1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
|
<?xml version="1.0" encoding="UTF-8"?><OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd"><responseDate>2015-05-06T21:47:12Z</responseDate><request verb="GetRecord" identifier="oai:pubmedcentral.nih.gov:3902907" metadataPrefix="pmc">http://www.ncbi.nlm.nih.gov/oai/oai.cgi</request><GetRecord><record><header><identifier>oai:pubmedcentral.nih.gov:3902907</identifier><datestamp>2014-01-27</datestamp><setSpec>nar</setSpec><setSpec>pmc-open</setSpec></header><metadata><article xmlns="http://dtd.nlm.nih.gov/2.0/xsd/archivearticle" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://jats.nlm.nih.gov/archiving/1.0/xsd/JATS-archivearticle1.xsd" article-type="research-article">
<front>
<?epub October-7-2013?>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nucleic Acids Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Nucleic Acids Res</journal-id>
<journal-id journal-id-type="publisher-id">nar</journal-id>
<journal-id journal-id-type="hwp">nar</journal-id>
<journal-title-group>
<journal-title>Nucleic Acids Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0305-1048</issn>
<issn pub-type="epub">1362-4962</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="accession">PMC3902907</article-id>
<article-id pub-id-type="pmcid">PMC3902907</article-id>
<article-id pub-id-type="pmc-uid">3902907</article-id>
<article-id pub-id-type="pmid">24106086</article-id>
<article-id pub-id-type="doi">10.1093/nar/gkt903</article-id>
<article-id pub-id-type="publisher-id">gkt903</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>RNA</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Tyrosine phosphorylation of HuR by JAK3 triggers dissociation and degradation of HuR target mRNAs</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Yoon</surname>
<given-names>Je-Hyun</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Abdelmohsen</surname>
<given-names>Kotb</given-names>
</name>
<xref ref-type="corresp" rid="gkt903-COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Srikantan</surname>
<given-names>Subramanya</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guo</surname>
<given-names>Rong</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Xiaoling</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Martindale</surname>
<given-names>Jennifer L.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gorospe</surname>
<given-names>Myriam</given-names>
</name>
<xref ref-type="corresp" rid="gkt903-COR2">*</xref>
</contrib>
</contrib-group>
<aff>Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA</aff>
<author-notes>
<corresp id="gkt903-COR1">*To whom correspondence should be addressed. Tel: <phone>+1 410 558 8589</phone>; Fax: <fax>+1 410 558 8331</fax>; Email: <email>abdelmohsenk@mail.nih.gov</email></corresp>
<corresp id="gkt903-COR2">Correspondence may also be addressed to Myriam Gorospe. Tel: <phone>+1 410 558 8443</phone>; Fax: <fax>+1 410 558 8331</fax>; Email: <email>gorospem@grc.nia.nih.gov</email></corresp>
<fn>
<p>The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>1</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>6</day>
<month>10</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>6</day>
<month>10</month>
<year>2013</year>
</pub-date>
<!-- PMC Release delay is 0 months and 0 days and was based on the
<pub-date pub-type="epub"/>. -->
<volume>42</volume>
<issue>2</issue>
<fpage>1196</fpage>
<lpage>1208</lpage>
<history>
<date date-type="received">
<day>24</day>
<month>3</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>13</day>
<month>9</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<abstract>
<p>In response to stress conditions, many mammalian mRNAs accumulate in stress granules (SGs) together with numerous RNA-binding proteins that control mRNA turnover and translation. However, the signaling cascades that modulate the presence of ribonucleoprotein (RNP) complexes in SGs are poorly understood. Here, we investigated the localization of human antigen R (HuR), an mRNA-stabilizing RNA-binding protein, in SGs following exposure to the stress agent arsenite. Unexpectedly, the mobilization of HuR to SGs was prevented through the activation of Janus kinase 3 (JAK3) by the vitamin K3 analog menadione. JAK3 phosphorylated HuR at tyrosine 200, in turn inhibiting HuR localization in SGs, reducing HuR interaction with targets <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs, and accelerating target mRNA decay. Our findings indicate that HuR is tyrosine-phosphorylated by JAK3, and link this modification to HuR subcytoplasmic localization and to the fate of HuR target mRNAs.</p>
</abstract>
<counts>
<page-count count="13"/>
</counts>
</article-meta>
</front>
<body><sec><title>INTRODUCTION</title><p>Following transcription, RNA-binding proteins (RBPs) regulate post-transcriptional steps of gene expression, including pre-mRNA splicing, and mRNA transport, storage, stability and translation (<xref rid="gkt903-B1" ref-type="bibr">1</xref>,<xref rid="gkt903-B2" ref-type="bibr">2</xref>). Although some RBPs have general housekeeping functions on mRNAs [e.g. bind the mRNA 5′ cap or poly(A) tail], other specialized RBPs form ribonucleoprotein (RNP) interactions with discrete subsets of mRNAs which share specific sequence elements, and affect their post-transcriptional fate (<xref rid="gkt903-B3" ref-type="bibr">3</xref>). The latter group includes RBPs such as human antigen R (HuR), AU-binding factor 1 (AUF1), nucleolin and T-cell intracellular antigen (TIA)-1 and TIA-1-related (TIAR) proteins, which associate with subsets of target mRNAs and modulate their stability and/or translation rates (<xref rid="gkt903-B1" ref-type="bibr">1</xref>,<xref rid="gkt903-B2" ref-type="bibr">2</xref>). Specialized RBPs are directly involved in changing the patterns of expressed proteins in response to stress conditions, and such stress-response functions often require RBP post-translational modification (as reviewed in <xref rid="gkt903-B4" ref-type="bibr">4–6</xref>).</p><p>HuR has three RNA-recognition motifs (RRMs) through which it binds to a large collection of protein-coding and noncoding RNAs. Although it can interact with pre-mRNA intron sequences and has been linked to regulated splicing (<xref rid="gkt903-B7" ref-type="bibr">7–9</xref>), HuR is best known for stabilizing and modulating the translation of mature mRNAs with which it associates via the 3′-untranslated region (UTR), typically at U-rich sites (<xref rid="gkt903-B9" ref-type="bibr">9</xref>,<xref rid="gkt903-B10" ref-type="bibr">10</xref>). Through binding to subsets of mRNAs encoding proliferative, stress-response and cell survival proteins, HuR has been implicated in cellular processes, such as cell division, survival, senescence and the stress-response, and with pathologies such as cancer (<xref rid="gkt903-B11" ref-type="bibr">11</xref>,<xref rid="gkt903-B12" ref-type="bibr">12</xref>).</p><p>HuR function is regulated at the levels of protein abundance, localization and post-translational modification. HuR levels are reduced by specific microRNAs (e.g. miR-519 and miR-125), by ubiquitination in response to mild heat shock and by caspase-mediated cleavage in response to severe stress (reviewed in <xref rid="gkt903-B13" ref-type="bibr">13</xref>). HuR is predominantly localized in the nucleus, but its effects on mRNA stability and translation are linked to its transport to the cytoplasm, which requires the HuR nucleocytoplasmic shuttling domain (HNS) and transport proteins such as transportins 1 and 2, the chromosome region maintenance 1 and importin-1α (<xref rid="gkt903-B14" ref-type="bibr">14–17</xref>). The transport of HuR across the nuclear envelope is influenced by kinases including the cell cycle-dependent kinase (Cdk)1, AMP-activated protein kinase (AMPK), protein kinase (PK)C and the mitogen-activated protein kinase p38 (<xref rid="gkt903-B18" ref-type="bibr">18–21</xref>). The interaction of HuR with target transcripts is modulated through phosphorylation of serine and threonine residues by several kinases; phosphorylation by checkpoint kinase (Chk)2 generally reduced HuR interaction with mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B23" ref-type="bibr">23</xref>), whereas phosphorylation by activated p38 and PKC generally promoted HuR binding to mRNAs (<xref rid="gkt903-B4" ref-type="bibr">4</xref>,<xref rid="gkt903-B24" ref-type="bibr">24</xref>,<xref rid="gkt903-B25" ref-type="bibr">25</xref>).</p><p>Besides altering the ratio of cytoplasmic-to-nuclear HuR and the interaction of HuR with target mRNAs, a number of stress agents (e.g. heat shock, irradiation with ultraviolet light and treatment with hydrogen peroxide) can also enhance the aggregation of HuR in cytoplasmic RNP foci named stress granules (SGs) (<xref rid="gkt903-B14" ref-type="bibr">14</xref>,<xref rid="gkt903-B26" ref-type="bibr">26–29</xref>). SGs assemble in response to cell-damaging conditions to halt the translation of housekeeping mRNAs and to selectively allow stress-response and repair proteins to be translated (<xref rid="gkt903-B30" ref-type="bibr">30</xref>). Besides HuR, SGs also contain numerous other RBPs, such as poly(A)-binding protein (PABP), staufen, tristetraprolin, TIA-1, TIAR, RasGAP-associated endoribonuclease (G3BP), fragile X mental retardation syndrome, survival of motor neuron and cytoplasmic polyadenylation element binding proteins (<xref rid="gkt903-B30" ref-type="bibr">30</xref>). SGs are dynamic RNP structures that assemble rapidly when the cell encounters stress and disassemble in a timely manner after the stress discontinues. SGs are believed to be the sites of mRNA ‘triage’ where decisions are made on the stability of individual mRNAs while the global cellular translation is halted.</p><p>Despite the key role of HuR in the cellular stress-response, the mechanisms that control HuR localization in SGs and their possible impact on expression of HuR target stress-response mRNAs are unknown. Here, we report that in human cervical carcinoma cells, the arsenite-triggered accumulation of HuR in SGs is accompanied by increased HuR binding to target transcripts <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs and by stabilization of these mRNAs. Unexpectedly, the accumulation of HuR in SGs was blocked by treatment with menadione, a drug that activated the tyrosine kinase Janus kinase 3 (JAK3). JAK3 phosphorylated three HuR tyrosine residues <italic>in vitro</italic>; mutagenesis to prevent HuR phosphorylation specifically at Y200 restored HuR accumulation in SGs, preserved HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs and rescued their stability. These studies link HuR presence in SGs with the fate of target mRNAs, and highlight a novel function of tyrosine kinase JAK3 as regulator of HuR function.</p></sec><sec sec-type="materials|methods"><title>MATERIALS AND METHODS</title><sec><title>Cell culture, chemicals, transfection, small interfering RNAs and plasmids</title><p>Human HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% (v/v) Fetal Bovine Serum (FBS) and antibiotics. All plasmids were transfected using Lipofectamine-2000 (Invitrogen) and analyzed 48 h later. JAK3 and Chk2 siRNAs were from Santa Cruz Biotechnology. For mRNA stability assays, HeLa cells were treated with actinomycin D (2.5 μg/ml) to inhibit <italic>de novo</italic> transcription. Actinomycin D, arsenite (sodium arsenite) and menadione were from Sigma; pateamine A (used at 50 nM) was a gift from I.E. Gallouzi. A site-directed mutagenesis kit (Stratagene) was used to introduce point mutations in HuR expression vectors.</p></sec><sec><title>Western blot analysis</title><p>Whole-cell lysates, prepared in Radioimmunoprecipitation assay (RIPA) buffer, were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and transferred onto Polyvinylidene fluoride (PVDF) membranes (Invitrogen iBlot Stack). Primary antibodies recognizing HuR, PABP, TIA-1, JAK3, p(Y980)JAK3, p(T68)Chk2, Chk2, Tubulin, eIF2α and phosphorylated (p-)eIF2α were from Santa Cruz Biotechnology. Antibodies recognizing phosphotyrosine (pY) residues and Flag were from Cell Signaling and Sigma, respectively. HRP-conjugated secondary antibodies were from GE Healthcare.</p></sec><sec><title>Immunoprecipitation assays</title><p>For immunoprecipitation (IP) of endogenous RNP complexes from whole-cell extracts (<xref rid="gkt903-B22" ref-type="bibr">22</xref>), cells were lysed in 20 mM Tris-HCl at pH 7.5, 100 mM KCl, 5 mM MgCl<sub>2</sub> and 0.5% NP-40 for 10 min on ice and centrifuged at 10 000 <italic>g</italic> for 15 min at 4°C. The supernatants were incubated with protein A-Sepharose beads coated with antibodies that recognized HuR, Jak3 or Flag or with control IgG (Santa Cruz Biotechnology) for 1 h at 4°C. After the beads were washed with NT2 buffer (50 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1 mM MgCl<sub>2</sub> and 0.05% NP-40), the complexes were incubated with 20 U of RNase-free DNase I (15 min at 37°C) and further incubated with 0.1% sodium dodecyl sulphate/0.5 mg/ml proteinase K (15 min at 55°C) to remove DNA and proteins, respectively. The RNPs isolated from the IP materials were further assessed by reverse transcription (RT) using random hexamers and Maxima Reverse Transcriptase (Thermo Scientific) and real-time, quantitative (q) polymerase chain reaction (PCR) using gene-specific primers (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Table S1</ext-link>) as well as by western blot (WB) analysis.</p></sec><sec><title>RNA analysis</title><p>Trizol (Invitrogen) was used to extract total RNA, and acidic phenol (Ambion) was used to extract RNA for RIP analysis (<xref rid="gkt903-B22" ref-type="bibr">22</xref>). RT-qPCR analysis was performed using gene-specific primers (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Table S1</ext-link>) and SYBR green master mix (Kapa Biosystems), in an Applied Biosystems 7300 instrument. For polyribosome distribution analysis, cells were treated with cycloheximide (100 μg/ml, 15 min), and the resulting lysates (500 μl) were separated by ultracentrifugation through 10–50% linear sucrose gradients. The relative absorbance at UV 254 nm was recorded to trace the amount of RNAs throughout the gradients.</p></sec><sec><title>Biotin pulldown analysis</title><p>Recombinant maltose-binding protein (MBP)-HuR was incubated with a buffer containing 20 mM Tris-HCl at pH 7.5, 100 mM KCl, 5 mM MgCl<sub>2</sub> and 0.5% NP-40. Biotinylated <italic>SIRT1</italic> and <italic>GAPDH</italic> 3′-untranslated regions were synthesized by PCR amplification of cDNA using forward primers that contained the T7 RNA polymerase promoter sequence (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Table S1</ext-link>) in the presence of biotinylated CTP and T7 RNA polymerase, as described (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B31" ref-type="bibr">31</xref>). Proteins present in the pulldown material were studied by WB analysis.</p></sec><sec><title><italic>In vitro</italic> kinase assay</title><p>To analyze the phosphorylation of HuR <italic>in vitro</italic>, MBP-HuR purified from <italic>Escherichia </italic><italic>coli</italic> was incubated with JAK3 protein immunoprecipitated from HeLa cells or purchased from Millipore. The assay was performed in kinase reaction buffer as described previously (<xref rid="gkt903-B31" ref-type="bibr">31</xref>).</p></sec><sec><title>Liquid chromatography-tandem mass spectrometry analysis</title><p>Protein samples were processed using the ‘Filter-Assisted Sample Preparation’ (FASP) method (<xref rid="gkt903-B32" ref-type="bibr">32</xref>). Briefly, protein samples were dissolved in urea (9 M) and subjected to reduction [5 mM Tris-(2-Carboxyethyl)phosphine, hydrochloride (TCEP), Sigma] at 60°C for 45 min and to alkylation (20 mM C<sub>2</sub>H<sub>4</sub>INO, Sigma) at 25°C for 15 min. Protein samples were cleaned using a 30-kDa Amicon Filter (UFC503096, Millipore) with urea (9 M) and NH<sub>4</sub>HCO<sub>3</sub> (30 mM). Samples were then proteolyzed with trypsin (Promega) and chymotrypsin (Roche) for 12 h at 37°C (1: 20 ratio). The digested peptides were desalted and eluted with 0.1% trifluoroacetic acid in 60% acetonitrile. Dry extracted peptides were resuspended in 7 µl 0.1% formic acid for Liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. Tandem mass spectrometry analysis of the peptides was conducted on LTQ-Orbitrap Velos interfaced with a 2D nanoLC system nanoACQUITY UltraPerformance LC System. Precursor and fragment ions were analyzed at 30 000 and 7500 resolutions, respectively. Peptide sequences were identified from isotopically resolved masses in MS and MS/MS spectra extracted with and without deconvolution using Thermo Scientific Xtract software. The data were analyzed using Proteome Discoverer 1.3 (Thermo Scientific) software configured with Mascot and Sequest search nodes and searched against Refseq version 46, human entries with oxidation on methionine, deamidation on residues N and Q, phosphorylation of Ser/Thr/Tyr residues as different variable modifications and carbamidomethyl group on cysteine residue as fixed modification. Mass tolerances on precursor and fragment masses were set to 15 ppm and 0.03 Da, respectively. Peptide validator node was used for peptide confirmation, and a 1% false discovery rate cutoff was used to filter the data.</p></sec><sec><title>Immunofluorescence assay</title><p>Cells were fixed with 2% (v/v) formaldehyde, permeabilized with 0.2% (v/v) Triton X-100, blocked with 5% (w/v) bovine serum albumin and incubated with primary antibodies recognizing HuR (Santa Cruz Biotechnology), TIA-1 (Santa Cruz Biotechnology), eIF3b (Santa Cruz Biotechnology), G3BP (BD biosciences) or Flag (Sigma). Alexa 488- or Alexa 568-conjugated secondary antibodies (Invitrogen) were used to detect primary antibody-antigen complexes with different color combinations as needed. Images were acquired using Axio Observer microscope (ZEISS) with AxioVision 4.7 Zeiss image-processing software or with LSM 510 Meta (ZEISS).</p></sec></sec><sec sec-type="results"><title>RESULTS</title><sec><title>JAK3 phosphorylates HuR and prevents its accumulation in SGs</title><p>HuR is normally a nuclear protein, as seen in HeLa cells (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A, control), but it can translocate to the cytoplasm on stress. In response to specific stress conditions, such as arsenite treatment, HuR was further mobilized to cytoplasmic SGs (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A). While performing experiments to test the presence of HuR in SGs after stress, we made the serendipitous discovery that 15 μM menadione (a chemotherapeutic agent that causes oxidative damage) enhanced HuR presence in the cytoplasm, but did not trigger HuR-positive SGs. Unexpectedly, menadione also prevented SG formation following exposure to 250 μM arsenite (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A, <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1A</ext-link>). The combined treatment with arsenite and menadione caused oxidative damage, as assessed by monitoring fluorescence after incubation with dihydrocalcein, an indicator of reactive oxygen species (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1B</ext-link>). Although treatment with arsenite and menadione did not elicit immediate signs of apoptotic cell death by 4 h after treatment (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>), some cell loss and evidence of apoptosis were detectable by 24 h following treatment (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>). The formation of SGs appeared to be generally suppressed under these conditions, as other markers used to visualize SGs [e.g. G3BP and TIA-1 (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>B)] similarly failed to aggregate in SGs. However, we could not exclude the possibility that SGs might have been visualized by testing for other SG markers, that SG formation was delayed or that SGs were too small for detection. Arsenite treatment blocked translation globally (<xref rid="gkt903-B33" ref-type="bibr">33</xref>); however, despite impairing SG formation, menadione did not rescue the translationally inhibited state, as evidenced by the fact that polysomes remained globally suppressed, eIF2α was still phosphorylated and HuR remained bound to PABP (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S2</ext-link>). To test whether menadione prevented the recruitment of HuR to SGs that formed in an eIF2α-dependent or -independent manner, we studied the effect of 50 nM pateamine A, a drug that induces SG formation independently of eIF2α phosphorylation (<xref rid="gkt903-B34" ref-type="bibr">34</xref>). As shown (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>C), pateamine A-triggered SGs were not blocked by menadione treatment, suggesting that menadione blocked the recruitment of HuR to SGs triggered by eIF2α phosphorylation.
<fig id="gkt903-F1" position="float"><label>Figure 1.</label><caption><p>Menadione prevents the accumulation of HuR in arsenite-triggered SGs. (<bold>A</bold>) HeLa cells were treated with sodium arsenite (250 μM) with or without menadione (15 µM) for 45 min, and SGs (arrowheads) were assessed by microscopy. HuR was visualized by immunofluorescence (green), and nuclei were visualized by staining with 4′,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (blue). (<bold>B</bold>) SG markers TIA-1 and G3BP were visualized by immunofluorescence staining (Materials and Methods) in cells treated as explained in (A); nuclei were visualized with DAPI. (<bold>C</bold>) HeLa cells were treated with menadione and/or pateamine A (50 nM), whereupon SG formation was assessed by immunofluorescence.</p></caption><graphic xlink:href="gkt903f1p"/></fig></p><p>To investigate the mechanisms underlying the dynamics of HuR assembly in SGs, we screened a library of kinase inhibitors (described in <xref rid="gkt903-B35" ref-type="bibr">35</xref>) for restoration of HuR-positive SGs. Among the compounds in the library, only the JAK3 inhibitor ZM 449829 was capable of reversing the effect of menadione and restoring SGs in cells treated concomitantly with arsenite and menadione (<xref ref-type="fig" rid="gkt903-F2">Figure 2</xref>A andB). Because inhibitors are not totally specific, we also tested whether reducing JAK3 levels [achieved by using small interfering (si)RNAs] influenced SG formation after arsenite and menadione treatments. As shown in <xref ref-type="fig" rid="gkt903-F2">Figure 2</xref>C, 48 h after transfecting JAK3 siRNA in HeLa cells, JAK3 abundance was substantially lower. Importantly, in these cells, menadione treatment no longer blocked arsenite-triggered HuR-containing SGs, whereas in control (Ctrl) siRNA-transfected cells, menadione continued to block the formation of arsenite-triggered SGs (<xref ref-type="fig" rid="gkt903-F2">Figure 2</xref>D). In contrast, another stress-activated kinase that can phosphorylate HuR, Chk2, was not found to be implicated in the effects of arsenite and/or menadione (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S3</ext-link>). The finding that JAK3 silencing mirrored the effect of inhibiting JAK3 lends further support to the notion that activation of JAK3 by menadione prevents the assembly of HuR-containing SGs.
<fig id="gkt903-F2" position="float"><label>Figure 2.</label><caption><p>JAK3 inhibits HuR presence in SGs. (<bold>A</bold>) HeLa cells were pre-incubated for 1 h with the JAK3 inhibitor ZM449829 (10 μM) before treatment with arsenite and/or menadione and immunostaining as described in <xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>A. (<bold>B</bold>) Percentage of HeLa cells with visible SGs (at least one SG per cell) after treatment as in (A); data are the means + SD from three independent experiments. (<bold>C</bold> and <bold>D</bold>) Forty-eight hours after transfection of HeLa cells with either JAK3 or Ctrl siRNAs, the levels of JAK3 (as well as the levels of loading control tubulin) were assessed by WB analysis (C); the formation of SGs was visualized after treating and staining cells as explained in <xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>D.</p></caption><graphic xlink:href="gkt903f2p"/></fig></p><p>The rescue of HuR-positive SGs in HeLa cells after inhibiting JAK3, a tyrosine kinase, raised the intriguing possibility that tyrosine phosphorylation might affect HuR localization in response to arsenite treatment. Even though HuR has not been previously reported to be a tyrosine-phosphorylated protein, we examined whether phosphotyrosine (pY)-HuR was detected in HeLa cells treated with arsenite, with menadione or with both compounds. As shown in <xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>A, IP of HuR from HeLa cells followed by WB analysis of phosphotyrosine residues using an anti-pY antibody revealed positive pY-HuR signals in menadione-treated cells. To gain further evidence that JAK3 might directly phosphorylate HuR, lysates from HeLa cells that had been treated with arsenite and/or menadione were used to immunoprecipitate JAK3 and recombinant purified MBP-HuR was used as substrate in an <italic>in vitro</italic> kinase assay. This analysis revealed that MBP-HuR was preferentially phosphorylated by JAK3 prepared by IP from menadione-treated cells and further showed that menadione treatment triggered the phosphorylation of JAK3 at residue Y980 (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>B). In addition, IP followed by WB analysis revealed that pY-HuR levels were strongly suppressed in HeLa cells treated with the JAK3 inhibitor ZM 449829 and in HeLa cells in which JAK3 levels were lowered by silencing (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>C). Together, these results indicate that the menadione-activated JAK3 phosphorylates HuR at one or several tyrosines and that this modification is linked to the loss of HuR-positive SGs.
<fig id="gkt903-F3" position="float"><label>Figure 3.</label><caption><p>JAK3 phosphorylates HuR at tyrosine residues. (<bold>A</bold>) After treatment with arsenite and/or menadione, HeLa cell lysates were subjected to IP using anti-HuR antibody, and the resulting IP material was assayed by WB analysis using anti-phosphotyrosine (pY) antibody. (<bold>B</bold>) After treatment of cells as in (A), JAK3 was isolated by IP from HeLa cell lysates, and the IP material was used for an <italic>in vitro</italic> kinase assay using recombinant MBP-HuR protein (2 μg) in the presence of ATP; the reaction product was subjected to WB analysis to detect tyrosine-phosphorylated HuR as well as JAK3 phosphorylation at Y980. (<bold>C</bold>) After treatment with menadione and/or JAK3 inhibitor (left), and menadione and/or JAK3 siRNA (right), pY-HuR was detected by IP using anti-HuR antibody and WB using anti-pY antibody. (<bold>D</bold>) Recombinant purified JAK3 kinase (Millipore) was used in <italic>in vitro</italic> kinase assay using recombinant MBP-HuR protein (2 μg) in the presence of ATP; the reaction mixtures were subjected to WB analysis to detect tyrosine-phosphorylated HuR. (<bold>E</bold>) Top: LC–MS/MS analysis to map pY HuR residues phosphorylated by JAK3. MBP-HuR was incubated with or without JAK3 kinase domain (Millipore) in the presence of ATP. The resulting reaction mixtures were digested with trypsin for mass spectrometry analysis. Mass shifts after phosphorylation were shown as Y + 80. Bottom: schematic representation of pY sites on HuR; <italic>RRM</italic>, RNA-recognition motif; <italic>HNS</italic>, HuR nucleocytoplasmic shuttling domain. Data in (A–D) are representative of three independent experiments.</p></caption><graphic xlink:href="gkt903f3p"/></fig></p></sec><sec><title>JAK3 phosphorylates HuR at tyrosine residues</title><p>To identify the tyrosine residues of HuR that were phosphorylated by JAK3, we performed an <italic>in vitro</italic> kinase assay using recombinant purified JAK3 kinase (Millipore) and MBP-HuR purified from <italic>E. coli</italic> (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>D). Mass spectrometry analysis (Materials and Methods) of the phosphorylated HuR revealed three tyrosines phosphorylated by JAK3: two residing in the RNA-recognition motif 1 (RRM1), Y63 and Y68, and one residing within the hinge region (Y200) surrounding the HNS (<xref ref-type="fig" rid="gkt903-F3">Figure 3</xref>E).</p><p>To investigate the possible impact of these modifications on HuR function, we changed the tyrosines into phenylalanines by site-directed mutagenesis (Y200F, Y68F and Y63F) and expressed the respective point mutants as Flag-HuR proteins from plasmids pFlag-HuR[wild-type (WT)], pFlag-HuR(Y63F), pFlag-HuR(Y68F) and pFlag-HuR(Y200F). Transfection of each plasmid followed by menadione treatment revealed that Flag-HuR(WT) and Flag-HuR(Y63F) were still tyrosine phosphorylated, but Flag-HuR(Y68F) and Flag-HuR(Y200F) were not (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>A), suggesting that menadione elicited phosphorylation of HuR at Y68 and Y200 <italic>in vivo</italic>. It was interesting to note that Y68F and Y200F each completely inhibited phosphorylation, suggesting that perhaps phosphorylation of one of these two tyrosine residues facilitates or is required for phosphorylation of the other tyrosine residue. The basal and menadione-triggered tyrosine phosphorylation of Flag-HuR(WT), Flag-HuR(Y63F), Flag-HuR(Y68F) and Flag-HuR(Y200F) are shown (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>B). Immunofluorescent detection of the Flag tag in cells transfected with these expression plasmids showed that all three Flag-tagged HuR proteins localized to SGs on arsenite treatment (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>C). Interestingly, however, when cells were treated with both arsenite + menadione, Flag-HuR(WT) and Flag-HuR(Y68F) did not localize in visible SGs, whereas Flag-HuR(Y200F) mutant did (<xref ref-type="fig" rid="gkt903-F4">Figure 4</xref>C). The SG marker TIA-1 colocalized with HuR(Y200F) in SGs of cells treated with arsenite + menadione, supporting the notion that the HuR foci seen under these conditions were <italic>bona fide</italic> SGs (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S4A</ext-link>). Technical limitations associated with the ability to detect endogenous and ectopic proteins in this experiment precluded a more definitive analysis of SGs (kinetics of assembly/disassembly, size and number) forming in the presence of WT and Y200F mutant HuR. Thus, the extent to which menadione inhibited the recruitment of HuR to SGs or more broadly impaired SG formation could not be determined. However, our results did show that menadione induces the phosphorylation of HuR by JAK3 on tyrosine residues and that phosphorylation at HuR Y200 specifically impacts on HuR subcellular localization.
<fig id="gkt903-F4" position="float"><label>Figure 4.</label><caption><p>HuR phosphorylation at Y200 blocks its localization in SGs. (<bold>A</bold>) Top: schematic representation of Flag-tagged HuR WT and point mutants Y63F, Y68F and Y200F. (<bold>B</bold>) Forty-eight hours after transfecting HeLa cells with the plasmids shown in (A), cell lysates were prepared, and pY-HuR signals were detected for each Flag-HuR mutant under the conditions shown. (<bold>C</bold>) Plasmids expressing Flag-tagged HuR WT and tyrosine mutants (A) were transfect into HeLa cells; 48 h later, cells were treated with arsenite and/or menadione and distribution of Flag-HuR (WT or point mutants Y68F or Y200F) was characterized using anti-Flag antibody; DAPI staining was included to visualize the nuclei. Data in (A–C) are representative of three independent experiments.</p></caption><graphic xlink:href="gkt903f4p"/></fig></p></sec><sec><title>Phosphorylation at Y200 influences HuR binding to target mRNAs</title><p>Because phosphorylation of HuR by other kinases affects HuR binding to target mRNAs, as explained above, we investigated whether phosphorylation by JAK3 influenced HuR binding to target mRNAs. For this, we focused on two well-established HuR target transcripts with abundant expression in HeLa cells, <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B36" ref-type="bibr">36</xref>), encoding the protein deacetylase sirtuin 1 (Sirt1) and the tumor suppressor protein von Hippel-Lindau, respectively. We studied the interaction of HuR with these mRNAs by RIP (ribonucleoprotein immunoprecipitation) analysis of endogenous HuR using an anti-HuR antibody; the efficiency of IP of the endogenous HuR protein was assessed (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S4B</ext-link>). After isolation of the RNA present in HuR RNP complexes, the levels of specific mRNAs were measured by RT followed by real-time quantitative (q)PCR analysis. As shown (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>A and B), endogenous HuR displayed robust binding to these mRNAs in the absence of additional treatments (‘Control’ group), but the concentration of these complexes increased strongly after arsenite treatment [and increased even further at higher doses, <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S5</ext-link>)]. Following the addition of menadione, with or without arsenite, this heightened interaction was lost and HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs returned to the levels seen in the ‘Control’ group.
<fig id="gkt903-F5" position="float"><label>Figure 5.</label><caption><p>Tyrosine phosphorylation of HuR at Y200 reduces its interactions with target mRNAs. (<bold>A, B</bold>) After treatment of HeLa cells with arsenite and/or menadione as explained in <xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>, RIP (IP followed by RT-qPCR) analysis was used to measure the levels of enrichment of <italic>SIRT1</italic> mRNA (A) and <italic>VHL</italic> mRNA (B) associated with HuR; the samples were normalized using <italic>GAPDH</italic> mRNA, and the data represented as enrichment of each mRNA in HuR IP were compared with IgG IP. (<bold>C, D</bold>) After transfection and treatment, RIP analysis was used to measure the interaction between Flag-HuR (WT, Y68F, Y200F) and <italic>SIRT1</italic> mRNA (C) and <italic>VHL</italic> mRNA (D); <italic>GAPDH</italic> mRNA was measured for normalization, and data are represented as enrichment of the mRNAs in Flag IP samples relative to the levels in IgG IP samples. The graphs represent the means and SD from three independent experiments.</p></caption><graphic xlink:href="gkt903f5p"/></fig></p><p>To examine whether HuR phosphorylation at Y200 was involved in these interactions, we transfected plasmids pFlag-HuR(WT), pFlag-HuR(Y68F) and pFlag-HuR(Y200F) and tested the binding of the tagged HuR with <italic>SIRT1</italic> mRNA (<italic>left</italic>) and <italic>VHL</italic> mRNA (<italic>right</italic>) again by RIP analysis, but by using anti-Flag antibody. The efficiency of IP of the Flag-tagged proteins was also monitored (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S4B</ext-link>). Interestingly, although proteins Flag-HuR(WT) and Flag-HuR(Y68F) showed the same pattern of binding as the endogenous HuR, Flag-HuR(Y200F) binding to the mRNAs was no longer repressed after menadione treatment (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>C andD). These results suggest that HuR phosphorylation at Y200 not only prevented HuR localization in SGs, but it also reduced binding of HuR with target <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs.</p></sec><sec><title>HuR tyrosine phosphorylation influences target mRNA turnover</title><p>Because HuR is known to stabilize <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>,<xref rid="gkt903-B36" ref-type="bibr">36</xref>), we examined the effect of HuR tyrosine phosphorylation on the stability of these target mRNAs. We measured their half-lives by quantifying the rate of decay after transcription was inhibited through the addition of actinomycin D (‘Materials and Methods’ section). Arsenite treatment, which enhanced HuR binding to these mRNAs, also increased their half-lives (by about twofold; <xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A). Menadione alone did not change the stability of target mRNAs, but cells in the menadione + arsenite treatment group showed lower stability for both mRNAs relative to the arsenite alone group (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A). By contrast, the stability of a control stable transcript, <italic>GAPDH</italic> mRNA, encoding a housekeeping protein, was not influenced by the above-mentioned treatments, demonstrating that not all mRNAs decreased rapidly in the presence of actinomycin D, and only select labile mRNAs displayed reduced stability (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A, bottom). The levels of a control short-lived mRNA (<italic>MYC</italic> mRNA, encoding the proto-oncogene c-Myc) showed reduced half-life in the absence of arsenite (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A, bottom). These results support the view that HuR binding increases the half-lives of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs.
<fig id="gkt903-F6" position="float"><label>Figure 6.</label><caption><p>Arsenite and menadione affect the levels and stability of HuR target mRNAs. (<bold>A</bold>) After treatment of arsenite and/or menadione, the half-lives (t<sub>1/2</sub>) of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (top), as well as the half-lives of a control stable mRNA (<italic>GAPDH</italic> mRNAs) and a control labile mRNA (<italic>MYC</italic> mRNA) (bottom) were quantified by measuring the time required to achieve a 50% reduction in transcript levels after adding actinomycin D at time 0 h. (<bold>B</bold>) Forty-eight hours after transfecting HeLa cells with plasmids to express Flag-HuR(WT) or Flag-HuR(Y200F), the steady-state levels of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs were measured by RT-qPCR and normalized to the levels of <italic>GAPDH</italic> mRNA. The graphs represent the means and SD from three independent experiments.</p></caption><graphic xlink:href="gkt903f6p"/></fig></p><p>Given the documented levels of HuR association with <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>) and the <italic>SIRT1</italic> and <italic>VHL</italic> mRNA half-lives (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>A), we investigated the influence of non-phosphorylatable HuR Y200F mutant on the abundance of these mRNAs. When Flag-HuR(WT) was expressed in HeLa cells, the levels of <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs rose after treatment with arsenite, but this increase was lost if cells were co-treated with menadione (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>B). In contrast, when Flag-HuR(Y200F) was expressed, the arsenite-elicited increase in <italic>SIRT1</italic> mRNA and <italic>VHL</italic> mRNA levels was refractory to menadione treatment, and the mRNAs remained significantly elevated (<xref ref-type="fig" rid="gkt903-F6">Figure 6</xref>B). In sum, these results indicate that HuR tyrosine phosphorylation at Y200, which excludes HuR from SGs, also promotes the dissociation of HuR from target transcripts (<italic>SIRT1</italic> mRNA and <italic>VHL</italic> mRNA), or perhaps mobilizes HuR-<italic>SIRT1</italic> mRNA and HuR-<italic>VHL</italic> mRNA complexes away from SGs, accelerating their degradation (<xref ref-type="fig" rid="gkt903-F7">Figure 7</xref>).
<fig id="gkt903-F7" position="float"><label>Figure 7.</label><caption><p>Schematic representation of the proposed influence of JAK3 on HuR localization and RNA-binding activity. See text for details.</p></caption><graphic xlink:href="gkt903f7p"/></fig></p></sec></sec><sec sec-type="discussion"><title>DISCUSSION</title><sec><title>Tyrosine-phosphorylation of HuR by JAK3</title><p>We have reported that tyrosine phosphorylation of HuR reduces its interaction with target mRNAs, leading to lower mRNA stability. The phosphorylation at a tyrosine was unexpected, as earlier work had only identified HuR as the substrate of serine and threonine phosphorylation by PKC, Chk2, p38 and Cdk1 [reviewed in (<xref rid="gkt903-B18" ref-type="bibr">18</xref>)]. In contrast to the earlier phosphorylation events, HuR tyrosine phosphorylation is found to influence mRNA fate linked to the absence of HuR in SGs. JAK3, identified here as a kinase responsible for the tyrosine phosphorylation of HuR, is best known in immune cells, where it is activated following exposure to cytokines (<xref rid="gkt903-B37" ref-type="bibr">37</xref>). However, JAK3 is also expressed in HeLa cells and its inhibition by ZM 449829 lowers pY-HuR levels. As identified by mass spec analysis, JAK3 phosphorylates three HuR residues (Y63, Y68, Y200), but it remains possible that other tyrosine kinases besides JAK3 can also phosphorylate HuR at tyrosines, although no such kinases have been identified to date. Because the ubiquitous HuR is abundant in immune cells, it will be interesting to test whether tyrosine phosphorylation of HuR at Y200 influences the response of immune cells to cytokines.</p><p>Treatment with arsenite or menadione for 45 min caused oxidative stress, and this effect was enhanced by joint treatment with both chemicals (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1B</ext-link>). Nonetheless, by 4 h after the drugs were removed from the culture medium, assessments of cell numbers and annexin V-positive cells revealed little or no toxicity (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1A</ext-link>, <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>). By 24 h after removing the drugs, cells treated with arsenite did not exhibit much toxicity, as measured by modest cell loss and the absence of annexin V-positive cells (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>); however, simultaneous addition of menadione to arsenite-treated cells did prove toxic, as evidenced by the enhanced cell loss and the high percentage of annexin V-positive cells (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S1C</ext-link> and <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">D</ext-link>). These results indicate that SGs are a component of the stress-response program triggered by arsenite, which ultimately the cells survived. The concomitant treatment with menadione modified this stress-response program (in part by antagonizing the formation of HuR-positive SGs) and potentiated the toxicity of arsenite. It is plausible that the chemotherapeutic actions of menadione (<xref rid="gkt903-B38" ref-type="bibr">38</xref>) are linked to the cytotoxicity caused by menadione, as it interferes with the cellular response to stress conditions.</p></sec><sec><title>HNS phosphorylation affects HuR localization and binding to mRNAs</title><p>It was somewhat surprising to discover that HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs was influenced by phosphorylation at Y200 (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>), as this residue lies within the shuttling domain of HuR (the HNS) and not within one of the three RRMs. For example, previous reports had shown that phosphorylation at RRMs (S88 in RRM1, T118 in RRM2, S100 between RRM1 and RRM2 and S318 in RRM3) affected HuR binding to numerous mRNAs (<xref rid="gkt903-B18" ref-type="bibr">18</xref>), while phosphorylation in the HNS region (S202, S221, S242), generally altered HuR the relative abundance of HuR in the nucleus compared with the cytoplasm (<xref rid="gkt903-B19" ref-type="bibr">19–21</xref>). The finding that phosphorylation near the shuttling domain affects HuR binding suggests that pY200 could change the conformation of the RRMs in ways that lower their binding affinity for RNA. Alternatively, Y200 phosphorylation could mobilize HuR to areas of the cell that have reduced concentration of HuR target transcripts, and thus binding is reduced because mRNAs are unavailable. Distinguishing between these possibilities awaits further study.</p><p>The finding that the non-phosphorylatable HuR(Y200F) is found in SGs after arsenite + menadione, whereas the phosphorylatable counterpart, HuR(WT), is not, suggests that phosphorylation at Y200 actively excludes HuR from SGs. Although the molecular mediators of HuR exclusion from SGs are not identified in our experiments, we have evidence that menadione may block the assembly of other SG components, including TIA-1, G3BP and eIF3b (<xref ref-type="fig" rid="gkt903-F1">Figure 1</xref>B; <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S6A</ext-link>; data not shown). In fact, it is possible that JAK3 may block the assembly of multiple SG components, perhaps by phosphorylating them in a coordinated manner. In this regard, JAK3 was capable of phosphorylating TIA-1 <italic>in vitro</italic> (<ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S6B</ext-link>). Therefore, it remains formally possible that in cells that form SGs, HuR is mobilized to SGs because the mRNAs that HuR associates with are actively recruited to, or ‘pulled to’, SGs. It is unknown at present whether JAK3 impairs the binding of HuR to mRNAs and for this reason, HuR is not mobilized to SGs, or instead JAK3 inhibits the mobilization of HuR to SGs and this in turn affects HuR binding to mRNAs locally enriched in SGs. Both possibilities agree with the notion that SGs are sites of mRNA reassortment and ‘triage’ (<xref rid="gkt903-B30" ref-type="bibr">30</xref>), where mRNA-binding factors form different RNPs to accomplish molecular decisions on mRNA turnover and translational status.</p></sec><sec><title>HuR binding to mRNAs increased by stress, linked to stabilization</title><p>The discovery that treatment with arsenite, a strong oxidant, increased HuR binding to <italic>SIRT1</italic> and <italic>VHL</italic> mRNAs was also against our expectation (<xref ref-type="fig" rid="gkt903-F5">Figure 5</xref>A and B; <ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Figure S5</ext-link>), as other stress agents (e.g. ionizing radiation and the oxidant hydrogen peroxide) instead triggered the dissociation of HuR from bound mRNAs (<xref rid="gkt903-B22" ref-type="bibr">22</xref>). As dissociation of mRNAs was linked to the phosphorylation of HuR by Chk2, it is possible that arsenite inhibits Chk2 activity, while menadione reverses this inhibition in HeLa cells. Of course, arsenite and/or menadione could also affect the phosphorylation of HuR by other kinases (p38, PKC), which influence HuR–mRNA interactions. Studies are underway to investigate these possibilities, particularly given earlier reports documenting an increase in HuR binding to some mRNAs in response to certain stresses [e.g. <italic>HIF1A</italic> mRNA after hypoxia, <italic>MKP1</italic> mRNA after hydrogen peroxide treatment (<xref rid="gkt903-B39" ref-type="bibr">39</xref>,<xref rid="gkt903-B40" ref-type="bibr">40</xref>)]. In sum, our findings add to a growing body of evidence that underscores the complex regulation of HuR by phosphorylation, and the impact of this modification on HuR localization, HuR binding to mRNAs and the fate of HuR target transcripts.</p></sec></sec><sec><title>SUPPLEMENTARY DATA</title><p><ext-link ext-link-type="uri" xlink:href="http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt903/-/DC1">Supplementary Data</ext-link> are available at NAR Online.</p></sec><sec><title>FUNDING</title><p>Funding for open access charge: <funding-source>National Institute on Aging-Intramural Research Program</funding-source>, <funding-source>National Institutes of Health</funding-source>.</p><p><italic>Conflict of interest statement</italic>. None declared.</p></sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_42_2_1196__index.html"/>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_gkt903_nar-00861-y-2013-File009.pdf"/>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENTS</title>
<p>The authors thank P. Anderson (Brigham and Women's Hospital) for providing reagents and advice, and C.Y. Sasaki (NIA, NIH) for assistance with experiments. This work was entirely supported by the NIA-IRP, NIH.</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="gkt903-B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilkie</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Dickson</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>NK</given-names>
</name>
</person-group>
<article-title>Regulation of mRNA translation by 5′- and 3′-UTR-binding factors</article-title>
<source>Trends Biochemi. Sci.</source>
<year>2003</year>
<volume>28</volume>
<fpage>182</fpage>
<lpage>188</lpage>
</element-citation>
</ref>
<ref id="gkt903-B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilusz</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Wilusz</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Bringing the role of mRNA decay in the control of gene expression into focus</article-title>
<source>Trends Genet.</source>
<year>2004</year>
<volume>20</volume>
<fpage>491</fpage>
<lpage>497</lpage>
<pub-id pub-id-type="pmid">15363903</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>From birth to death: the complex lives of eukaryotic mRNAs</article-title>
<source>Sci. Signal.</source>
<year>2005</year>
<volume>309</volume>
<fpage>1514</fpage>
</element-citation>
</ref>
<ref id="gkt903-B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence</article-title>
<source>Biol. Chem.</source>
<year>2008</year>
<volume>389</volume>
<fpage>243</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="pmid">18177264</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>EK</given-names>
</name>
</person-group>
<article-title>Post-translational modifications of RNA-binding proteins and their roles in RNA granules</article-title>
<source>Curr. Protein Pept. Sci.</source>
<year>2012</year>
<volume>13</volume>
<fpage>331</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="pmid">22708487</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B6">
<label>6</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Srikantan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Bradshaw</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Dennis</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>Regulation of mRNA turnover by cellular stress</article-title>
<source>Handbook of Cell Signaling</source>
<year>2008</year>
<comment>Chapter 270</comment>
</element-citation>
</ref>
<ref id="gkt903-B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Izquierdo</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis, promoting receptor on exon definition</article-title>
<source>J. Biol. Chem.</source>
<year>2008</year>
<volume>283</volume>
<fpage>19077</fpage>
<lpage>19084</lpage>
<pub-id pub-id-type="pmid">18463097</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Molfenter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Promotion of exon 6 inclusion in HuD pre-mRNA by Hu protein family members</article-title>
<source>Nucleic Acids Res.</source>
<year>2010</year>
<volume>38</volume>
<fpage>3760</fpage>
<lpage>3770</lpage>
<pub-id pub-id-type="pmid">20159993</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mukherjee</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Corcoran</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Nusbaum</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Georgiev</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hafner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ascano</surname>
<given-names>M</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Tuschl</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohler</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Keene</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability</article-title>
<source>Mol. Cell</source>
<year>2011</year>
<volume>43</volume>
<fpage>327</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="pmid">21723170</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>López de Silanes</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Identification of a target RNA motif for RNA-binding protein HuR</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>2987</fpage>
<lpage>2992</lpage>
<pub-id pub-id-type="pmid">14981256</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brennan</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Steitz</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>HuR and mRNA stability</article-title>
<source>Cell. Mol. Life Sci.</source>
<year>2001</year>
<volume>58</volume>
<fpage>266</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">11289308</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Posttranscriptional regulation of cancer traits by HuR</article-title>
<source>Wiley Interdiscip. Rev. RNA</source>
<year>2010</year>
<volume>1</volume>
<fpage>214</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="pmid">21935886</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srikantan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>HuR function in disease</article-title>
<source>Front. Biosci.</source>
<year>2012</year>
<volume>17</volume>
<fpage>189</fpage>
<lpage>205</lpage>
</element-citation>
</ref>
<ref id="gkt903-B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallouzi</surname>
<given-names>IE</given-names>
</name>
<name>
<surname>Steitz</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Delineation of mRNA export pathways by the use of cell-permeable peptides</article-title>
<source>Science</source>
<year>2001</year>
<volume>294</volume>
<fpage>1895</fpage>
<lpage>1901</lpage>
<pub-id pub-id-type="pmid">11729309</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Steitz</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>HNS, a nuclearcytoplasmic shuttling sequence in HuR</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>15293</fpage>
<lpage>15298</lpage>
<pub-id pub-id-type="pmid">9860962</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Güttinger</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mühlhäusser</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Koller-Eichhorn</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Brennecke</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kutay</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Transportin2 functions as importin and mediates nuclear import of HuR</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>2918</fpage>
<lpage>2923</lpage>
<pub-id pub-id-type="pmid">14981248</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rebane</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aab</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steitz</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR</article-title>
<source>RNA</source>
<year>2004</year>
<volume>10</volume>
<fpage>590</fpage>
<lpage>599</lpage>
<pub-id pub-id-type="pmid">15037768</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eberhardt</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Doller</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pfeilschifter</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Regulation of the mRNA-binding protein HuR by posttranslational modification: spotlight on phosphorylation</article-title>
<source>Curr. Protein Pept. Sci.</source>
<year>2012</year>
<volume>13</volume>
<fpage>380</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="pmid">22708484</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pullmann</surname>
<given-names>R</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Galban</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Srikantan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Martindale</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Blethrow</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shokat</surname>
<given-names>KM</given-names>
</name>
<etal/>
</person-group>
<article-title>Nuclear HuR accumulation through phosphorylation by Cdk1</article-title>
<source>Genes Dev.</source>
<year>2008</year>
<volume>22</volume>
<fpage>1804</fpage>
<lpage>1815</lpage>
<pub-id pub-id-type="pmid">18593881</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Modification at HuR(S242) alters HuR localization and proliferative influence</article-title>
<source>Cell Cycle</source>
<year>2008</year>
<volume>7</volume>
<fpage>3371</fpage>
<lpage>3377</lpage>
<pub-id pub-id-type="pmid">18948743</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Phosphorylated HuR shuttles in cycles</article-title>
<source>Cell Cycle</source>
<year>2008</year>
<volume>7</volume>
<fpage>3124</fpage>
<lpage>3126</lpage>
<pub-id pub-id-type="pmid">18927508</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pullmann</surname>
<given-names>R</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Lal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Galban</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Blethrow</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shubert</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>DA</given-names>
</name>
<etal/>
</person-group>
<article-title>Phosphorylation of HuR by Chk2 regulates SIRT1 expression</article-title>
<source>Mol. Cell</source>
<year>2007</year>
<volume>25</volume>
<fpage>543</fpage>
<lpage>557</lpage>
<pub-id pub-id-type="pmid">17317627</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masuda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Srikantan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Tominaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Selimyan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Martindale</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lehrmann</surname>
<given-names>E</given-names>
</name>
<etal/>
</person-group>
<article-title>Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation</article-title>
<source>EMBO J.</source>
<year>2011</year>
<volume>30</volume>
<fpage>1040</fpage>
<lpage>1053</lpage>
<pub-id pub-id-type="pmid">21317874</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piecyk</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wax</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Kedersha</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maritim</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gueydan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kruys</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Streuli</surname>
<given-names>M</given-names>
</name>
<etal/>
</person-group>
<article-title>TIA-1 is a translational silencer that selectively regulates the expression of TNF-α</article-title>
<source>EMBO J.</source>
<year>2000</year>
<volume>19</volume>
<fpage>4154</fpage>
<lpage>4163</lpage>
<pub-id pub-id-type="pmid">10921895</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hinman</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Diverse molecular functions of Hu proteins</article-title>
<source>Cell Mol. Life Sci.</source>
<year>2008</year>
<volume>65</volume>
<fpage>3168</fpage>
<lpage>3181</lpage>
<pub-id pub-id-type="pmid">18581050</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lian</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Gallouzi</surname>
<given-names>IE</given-names>
</name>
</person-group>
<article-title>Oxidative stress increases the number of stress granules in senescent cells and triggers a rapid decrease in p21waf1/cip1 translation</article-title>
<source>J. Biol. Chem.</source>
<year>2009</year>
<volume>284</volume>
<fpage>8877</fpage>
<lpage>8887</lpage>
<pub-id pub-id-type="pmid">19176530</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Suswam</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wheeler</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Nabors</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Filippova</surname>
<given-names>N</given-names>
</name>
<name>
<surname>King</surname>
<given-names>PH</given-names>
</name>
</person-group>
<article-title>Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor</article-title>
<source>J. Biol. Chem.</source>
<year>2009</year>
<volume>284</volume>
<fpage>33989</fpage>
<lpage>33998</lpage>
<pub-id pub-id-type="pmid">19805546</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhattacharyya</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Habermacher</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Martine</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Closs</surname>
<given-names>EI</given-names>
</name>
<name>
<surname>Filipowicz</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Relief of microRNA-mediated translational repression in human cells subjected to stress</article-title>
<source>Cell</source>
<year>2006</year>
<volume>125</volume>
<fpage>1111</fpage>
<lpage>1124</lpage>
<pub-id pub-id-type="pmid">16777601</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoecklin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stubbs</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kedersha</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wax</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rigby</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Blackwell</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>MK2-induced tristetraprolin:14–3-3 complexes prevent stress granule association and ARE-mRNA decay</article-title>
<source>EMBO J.</source>
<year>2004</year>
<volume>23</volume>
<fpage>1313</fpage>
<lpage>1324</lpage>
<pub-id pub-id-type="pmid">15014438</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kedersha</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>RNA granules: post-transcriptional and epigenetic modulators of gene expression</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<year>2009</year>
<volume>10</volume>
<fpage>430</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="pmid">19461665</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoon</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in <italic>Saccharomyces cerevisiae</italic></article-title>
<source>J. Cell Biol.</source>
<year>2010</year>
<volume>189</volume>
<fpage>813</fpage>
<lpage>827</lpage>
<pub-id pub-id-type="pmid">20513766</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiśniewski</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Zougman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nagaraj</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Universal sample preparation method for proteome analysis</article-title>
<source>Nat. Methods.</source>
<year>2009</year>
<volume>6</volume>
<fpage>359</fpage>
<lpage>362</lpage>
<pub-id pub-id-type="pmid">19377485</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kedersha</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gilks</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules</article-title>
<source>Mol. Biol. Cell</source>
<year>2002</year>
<volume>13</volume>
<fpage>195</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="pmid">11809833</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kedersha</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Low</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Romo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gorospe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JO</given-names>
</name>
</person-group>
<article-title>Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A</article-title>
<source>J. Biol. Chem.</source>
<year>2006</year>
<volume>281</volume>
<fpage>32870</fpage>
<lpage>32878</lpage>
<pub-id pub-id-type="pmid">16951406</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Srikantan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tominaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Yaniv</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Martindale</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>M</given-names>
</name>
<etal/>
</person-group>
<article-title>Growth inhibition by miR-519 via multiple p21-inducing pathways</article-title>
<source>Mol. Cell. Biol.</source>
<year>2012</year>
<volume>32</volume>
<fpage>2530</fpage>
<lpage>2548</lpage>
<pub-id pub-id-type="pmid">22547681</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Srikantan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Galban</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Kamara</surname>
<given-names>D</given-names>
</name>
<name>
<surname>de Cabo</surname>
<given-names>R</given-names>
</name>
<etal/>
</person-group>
<article-title>Ubiquitin-mediated proteolysis of HuR by heat shock</article-title>
<source>EMBO J.</source>
<year>2009</year>
<volume>28</volume>
<fpage>1271</fpage>
<lpage>1282</lpage>
<pub-id pub-id-type="pmid">19322201</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Shea</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Holland</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Staudt</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>JAKs and STATs in immunity, immunodeficiency, and cancer</article-title>
<source>N. Engl. J. Med.</source>
<year>2013</year>
<volume>368</volume>
<fpage>161</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="pmid">23301733</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nutter</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Ngo</surname>
<given-names>EO</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>TW</given-names>
</name>
</person-group>
<article-title>Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines</article-title>
<source>Biochem. Pharmacol.</source>
<year>1991</year>
<volume>41</volume>
<fpage>1283</fpage>
<lpage>1292</lpage>
<pub-id pub-id-type="pmid">2018560</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galbán</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pullmann</surname>
<given-names>R</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Martindale</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JO</given-names>
</name>
<etal/>
</person-group>
<article-title>RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1α</article-title>
<source>Mol. Cell. Biol.</source>
<year>2008</year>
<volume>28</volume>
<fpage>93</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="pmid">17967866</pub-id>
</element-citation>
</ref>
<ref id="gkt903-B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuwano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kuwano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pullmann</surname>
<given-names>R</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Martindale</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Lal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Abdelmohsen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JO</given-names>
</name>
<etal/>
</person-group>
<article-title>MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90</article-title>
<source>Mol. Cell. Biol.</source>
<year>2008</year>
<volume>28</volume>
<fpage>4562</fpage>
<lpage>4575</lpage>
<pub-id pub-id-type="pmid">18490444</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</article>
</metadata></record></GetRecord></OAI-PMH>
|