1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
#include "SMSIo.hxx"
#include "XMLStorage.hxx"
#include "SMSAnalysis.hxx"
#include "LoopPointExtractor.hxx"
#include "Segment.hxx"
#include "Frame.hxx"
#include "SampleMetadata.hxx"
#include "SimpleLoopMetadata.hxx"
#include "Filename.hxx"
#include "Audio.hxx"
#include "DataTypes.hxx"
#include <vector>
#include <algorithm>
/**
* This example when given a directory full of sound files converts these files
* to SDIF format and saves extracted information about their pitch, amplitude, and
* optimal loop points to XML metadata files.
*
* To run the example, type ./loopMakerExe from the examples directory.
* The application will print out a help message telling you which files it needs in which order.
*
* \see {http://www.cnmat.berkeley.edu/SDIF/}
* \see {http://www.mtg.upf.edu/sms/}
*
* \author Greg Kellum [gkellum@iua.upf.edu] 7/1/2007
* \since CLAM v1.1
*/
static int millisecondsToFrames(double milliseconds)
{
return milliseconds / 1000. * 44100 / 256.;
}
static int framesToMilliseconds(int frames)
{
return frames * 256. / 44100. * 1000.;
}
namespace CLAM
{
void Analyze(SMSAnalysis& analysis, Segment& segment)
{
CLAM_ACTIVATE_FAST_ROUNDING;
/** Cleans up segment from pre-existing data*/
segment.SetFramesArray(List<Frame>());
segment.SetChildren(List<Segment>());
segment.mCurrentFrameIndex=0;
analysis.Start();
while(analysis.Do(segment));
analysis.Stop();
//remove first two frame
for (int j = 0; j < 2; j++)
{
segment.DeleteFrame( 0 );
segment.UpdateData();
}
CLAM_DEACTIVATE_FAST_ROUNDING;
}
double SelectBestF0(Segment& segment)
{
int nFrames = segment.GetnFrames();
double minError = 100000.;
double f0;
for (int counter = 0; counter < nFrames; counter++)
{
Fundamental& aFundamental = segment.GetFrame(counter).GetFundamental();
aFundamental.SortByError();
DataArray candidateF0s = aFundamental.GetCandidatesFreq();
DataArray candidateErrors = aFundamental.GetCandidatesErr();
int arraySize = candidateF0s.Size();
for (int inner_counter = 0; inner_counter < arraySize; inner_counter++)
{
if ( fabs(candidateErrors[inner_counter]) < minError )
{
minError = fabs(candidateErrors[inner_counter]);
f0 = fabs(candidateF0s[inner_counter]);
}
}
}
return f0;
}
bool ordering_function(const TData& a, const TData& b)
{
return fabs(a) < fabs(b);
}
double CalculateAmplitude(Segment& segment)
{
Audio& allAudio = segment.GetAudio();
int numberOfSamples = allAudio.GetSize();
int hopSize = 512;
double maxAmplitude = 0.;
DataArray& aBuffer = allAudio.GetBuffer();
for (int counter = 0; (counter+hopSize) < numberOfSamples; counter += hopSize)
{
int beginSample = counter;
int endSample = counter + hopSize;
double meanAmplitudeOfWindow = 0.;
std::vector<TData> v( aBuffer.GetPtr() + beginSample, aBuffer.GetPtr() + endSample );
nth_element(v.begin(), v.begin()+(hopSize-5), v.end(), ordering_function);
std::vector<TData>::iterator i;
for(i = v.begin()+(hopSize-5); i != v.end(); i++)
{
meanAmplitudeOfWindow += fabs(*i);
}
std::cout << std::endl;
meanAmplitudeOfWindow = meanAmplitudeOfWindow / 5;
if ( maxAmplitude < meanAmplitudeOfWindow)
{
maxAmplitude = meanAmplitudeOfWindow;
}
}
return maxAmplitude;
}
} //namespace CLAM
int main(int argc,char** argv)
{
bool isPlayOnSpeakers = false;
const char *wavinput;
double startTime, endTime;
switch (argc)
{
case 2:
case 3:
case 4:
case 5:
wavinput = argv[1];
startTime = (argc < 3 ) ? 0 : atof(argv[2]);
endTime = (argc < 4 ) ? (44100*100) : atof(argv[3]);
break;
default:
printf("Usage: loopMaker inputWavFile [startTime [endTime] ]\n");
printf("\n");
printf(" This application converts a wav file into an SDIF file..\n");
printf(" and saves metadata about the file in an XML file.\n");
printf("\n");
printf(" Start time gives the msec when the steady state begins.\n");
printf(" End time gives the msec when the steady state ends,\n");
printf(" and sets the limit of where loops should be looked for.\n");
printf("\n");
printf(" The input file should be a wav file with a 44100 sample rate.\n");
printf(" Start and end times should be given in milliseconds.\n");
exit(1);
break;
}
char* xmlconfig = "loopMaker/analysis.xml";
// we create the filename for the SDIF file
std::string strwavinput(wavinput);
const char* sdifoutput = strwavinput.replace(strwavinput.find_last_of("wav")-2,4,"sdif").c_str();
// we create the filename for the XML metadata file
std::string strwavinput2(wavinput);
const char* xmloutput = strwavinput2.replace(strwavinput2.find_last_of("wav")-2,3,"xml").c_str();
try {
/** Internal structure used for storing the result of the analysis, contains all data.
* @see Segment.hxx */
CLAM::Segment AnalysisSegment;
/** Analysis configuration */
CLAM::SMSAnalysisConfig AnalConfig;
/** Internal Processings used for analysis and synthesis */
CLAM::SMSAnalysis Analysis;
/****************************************\
* Config *
\****************************************/
// SMS Analysis configuration
CLAM::XMLStorage::Restore(AnalConfig,xmlconfig);
//if window size is even we add one !
if (AnalConfig.GetSinWindowSize()%2==0) AnalConfig.SetSinWindowSize(AnalConfig.GetSinWindowSize()+1);
if (AnalConfig.GetResWindowSize()%2==0) AnalConfig.SetResWindowSize(AnalConfig.GetResWindowSize()+1);
if (AnalConfig.GetHopSize()<0) AnalConfig.SetHopSize((AnalConfig.GetResWindowSize()-1)/2 );
/****************************************\
* Load Sound *
\****************************************/
AnalConfig.SetSamplingRate(WAVELoad(wavinput,AnalysisSegment));
//XMLStorage::Dump(AnalConfig,"SMSAnalysisConfig",xmlconfig);
Analysis.Configure(AnalConfig);
Analyze(Analysis, AnalysisSegment);
SDIFStore( sdifoutput, AnalysisSegment );
CLAM::SampleMetadata theSampleMetadata;
std::string sdifoutputstr(sdifoutput);
CLAM::Filename sdifFilename(sdifoutputstr);
theSampleMetadata.SetFilename( sdifFilename );
double bestF0 = SelectBestF0( AnalysisSegment );
std::cout << "Best f0: " << bestF0 << std::endl;
theSampleMetadata.SetPitch( bestF0 );
double amplitude = CalculateAmplitude(AnalysisSegment);
std::cout << "Maximum window amplitude: " << amplitude << std::endl;
theSampleMetadata.SetAmplitude( amplitude );
theSampleMetadata.SetStartSteadyState( startTime );
// here we convert from milliseconds to frame number
int startFrame = millisecondsToFrames(startTime);
int endFrame;
if (endTime != -1)
endFrame = millisecondsToFrames(endTime);
// now we analyze the frames to find a pair with the smallest earth
// mover's distance
CLAM::List<CLAM::Frame>& framesArray = AnalysisSegment.GetFramesArray();
CLAM::LoopPointExtractor loopExtractor;
std::map<int, int> optimalLoopPoints;
loopExtractor.extractOptimalLoopPoints(framesArray, optimalLoopPoints, startFrame, endFrame);
std::vector<CLAM::SimpleLoopMetadata>& listOfLoops = theSampleMetadata.GetListOfLoops();
std::map<int,int>::iterator iter;
for( iter = optimalLoopPoints.begin(); iter != optimalLoopPoints.end(); iter++ )
{
CLAM::SimpleLoopMetadata aSimpleLoop;
aSimpleLoop.SetStart( framesToMilliseconds( iter->first ) );
aSimpleLoop.SetEnd( framesToMilliseconds( iter->second ) );
listOfLoops.push_back( aSimpleLoop );
}
CLAM::XMLStorage::Dump(theSampleMetadata,"SampleMetadata",xmloutput);
}
catch(CLAM::Err error)
{
error.Print();
std::cerr << "Abnormal Program Termination!\n" << std::endl;
}
catch (std::exception e)
{
std::cout << e.what() << std::endl;
}
std::clog << "Finished successfully!\n";
return 0;
}
|