1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
#include <cppunit/extensions/HelperMacros.h>
#include "cppUnitHelper.hxx"
#include "similarityHelper.hxx"
#include "FFT_base.hxx"
#include "Audio.hxx"
#include "Spectrum.hxx"
#include "XMLStorage.hxx"
#include "ProcessingFactory.hxx"
namespace CLAMTest
{
class FFTFunctionalTest
: public CppUnit::TestFixture
{
protected:
static double smEqualityThreshold;
static bool smBack2BackDataLoaded;
static CLAM::Spectrum smReferenceP2Spectrum;
static CLAM::Spectrum smReferenceNP2Spectrum;
std::string mPathToTestData;
CLAM::FFT_base * mProcessing;
virtual const std::string getProcessing()=0;
void setupSine_F0400Hz_SR8kHz( CLAM::Audio& audio, int nSamples )
{
const CLAM::TSize sampleRate = 8000;
const CLAM::TData sineFreq = 400.0f;
audio.SetSize( nSamples );
audio.SetSampleRate( sampleRate );
audio.SetBeginTime( CLAM::TTime(0.0) );
for ( CLAM::TSize i=0; i<nSamples; i++ )
audio.GetBuffer()[i]=0.625+0.5*sin(2.0*sineFreq*400.0*(((float)i)/sampleRate));
}
void setupSine_F0400Hz_SR8kHz_1024samples( CLAM::Audio& audio )
{
setupSine_F0400Hz_SR8kHz(audio, 1024);
}
void setupSine_F0400Hz_SR8kHz_884samples( CLAM::Audio& audio )
{
setupSine_F0400Hz_SR8kHz(audio, 884);
}
void setupSpectrumToStoreFFTOutput( CLAM::Spectrum& spectrum )
{
CLAM::SpecTypeFlags specFlags;
specFlags.bComplex = 1;
specFlags.bMagPhase = 1;
specFlags.bPolar = 1;
specFlags.bMagPhaseBPF = 1;
spectrum.SetType( specFlags );
}
static void loadBack2BackDataset( const std::string& pathToTestData )
{
if ( !smBack2BackDataLoaded )
{
CLAM::XMLStorage::Restore( smReferenceP2Spectrum,
pathToTestData + "OneSineSpectrum_RectWindow_P2.xml" );
CLAM::XMLStorage::Restore( smReferenceNP2Spectrum,
pathToTestData + "OneSineSpectrum_RectWindow_NP2.xml" );
smBack2BackDataLoaded = true;
}
}
public:
FFTFunctionalTest()
: mProcessing(0)
{
}
void setUp()
{
mProcessing = (CLAM::FFT_base*)CLAM::ProcessingFactory::GetInstance().CreateSafe(getProcessing());
mPathToTestData = GetTestDataDirectory("spectralData/");
loadBack2BackDataset( mPathToTestData );
}
void tearDown()
{
delete mProcessing;
mProcessing = 0;
}
protected:
void test_WithPowerOfTwoInput()
{
CLAM::Audio input;
CLAM::Spectrum output;
CLAM::FFTConfig processingConfig;
setupSine_F0400Hz_SR8kHz_1024samples( input );
setupSpectrumToStoreFFTOutput( output );
output.SetSize( CLAM::TSize(input.GetSize()/2 + 1) );
processingConfig.SetAudioSize( input.GetSize() );
mProcessing->Configure( processingConfig );
mProcessing->Start();
mProcessing->Do( input, output );
mProcessing->Stop();
double similarity = evaluateSimilarity( smReferenceP2Spectrum.GetMagBuffer(),
output.GetMagBuffer() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
CPPUNIT_ASSERT( smReferenceP2Spectrum.GetSpectralRange()
== output.GetSpectralRange() );
}
void test_WithComplex()
{
CLAM::Audio input;
CLAM::SpecTypeFlags flg;
flg.bMagPhase=0;
flg.bComplex=1;
CLAM::Spectrum output;
output.SetType(flg);
CLAM::FFTConfig processingConfig;
setupSine_F0400Hz_SR8kHz_1024samples( input );
output.SetSize( CLAM::TSize(input.GetSize()/2 + 1) );
processingConfig.SetAudioSize( input.GetSize() );
mProcessing->Configure( processingConfig );
mProcessing->Start();
mProcessing->Do(input,output);
mProcessing->Stop();
flg.bMagPhase=1;
output.SetTypeSynchronize(flg);
double similarity = evaluateSimilarity( smReferenceP2Spectrum.GetMagBuffer(),
output.GetMagBuffer() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
CPPUNIT_ASSERT( smReferenceP2Spectrum.GetSpectralRange()
== output.GetSpectralRange() );
}
void test_WithBPF()
{
CLAM::Audio input;
CLAM::SpecTypeFlags flg;
flg.bMagPhase=0;
flg.bMagPhaseBPF=1;
CLAM::Spectrum output;
output.SetType(flg);
CLAM::FFTConfig processingConfig;
setupSine_F0400Hz_SR8kHz_1024samples( input );
output.SetSize( CLAM::TSize(input.GetSize()/2 + 1) );
processingConfig.SetAudioSize( input.GetSize() );
mProcessing->Configure( processingConfig );
mProcessing->Start();
mProcessing->Do(input,output);
mProcessing->Stop();
flg.bMagPhase=1;
output.SetTypeSynchronize(flg);
double similarity = evaluateSimilarity( smReferenceP2Spectrum.GetMagBuffer(),
output.GetMagBuffer() );
CPPUNIT_ASSERT( smReferenceP2Spectrum.GetSpectralRange()
== output.GetSpectralRange() );
CPPUNIT_ASSERT( smReferenceP2Spectrum.GetSize()
== output.GetSize() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
}
void test_WithPolar()
{
CLAM::Audio input;
CLAM::SpecTypeFlags flg;
flg.bMagPhase=0;
flg.bPolar=1;
CLAM::Spectrum output;
output.SetType(flg);
CLAM::FFTConfig processingConfig;
setupSine_F0400Hz_SR8kHz_1024samples( input );
output.SetSize( CLAM::TSize(input.GetSize()/2 + 1) );
processingConfig.SetAudioSize( input.GetSize() );
mProcessing->Configure( processingConfig );
mProcessing->Start();
mProcessing->Do(input,output);
mProcessing->Stop();
flg.bMagPhase=1;
output.SetTypeSynchronize(flg);
double similarity = evaluateSimilarity( smReferenceP2Spectrum.GetMagBuffer(),
output.GetMagBuffer() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
CPPUNIT_ASSERT( smReferenceP2Spectrum.GetSpectralRange()
== output.GetSpectralRange() );
}
void test_WithNonPowerOfTwoInput()
{
CLAM::Audio input;
CLAM::Spectrum output;
CLAM::FFTConfig processingConfig;
setupSine_F0400Hz_SR8kHz_884samples( input );
setupSpectrumToStoreFFTOutput( output );
output.SetSize( CLAM::TSize(input.GetSize()/2 + 1) );
processingConfig.SetAudioSize( input.GetSize() );
mProcessing->Configure( processingConfig );
mProcessing->Start();
mProcessing->Do( input, output );
mProcessing->Stop();
double similarity = evaluateSimilarity( smReferenceNP2Spectrum.GetMagBuffer(),
output.GetMagBuffer() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
CPPUNIT_ASSERT( smReferenceP2Spectrum.GetSpectralRange()
== output.GetSpectralRange() );
}
void test_WithNonPowerOfTwoInput_fails()
{
CLAM::Audio input;
CLAM::Spectrum output;
CLAM::FFTConfig processingConfig;
setupSine_F0400Hz_SR8kHz_884samples( input );
setupSpectrumToStoreFFTOutput( output );
output.SetSize( CLAM::TSize(input.GetSize()/2 + 1) );
processingConfig.SetAudioSize( input.GetSize() );
CPPUNIT_ASSERT_EQUAL( false, mProcessing->Configure( processingConfig ) );
}
};
double FFTFunctionalTest::smEqualityThreshold = 0.99999999999; // More accurate as close to 1
bool FFTFunctionalTest::smBack2BackDataLoaded = false;
CLAM::Spectrum FFTFunctionalTest::smReferenceP2Spectrum;
CLAM::Spectrum FFTFunctionalTest::smReferenceNP2Spectrum;
#ifdef USE_FFTW3
class FFTW3FunctionalTest;
CPPUNIT_TEST_SUITE_REGISTRATION( FFTW3FunctionalTest );
class FFTW3FunctionalTest : public FFTFunctionalTest
{
CPPUNIT_TEST_SUITE( FFTW3FunctionalTest );
CPPUNIT_TEST( test_WithPowerOfTwoInput );
CPPUNIT_TEST( test_WithNonPowerOfTwoInput );
CPPUNIT_TEST( test_WithComplex );
CPPUNIT_TEST( test_WithPolar );
CPPUNIT_TEST( test_WithBPF );
CPPUNIT_TEST_SUITE_END();
protected:
virtual const std::string getProcessing()
{
return "FFT_fftw3";
}
};
#endif
#ifdef USE_FFTW
class FFTWFunctionalTest;
CPPUNIT_TEST_SUITE_REGISTRATION( FFTWFunctionalTest );
class FFTWFunctionalTest : public FFTFunctionalTest
{
CPPUNIT_TEST_SUITE( FFTWFunctionalTest );
CPPUNIT_TEST( test_WithPowerOfTwoInput );
CPPUNIT_TEST( test_WithNonPowerOfTwoInput );
CPPUNIT_TEST( test_WithComplex );
CPPUNIT_TEST( test_WithPolar );
CPPUNIT_TEST( test_WithBPF );
CPPUNIT_TEST_SUITE_END();
protected:
virtual const std::string getProcessing()
{
return "FFT_rfftw";
}
};
#endif
class FFTOouraFunctionalTest;
CPPUNIT_TEST_SUITE_REGISTRATION( FFTOouraFunctionalTest );
class FFTOouraFunctionalTest : public FFTFunctionalTest
{
CPPUNIT_TEST_SUITE( FFTOouraFunctionalTest );
CPPUNIT_TEST( test_WithPowerOfTwoInput );
CPPUNIT_TEST( test_WithNonPowerOfTwoInput_fails );
CPPUNIT_TEST( test_WithComplex );
CPPUNIT_TEST( test_WithPolar );
CPPUNIT_TEST( test_WithBPF );
CPPUNIT_TEST_SUITE_END();
protected:
virtual const std::string getProcessing()
{
return "FFT_ooura";
}
};
class FFTNumRecFunctionalTest;
CPPUNIT_TEST_SUITE_REGISTRATION( FFTNumRecFunctionalTest );
class FFTNumRecFunctionalTest : public FFTFunctionalTest
{
CPPUNIT_TEST_SUITE( FFTNumRecFunctionalTest );
CPPUNIT_TEST( test_WithPowerOfTwoInput );
CPPUNIT_TEST( test_WithNonPowerOfTwoInput_fails );
CPPUNIT_TEST( test_WithComplex );
CPPUNIT_TEST( test_WithPolar );
CPPUNIT_TEST( test_WithBPF );
CPPUNIT_TEST_SUITE_END();
protected:
virtual const std::string getProcessing()
{
return "FFT_numrec";
}
};
}
|