect of HuR tyrosine phosphorylation on the stability of these target mRNAs. We measured their half-lives by quantifying the rate of decay after transcription was inhibited through the addition of actinomycin D (‘Materials and Methods’ section). Arsenite treatment, which enhanced HuR binding to these mRNAs, also increased their half-lives (by about twofold; <xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A). Menadione alone did not change the stability of target mRNAs, but cells in the menadione + arsenite treatment group showed lower stability for both mRNAs relative to the arsenite alone group (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A). By contrast, the stability of a control stable transcript, <italic>GAPDH</italic> mRNA, encoding a housekeeping protein, was not influenced by the above-mentioned treatments, demonstrating that not all mRNAs decreased rapidly in the presence of actinomycin D, and only select labile mRNAs displayed reduced stability (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A, bottom). The levels of a control short-lived mRNA (<italic>MYC</italic> mRNA, encoding the proto-oncogene c-Myc) showed reduced half-life in the absence of arsenite (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A, bottom). These results support the view that HuR binding increases the half-lives of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs.
<fig id="gkt903-F6" position="float"><label>Figure 6.</label><caption><p>Arsenite and menadione affect the levels and stability of HuR target mRNAs. (<bold>A</bold>) After treatment of arsenite and/or menadione, the half-lives (t<sub>1/2</sub>) of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (top), as well as the half-lives of a control stable mRNA (<italic>GAPDH</italic> mRNAs) and a control labile mRNA (<italic>MYC</italic> mRNA) (bottom) were quantified by measuring the time required to achieve a 50% reduction in transcript levels after adding actinomycin D at time 0 h. (<bold>B</bold>) Forty-eight hours after transfecting HeLa cells with plasmids to express Flag-HuR(WT) or Flag-HuR(Y200F), the steady-state levels of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs were measured by RT-qPCR and normalized to the levels of <italic>GAPDH</italic> mRNA. The graphs represent the means and SD from three independent experiments.</p></caption><graphic xlink:href="gkt903f6p"/></fig></p><p>Given the documented levels of HuR association with <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>) and the <italic>SIRT1</italic> and <italic>VHL</italic> mRNA half-lives (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A), we investigated the influence of non-phosphorylatable HuR Y200F mutant on the abundance of these mRNAs. When Flag-HuR(WT) was expressed in HeLa cells, the levels of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs rose after treatment with arsenite, but this increase was lost if cells were co-treated with menadione (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>B). In contrast, when Flag-HuR(Y200F) was expressed, the arsenite-elicited increase in <italic>SIRT1</italic> mRNA and <italic>VHL</italic> mRNA levels was refractory to menadione treatment, and the mRNAs remained significantly elevated (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>B). In sum, these results indicate that HuR tyrosine phosphorylation at Y200, which excludes HuR from SGs, also promotes the dissociation of HuR from target transcripts (<italic>SIRT1</italic> mRNA and <italic>VHL</italic> mRNA), or perhaps mobilizes HuR-<italic>SIRT1</italic> mRNA and HuR-<italic>VHL</italic> mRNA complexes away from SGs, accelerating their degradation (<xref ref-type="fig" rid="gkt903-F7">Figure 7</xref>).
<fig id="gkt903-F7" position="float"><label>Figure 7.</label><caption><p>Schematic representation of the proposed influence of JAK3 on HuR localization and RNA-binding activity. See text for details.</p></caption><graphic xlink:href="gkt903f7p"/></fig></p></sec></sec><sec sec-type="discussion"><title>DISCUSSION</title><sec><title>Tyrosine-phosphorylation of HuR by JAK3</title><p>We have reported that tyrosine phosphorylation of HuR reduces its interaction with target mRNAs, leading to lower mRNA stability. The phosphorylation at a tyrosine was unexpected, as earlier work had only identified HuR as the substrate of serine and threonine phosphorylation by PKC, Chk2, p38 and Cdk1 [reviewed in (<xref rid="gkt903-B18" ref-type="bibr">18</xref>)]. In contrast to the earlier phosphorylation events, HuR tyrosine phosphorylation is found to influence mRNA fate linked to the absence of HuR in SGs. JAK3, identified here as a kinase responsible for the tyrosine phosphorylation of HuR, is best known in immune cells, where it is activated following exposure to cytokines (<xref rid="gkt903-B37" ref-type="bibr">37</xref>). However, JAK3 is also expressed in HeLa cells and its inhibition by ZM 449829 lowers pY-HuR levels. As identified by mass spec analysis, JAK3 phosphorylates three HuR residues (Y63, Y68, Y200), but it remains possible that other tyrosine kinases besides JAK3 can also phosphorylate HuR at tyrosines, although no such kinases have been identified to date. Because the ubiquitous HuR is abundant in immune cells, it will be interesting to test whether tyrosine phosphorylation of HuR at Y200 influences the response of immune cells to cytokines.</p><p>Treatment with arsenite or menadione for 45 min caused oxidative stress, and this effect was enhanced by joint treatment with both chemicals (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1B</ext-link>). Nonetheless, by 4 h after the drugs were removed from the culture medium, assessments of cell numbers and annexin V-positive cells revealed little or no toxicity (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1A</ext-link>, <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>). By 24 h after removing the drugs, cells treated with arsenite did not exhibit much toxicity, as measured by modest cell loss and the absence of annexin V-positive cells (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>); however, simultaneous addition of menadione to arsenite-treated cells did prove toxic, as evidenced by the enhanced cell loss and the high percentage of annexin V-positive cells (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>). These results indicate that SGs are a component of the stress-response program triggered by arsenite, which ultimately the cells survived. The concomitant treatment with menadione modified this stress-response program (in part by antagonizing the formation of HuR-positive SGs) and potentiated the toxicity of arsenite. It is plausible that the chemotherapeutic actions of menadione (<xref rid="gkt903-B38" ref-type="bibr">38</xref>) are linked to the cytotoxicity caused by menadione, as it interferes with the cellular response to stress conditions.</p></sec><sec><title>HNS phosphorylation affects HuR localization and binding to mRNAs</title><p>It was somewhat surprising to discover that HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs was influenced by phosphorylation at Y200 (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>), as this residue lies within the shuttling domain of HuR (the HNS) and not within one of the three RRMs. For example, previous reports had shown that phosphorylation at RRMs (S88 in RRM1, T118 in RRM2, S100 between RRM1 and RRM2 and S318 in RRM3) affected HuR binding to numerous mRNAs (<xref rid="gkt903-B18" ref-type="bibr">18</xref>), while phosphorylation in the HNS region (S202, S221, S242), generally altered HuR the relative abundance of HuR in the nucleus compared with the cytoplasm (<xref rid="gkt903-B19" ref-type="bibr">19–21</xref>). The finding that phosphorylation near the shuttling domain affects HuR binding suggests that pY200 could change the conformation of the RRMs in ways that lower their binding affinity for RNA. Alternatively, Y200 phosphorylation could mobilize HuR to areas of the cell that have reduced concentration of HuR target transcripts, and thus binding is reduced because mRNAs are unavailable. Distinguishing between these possibilities awaits further study.</p><p>The finding that the non-phosphorylatable HuR(Y200F) is found in SGs after arsenite + menadione, whereas the phosphorylatable counterpart, HuR(WT), is not, suggests that phosphorylation at Y200 actively excludes HuR from SGs. Although the molecular mediators of HuR exclusion from SGs are not identified in our experiments, we have evidence that menadione may block the assembly of other SG components, including TIA-1, G3BP and eIF3b (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>B; <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S6A</ext-link>; data not shown). In fact, it is possible that JAK3 may block the assembly of multiple SG components, perhaps by phosphorylating them in a coordinated manner. In this regard, JAK3 was capable of phosphorylating TIA-1 <italic>in vitro</italic> (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S6B</ext-link>). Therefore, it remains formally possible that in cells that form SGs, HuR is mobilized to SGs because the mRNAs that HuR associates with are actively recruited to, or ‘pulled to’, SGs. It is unknown at present whether JAK3 impairs the binding of HuR to mRNAs and for this reason, HuR is not mobilized to SGs, or instead JAK3 inhibits the mobilization of HuR to SGs and this in turn affects HuR binding to mRNAs locally enriched in SGs. Both possibilities agree with the notion that SGs are sites of mRNA reassortment and ‘triage’ (<xref rid="gkt903-B30" ref-type="bibr">30</xref>), where mRNA-binding factors form different RNPs to accomplish molecular decisions on mRNA turnover and translational status.</p></sec><sec><title>HuR binding to mRNAs increased by stress, linked to stabilization</title><p>The discovery that treatment with arsenite, a strong oxidant, increased HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs was also against our expectation (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>A and B; <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S5</ext-link>), as other stress agents (e.g. ionizing radiation and the oxidant hydrogen peroxide) instead triggered the dissociation of HuR from bound mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>). As dissociation of mRNAs was linked to the phosphorylation of HuR by Chk2, it is possible that arsenite inhibits Chk2 activity, while menadione reverses this inhibition in HeLa cells. Of course, arsenite and/or menadione could also affect the phosphorylation of HuR by other kinases (p38, PKC), which influence HuR–mRNA interactions. Studies are underway to investigate these possibilities, particularly given earlier reports documenting an increase in HuR binding to some mRNAs in response to certain stresses [e.g. <italic>HIF1A</italic> mRNA after hypoxia, <italic>MKP1</italic> mRNA after hydrogen peroxide treatment (<xref rid="gkt903-B39" ref-type="bibr">39</xref>,<xref rid="gkt903-B40" ref-type="bibr">40</xref>)]. In sum, our findings add to a growing body of evidence that underscores the complex regulation of HuR by phosphorylation, and the impact of this modification on HuR localization, HuR binding to mRNAs and the fate of HuR target transcripts.</p></sec></sec><sec><title>SUPPLEMENTARY DATA</title><p><ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Data</ext-link> are available at NAR Online.</p></sec><sec><title>FUNDING</title><p>Funding for open access charge: <funding-source>National Institute on Aging-Intramural Research Program</funding-source>, <funding-source>National Institutes of Health</funding-source>.</p><p><italic>Conflict of interest statement</italic>. None declared.</p></sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_42_2_1196__index.html"/>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_gkt903_nar-00861-y-2013-File009.pdf"/>
</supplementary-material>
</sec>
</body>
  <back>
    <ack>
      <title>ACKNOWLEDGEMENTS</title>
      <p>The authors thank P. Anderson (Brigham and Women's Hospital) for providing reagents and advice, and C.Y. Sasaki (NIA, NIH) for assistance with experiments. This work was entirely supported by the NIA-IRP, NIH.</p>
    </ack>
    <ref-list>
      <title>REFERENCES</title>
      <ref id="gkt903-B1">
        <label>1</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Wilkie</surname>
              <given-names>GS</given-names>
            </name>
            <name>
              <surname>Dickson</surname>
              <given-names>KS</given-names>
            </name>
            <name>
              <surname>Gray</surname>
              <given-names>NK</given-names>
            </name>
          </person-group>
          <article-title>Regulation of mRNA translation by 5′- and 3′-UTR-binding factors</article-title>
          <source>Trends Biochemi. Sci.</source>
          <year>2003</year>
          <volume>28</volume>
          <fpage>182</fpage>
          <lpage>188</lpage>
        </element-citation>
      </ref>
      <ref id="gkt903-B2">
        <label>2</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Wilusz</surname>
              <given-names>CJ</given-names>
            </name>
            <name>
              <surname>Wilusz</surname>
              <given-names>J</given-names>
            </name>
          </person-group>
          <article-title>Bringing the role of mRNA decay in the control of gene expression into focus</article-title>
          <source>Trends Genet.</source>
          <year>2004</year>
          <volume>20</volume>
          <fpage>491</fpage>
          <lpage>497</lpage>
          <pub-id pub-id-type="pmid">15363903</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B3">
        <label>3</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Moore</surname>
              <given-names>MJ</given-names>
            </name>
          </person-group>
          <article-title>From birth to death: the complex lives of eukaryotic mRNAs</article-title>
          <source>Sci. Signal.</source>
          <year>2005</year>
          <volume>309</volume>
          <fpage>1514</fpage>
        </element-citation>
      </ref>
      <ref id="gkt903-B4">
        <label>4</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Kuwano</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence</article-title>
          <source>Biol. Chem.</source>
          <year>2008</year>
          <volume>389</volume>
          <fpage>243</fpage>
          <lpage>255</lpage>
          <pub-id pub-id-type="pmid">18177264</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B5">
        <label>5</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Lee</surname>
              <given-names>EK</given-names>
            </name>
          </person-group>
          <article-title>Post-translational modifications of RNA-binding proteins and their roles in RNA granules</article-title>
          <source>Curr. Protein Pept. Sci.</source>
          <year>2012</year>
          <volume>13</volume>
          <fpage>331</fpage>
          <lpage>336</lpage>
          <pub-id pub-id-type="pmid">22708487</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B6">
        <label>6</label>
        <element-citation publication-type="book">
          <person-group person-group-type="author">
            <name>
              <surname>Srikantan</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <person-group person-group-type="editor">
            <name>
              <surname>Bradshaw</surname>
              <given-names>RA</given-names>
            </name>
            <name>
              <surname>Dennis</surname>
              <given-names>EA</given-names>
            </name>
          </person-group>
          <article-title>Regulation of mRNA turnover by cellular stress</article-title>
          <source>Handbook of Cell Signaling</source>
          <year>2008</year>
          <comment>Chapter 270</comment>
        </element-citation>
      </ref>
      <ref id="gkt903-B7">
        <label>7</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Izquierdo</surname>
              <given-names>JM</given-names>
            </name>
          </person-group>
          <article-title>Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis, promoting receptor on exon definition</article-title>
          <source>J. Biol. Chem.</source>
          <year>2008</year>
          <volume>283</volume>
          <fpage>19077</fpage>
          <lpage>19084</lpage>
          <pub-id pub-id-type="pmid">18463097</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B8">
        <label>8</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Wang</surname>
              <given-names>H</given-names>
            </name>
            <name>
              <surname>Molfenter</surname>
              <given-names>J</given-names>
            </name>
            <name>
              <surname>Zhu</surname>
              <given-names>H</given-names>
            </name>
            <name>
              <surname>Lou</surname>
              <given-names>H</given-names>
            </name>
          </person-group>
          <article-title>Promotion of exon 6 inclusion in HuD pre-mRNA by Hu protein family members</article-title>
          <source>Nucleic Acids Res.</source>
          <year>2010</year>
          <volume>38</volume>
          <fpage>3760</fpage>
          <lpage>3770</lpage>
          <pub-id pub-id-type="pmid">20159993</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B9">
        <label>9</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Mukherjee</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Corcoran</surname>
              <given-names>DL</given-names>
            </name>
            <name>
              <surname>Nusbaum</surname>
              <given-names>JD</given-names>
            </name>
            <name>
              <surname>Reid</surname>
              <given-names>DW</given-names>
            </name>
            <name>
              <surname>Georgiev</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Hafner</surname>
              <given-names>M</given-names>
            </name>
            <name>
              <surname>Ascano</surname>
              <given-names>M</given-names>
              <suffix>Jr</suffix>
            </name>
            <name>
              <surname>Tuschl</surname>
              <given-names>T</given-names>
            </name>
            <name>
              <surname>Ohler</surname>
              <given-names>U</given-names>
            </name>
            <name>
              <surname>Keene</surname>
              <given-names>JD</given-names>
            </name>
          </person-group>
          <article-title>Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability</article-title>
          <source>Mol. Cell</source>
          <year>2011</year>
          <volume>43</volume>
          <fpage>327</fpage>
          <lpage>339</lpage>
          <pub-id pub-id-type="pmid">21723170</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B10">
        <label>10</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>López de Silanes</surname>
              <given-names>I</given-names>
            </name>
            <name>
              <surname>Zhan</surname>
              <given-names>M</given-names>
            </name>
            <name>
              <surname>Lal</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>Identification of a target RNA motif for RNA-binding protein HuR</article-title>
          <source>Proc. Natl Acad. Sci. USA</source>
          <year>2004</year>
          <volume>101</volume>
          <fpage>2987</fpage>
          <lpage>2992</lpage>
          <pub-id pub-id-type="pmid">14981256</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B11">
        <label>11</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Brennan</surname>
              <given-names>CM</given-names>
            </name>
            <name>
              <surname>Steitz</surname>
              <given-names>JA</given-names>
            </name>
          </person-group>
          <article-title>HuR and mRNA stability</article-title>
          <source>Cell. Mol. Life Sci.</source>
          <year>2001</year>
          <volume>58</volume>
          <fpage>266</fpage>
          <lpage>277</lpage>
          <pub-id pub-id-type="pmid">11289308</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B12">
        <label>12</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>Posttranscriptional regulation of cancer traits by HuR</article-title>
          <source>Wiley Interdiscip. Rev. RNA</source>
          <year>2010</year>
          <volume>1</volume>
          <fpage>214</fpage>
          <lpage>229</lpage>
          <pub-id pub-id-type="pmid">21935886</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B13">
        <label>13</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Srikantan</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>HuR function in disease</article-title>
          <source>Front. Biosci.</source>
          <year>2012</year>
          <volume>17</volume>
          <fpage>189</fpage>
          <lpage>205</lpage>
        </element-citation>
      </ref>
      <ref id="gkt903-B14">
        <label>14</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Gallouzi</surname>
              <given-names>IE</given-names>
            </name>
            <name>
              <surname>Steitz</surname>
              <given-names>JA</given-names>
            </name>
          </person-group>
          <article-title>Delineation of mRNA export pathways by the use of cell-permeable peptides</article-title>
          <source>Science</source>
          <year>2001</year>
          <volume>294</volume>
          <fpage>1895</fpage>
          <lpage>1901</lpage>
          <pub-id pub-id-type="pmid">11729309</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B15">
        <label>15</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Fan</surname>
              <given-names>XC</given-names>
            </name>
            <name>
              <surname>Steitz</surname>
              <given-names>JA</given-names>
            </name>
          </person-group>
          <article-title>HNS, a nuclearcytoplasmic shuttling sequence in HuR</article-title>
          <source>Proc. Natl Acad. Sci. USA</source>
          <year>1998</year>
          <volume>95</volume>
          <fpage>15293</fpage>
          <lpage>15298</lpage>
          <pub-id pub-id-type="pmid">9860962</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B16">
        <label>16</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Güttinger</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Mühlhäusser</surname>
              <given-names>P</given-names>
            </name>
            <name>
              <surname>Koller-Eichhorn</surname>
              <given-names>R</given-names>
            </name>
            <name>
              <surname>Brennecke</surname>
              <given-names>J</given-names>
            </name>
            <name>
              <surname>Kutay</surname>
              <given-names>U</given-names>
            </name>
          </person-group>
          <article-title>Transportin2 functions as importin and mediates nuclear import of HuR</article-title>
          <source>Proc. Natl Acad. Sci. USA</source>
          <year>2004</year>
          <volume>101</volume>
          <fpage>2918</fpage>
          <lpage>2923</lpage>
          <pub-id pub-id-type="pmid">14981248</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B17">
        <label>17</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Rebane</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Aab</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Steitz</surname>
              <given-names>JA</given-names>
            </name>
          </person-group>
          <article-title>Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR</article-title>
          <source>RNA</source>
          <year>2004</year>
          <volume>10</volume>
          <fpage>590</fpage>
          <lpage>599</lpage>
          <pub-id pub-id-type="pmid">15037768</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B18">
        <label>18</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Eberhardt</surname>
              <given-names>W</given-names>
            </name>
            <name>
              <surname>Doller</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Pfeilschifter</surname>
              <given-names>J</given-names>
            </name>
          </person-group>
          <article-title>Regulation of the mRNA-binding protein HuR by posttranslational modification: spotlight on phosphorylation</article-title>
          <source>Curr. Protein Pept. Sci.</source>
          <year>2012</year>
          <volume>13</volume>
          <fpage>380</fpage>
          <lpage>390</lpage>
          <pub-id pub-id-type="pmid">22708484</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B19">
        <label>19</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Lal</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Pullmann</surname>
              <given-names>R</given-names>
              <suffix>Jr</suffix>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Galban</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Srikantan</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Martindale</surname>
              <given-names>JL</given-names>
            </name>
            <name>
              <surname>Blethrow</surname>
              <given-names>J</given-names>
            </name>
            <name>
              <surname>Shokat</surname>
              <given-names>KM</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>Nuclear HuR accumulation through phosphorylation by Cdk1</article-title>
          <source>Genes Dev.</source>
          <year>2008</year>
          <volume>22</volume>
          <fpage>1804</fpage>
          <lpage>1815</lpage>
          <pub-id pub-id-type="pmid">18593881</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B20">
        <label>20</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Kuwano</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>Modification at HuR(S242) alters HuR localization and proliferative influence</article-title>
          <source>Cell Cycle</source>
          <year>2008</year>
          <volume>7</volume>
          <fpage>3371</fpage>
          <lpage>3377</lpage>
          <pub-id pub-id-type="pmid">18948743</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B21">
        <label>21</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>Phosphorylated HuR shuttles in cycles</article-title>
          <source>Cell Cycle</source>
          <year>2008</year>
          <volume>7</volume>
          <fpage>3124</fpage>
          <lpage>3126</lpage>
          <pub-id pub-id-type="pmid">18927508</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B22">
        <label>22</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Pullmann</surname>
              <given-names>R</given-names>
              <suffix>Jr</suffix>
            </name>
            <name>
              <surname>Lal</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Galban</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Blethrow</surname>
              <given-names>JD</given-names>
            </name>
            <name>
              <surname>Walker</surname>
              <given-names>M</given-names>
            </name>
            <name>
              <surname>Shubert</surname>
              <given-names>J</given-names>
            </name>
            <name>
              <surname>Gillespie</surname>
              <given-names>DA</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>Phosphorylation of HuR by Chk2 regulates SIRT1 expression</article-title>
          <source>Mol. Cell</source>
          <year>2007</year>
          <volume>25</volume>
          <fpage>543</fpage>
          <lpage>557</lpage>
          <pub-id pub-id-type="pmid">17317627</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B23">
        <label>23</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Masuda</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Kim</surname>
              <given-names>MM</given-names>
            </name>
            <name>
              <surname>Srikantan</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Lee</surname>
              <given-names>EK</given-names>
            </name>
            <name>
              <surname>Tominaga</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Selimyan</surname>
              <given-names>R</given-names>
            </name>
            <name>
              <surname>Martindale</surname>
              <given-names>JL</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Lehrmann</surname>
              <given-names>E</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation</article-title>
          <source>EMBO J.</source>
          <year>2011</year>
          <volume>30</volume>
          <fpage>1040</fpage>
          <lpage>1053</lpage>
          <pub-id pub-id-type="pmid">21317874</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B24">
        <label>24</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Piecyk</surname>
              <given-names>M</given-names>
            </name>
            <name>
              <surname>Wax</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Beck</surname>
              <given-names>AR</given-names>
            </name>
            <name>
              <surname>Kedersha</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Gupta</surname>
              <given-names>M</given-names>
            </name>
            <name>
              <surname>Maritim</surname>
              <given-names>B</given-names>
            </name>
            <name>
              <surname>Chen</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Gueydan</surname>
              <given-names>C</given-names>
            </name>
            <name>
              <surname>Kruys</surname>
              <given-names>V</given-names>
            </name>
            <name>
              <surname>Streuli</surname>
              <given-names>M</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>TIA-1 is a translational silencer that selectively regulates the expression of TNF-α</article-title>
          <source>EMBO J.</source>
          <year>2000</year>
          <volume>19</volume>
          <fpage>4154</fpage>
          <lpage>4163</lpage>
          <pub-id pub-id-type="pmid">10921895</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B25">
        <label>25</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Hinman</surname>
              <given-names>MN</given-names>
            </name>
            <name>
              <surname>Lou</surname>
              <given-names>H</given-names>
            </name>
          </person-group>
          <article-title>Diverse molecular functions of Hu proteins</article-title>
          <source>Cell Mol. Life Sci.</source>
          <year>2008</year>
          <volume>65</volume>
          <fpage>3168</fpage>
          <lpage>3181</lpage>
          <pub-id pub-id-type="pmid">18581050</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B26">
        <label>26</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Lian</surname>
              <given-names>XJ</given-names>
            </name>
            <name>
              <surname>Gallouzi</surname>
              <given-names>IE</given-names>
            </name>
          </person-group>
          <article-title>Oxidative stress increases the number of stress granules in senescent cells and triggers a rapid decrease in p21waf1/cip1 translation</article-title>
          <source>J. Biol. Chem.</source>
          <year>2009</year>
          <volume>284</volume>
          <fpage>8877</fpage>
          <lpage>8887</lpage>
          <pub-id pub-id-type="pmid">19176530</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B27">
        <label>27</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Lu</surname>
              <given-names>L</given-names>
            </name>
            <name>
              <surname>Wang</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Zheng</surname>
              <given-names>L</given-names>
            </name>
            <name>
              <surname>Li</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Suswam</surname>
              <given-names>EA</given-names>
            </name>
            <name>
              <surname>Zhang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Wheeler</surname>
              <given-names>CG</given-names>
            </name>
            <name>
              <surname>Nabors</surname>
              <given-names>LB</given-names>
            </name>
            <name>
              <surname>Filippova</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>King</surname>
              <given-names>PH</given-names>
            </name>
          </person-group>
          <article-title>Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor</article-title>
          <source>J. Biol. Chem.</source>
          <year>2009</year>
          <volume>284</volume>
          <fpage>33989</fpage>
          <lpage>33998</lpage>
          <pub-id pub-id-type="pmid">19805546</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B28">
        <label>28</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Bhattacharyya</surname>
              <given-names>SN</given-names>
            </name>
            <name>
              <surname>Habermacher</surname>
              <given-names>R</given-names>
            </name>
            <name>
              <surname>Martine</surname>
              <given-names>U</given-names>
            </name>
            <name>
              <surname>Closs</surname>
              <given-names>EI</given-names>
            </name>
            <name>
              <surname>Filipowicz</surname>
              <given-names>W</given-names>
            </name>
          </person-group>
          <article-title>Relief of microRNA-mediated translational repression in human cells subjected to stress</article-title>
          <source>Cell</source>
          <year>2006</year>
          <volume>125</volume>
          <fpage>1111</fpage>
          <lpage>1124</lpage>
          <pub-id pub-id-type="pmid">16777601</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B29">
        <label>29</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Stoecklin</surname>
              <given-names>G</given-names>
            </name>
            <name>
              <surname>Stubbs</surname>
              <given-names>T</given-names>
            </name>
            <name>
              <surname>Kedersha</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Wax</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Rigby</surname>
              <given-names>WF</given-names>
            </name>
            <name>
              <surname>Blackwell</surname>
              <given-names>TK</given-names>
            </name>
            <name>
              <surname>Anderson</surname>
              <given-names>P</given-names>
            </name>
          </person-group>
          <article-title>MK2-induced tristetraprolin:14–3-3 complexes prevent stress granule association and ARE-mRNA decay</article-title>
          <source>EMBO J.</source>
          <year>2004</year>
          <volume>23</volume>
          <fpage>1313</fpage>
          <lpage>1324</lpage>
          <pub-id pub-id-type="pmid">15014438</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B30">
        <label>30</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Anderson</surname>
              <given-names>P</given-names>
            </name>
            <name>
              <surname>Kedersha</surname>
              <given-names>N</given-names>
            </name>
          </person-group>
          <article-title>RNA granules: post-transcriptional and epigenetic modulators of gene expression</article-title>
          <source>Nat. Rev. Mol. Cell Biol.</source>
          <year>2009</year>
          <volume>10</volume>
          <fpage>430</fpage>
          <lpage>436</lpage>
          <pub-id pub-id-type="pmid">19461665</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B31">
        <label>31</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Yoon</surname>
              <given-names>JH</given-names>
            </name>
            <name>
              <surname>Choi</surname>
              <given-names>EJ</given-names>
            </name>
            <name>
              <surname>Parker</surname>
              <given-names>R</given-names>
            </name>
          </person-group>
          <article-title>Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in <italic>Saccharomyces cerevisiae</italic></article-title>
          <source>J. Cell Biol.</source>
          <year>2010</year>
          <volume>189</volume>
          <fpage>813</fpage>
          <lpage>827</lpage>
          <pub-id pub-id-type="pmid">20513766</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B32">
        <label>32</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Wiśniewski</surname>
              <given-names>JR</given-names>
            </name>
            <name>
              <surname>Zougman</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Nagaraj</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Mann</surname>
              <given-names>M</given-names>
            </name>
          </person-group>
          <article-title>Universal sample preparation method for proteome analysis</article-title>
          <source>Nat. Methods.</source>
          <year>2009</year>
          <volume>6</volume>
          <fpage>359</fpage>
          <lpage>362</lpage>
          <pub-id pub-id-type="pmid">19377485</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B33">
        <label>33</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Kedersha</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Chen</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Gilks</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Li</surname>
              <given-names>W</given-names>
            </name>
            <name>
              <surname>Miller</surname>
              <given-names>IJ</given-names>
            </name>
            <name>
              <surname>Stahl</surname>
              <given-names>J</given-names>
            </name>
            <name>
              <surname>Anderson</surname>
              <given-names>P</given-names>
            </name>
          </person-group>
          <article-title>Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules</article-title>
          <source>Mol. Biol. Cell</source>
          <year>2002</year>
          <volume>13</volume>
          <fpage>195</fpage>
          <lpage>210</lpage>
          <pub-id pub-id-type="pmid">11809833</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B34">
        <label>34</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Dang</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Kedersha</surname>
              <given-names>N</given-names>
            </name>
            <name>
              <surname>Low</surname>
              <given-names>WK</given-names>
            </name>
            <name>
              <surname>Romo</surname>
              <given-names>D</given-names>
            </name>
            <name>
              <surname>Gorospe</surname>
              <given-names>M</given-names>
            </name>
            <name>
              <surname>Kaufman</surname>
              <given-names>R</given-names>
            </name>
            <name>
              <surname>Anderson</surname>
              <given-names>P</given-names>
            </name>
            <name>
              <surname>Liu</surname>
              <given-names>JO</given-names>
            </name>
          </person-group>
          <article-title>Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A</article-title>
          <source>J. Biol. Chem.</source>
          <year>2006</year>
          <volume>281</volume>
          <fpage>32870</fpage>
          <lpage>32878</lpage>
          <pub-id pub-id-type="pmid">16951406</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B35">
        <label>35</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Srikantan</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Tominaga</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Kang</surname>
              <given-names>MJ</given-names>
            </name>
            <name>
              <surname>Yaniv</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Martindale</surname>
              <given-names>JL</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Park</surname>
              <given-names>SS</given-names>
            </name>
            <name>
              <surname>Becker</surname>
              <given-names>KG</given-names>
            </name>
            <name>
              <surname>Subramanian</surname>
              <given-names>M</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>Growth inhibition by miR-519 via multiple p21-inducing pathways</article-title>
          <source>Mol. Cell. Biol.</source>
          <year>2012</year>
          <volume>32</volume>
          <fpage>2530</fpage>
          <lpage>2548</lpage>
          <pub-id pub-id-type="pmid">22547681</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B36">
        <label>36</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Srikantan</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Lal</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Kuwano</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Galban</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Becker</surname>
              <given-names>KG</given-names>
            </name>
            <name>
              <surname>Kamara</surname>
              <given-names>D</given-names>
            </name>
            <name>
              <surname>de Cabo</surname>
              <given-names>R</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>Ubiquitin-mediated proteolysis of HuR by heat shock</article-title>
          <source>EMBO J.</source>
          <year>2009</year>
          <volume>28</volume>
          <fpage>1271</fpage>
          <lpage>1282</lpage>
          <pub-id pub-id-type="pmid">19322201</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B37">
        <label>37</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>O'Shea</surname>
              <given-names>JJ</given-names>
            </name>
            <name>
              <surname>Holland</surname>
              <given-names>SM</given-names>
            </name>
            <name>
              <surname>Staudt</surname>
              <given-names>LM</given-names>
            </name>
          </person-group>
          <article-title>JAKs and STATs in immunity, immunodeficiency, and cancer</article-title>
          <source>N. Engl. J. Med.</source>
          <year>2013</year>
          <volume>368</volume>
          <fpage>161</fpage>
          <lpage>170</lpage>
          <pub-id pub-id-type="pmid">23301733</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B38">
        <label>38</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Nutter</surname>
              <given-names>LM</given-names>
            </name>
            <name>
              <surname>Cheng</surname>
              <given-names>AL</given-names>
            </name>
            <name>
              <surname>Hung</surname>
              <given-names>HL</given-names>
            </name>
            <name>
              <surname>Hsieh</surname>
              <given-names>RK</given-names>
            </name>
            <name>
              <surname>Ngo</surname>
              <given-names>EO</given-names>
            </name>
            <name>
              <surname>Liu</surname>
              <given-names>TW</given-names>
            </name>
          </person-group>
          <article-title>Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines</article-title>
          <source>Biochem. Pharmacol.</source>
          <year>1991</year>
          <volume>41</volume>
          <fpage>1283</fpage>
          <lpage>1292</lpage>
          <pub-id pub-id-type="pmid">2018560</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B39">
        <label>39</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Galbán</surname>
              <given-names>S</given-names>
            </name>
            <name>
              <surname>Kuwano</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Pullmann</surname>
              <given-names>R</given-names>
              <suffix>Jr</suffix>
            </name>
            <name>
              <surname>Martindale</surname>
              <given-names>JL</given-names>
            </name>
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Lal</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Dang</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Liu</surname>
              <given-names>JO</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1α</article-title>
          <source>Mol. Cell. Biol.</source>
          <year>2008</year>
          <volume>28</volume>
          <fpage>93</fpage>
          <lpage>107</lpage>
          <pub-id pub-id-type="pmid">17967866</pub-id>
        </element-citation>
      </ref>
      <ref id="gkt903-B40">
        <label>40</label>
        <element-citation publication-type="journal">
          <person-group person-group-type="author">
            <name>
              <surname>Kuwano</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Kuwano</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Pullmann</surname>
              <given-names>R</given-names>
              <suffix>Jr</suffix>
            </name>
            <name>
              <surname>Martindale</surname>
              <given-names>JL</given-names>
            </name>
            <name>
              <surname>Kim</surname>
              <given-names>HH</given-names>
            </name>
            <name>
              <surname>Lal</surname>
              <given-names>A</given-names>
            </name>
            <name>
              <surname>Abdelmohsen</surname>
              <given-names>K</given-names>
            </name>
            <name>
              <surname>Yang</surname>
              <given-names>X</given-names>
            </name>
            <name>
              <surname>Dang</surname>
              <given-names>Y</given-names>
            </name>
            <name>
              <surname>Liu</surname>
              <given-names>JO</given-names>
            </name>
            <etal/>
          </person-group>
          <article-title>MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90</article-title>
          <source>Mol. Cell. Biol.</source>
          <year>2008</year>
          <volume>28</volume>
          <fpage>4562</fpage>
          <lpage>4575</lpage>
          <pub-id pub-id-type="pmid">18490444</pub-id>
        </element-citation>
      </ref>
    </ref-list>
  </back>
</article>

</metadata></record></GetRecord></OAI-PMH>