File: TestIFFT.cxx

package info (click to toggle)
clam 1.4.0-6
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 17,836 kB
  • ctags: 20,981
  • sloc: cpp: 92,504; python: 9,721; ansic: 1,602; xml: 444; sh: 239; makefile: 153; perl: 54; asm: 15
file content (169 lines) | stat: -rw-r--r-- 4,634 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include <cppunit/extensions/HelperMacros.h>
#include "cppUnitHelper.hxx"
#include "similarityHelper.hxx"
#include "XMLStorage.hxx"

#ifdef USE_FFTW
#include "IFFT_rfftw.hxx"

namespace CLAMTest
{
	class IFFTFunctionalTest;

	CPPUNIT_TEST_SUITE_REGISTRATION( IFFTFunctionalTest );

	class IFFTFunctionalTest 
		: public CppUnit::TestFixture
	{
		CPPUNIT_TEST_SUITE( IFFTFunctionalTest );
		CPPUNIT_TEST( test_FFTW_WithPowerOfTwoSignalSpectrum );
		CPPUNIT_TEST( test_FFTW_WithNonPowerOfTwoSignalSpectrum );
		CPPUNIT_TEST_SUITE_END();

	protected:

		static double          smEqualityThreshold;
		static bool            smBack2BackDataLoaded;
		static CLAM::Spectrum  smReferenceP2Spectrum;
		static CLAM::Spectrum  smReferenceNP2Spectrum;

		std::string            mPathToTestData;

		
	protected: // Auxiliary methods
		void setupSine_F0400Hz_SR8kHz_1024samples( CLAM::Audio& object )
		{
			const CLAM::TSize samples = 1024;
			const CLAM::TSize sampleRate = 8000;
			const CLAM::TData sineFreq = 400.0f;

			object.SetSize( samples );
			object.SetSampleRate( sampleRate );
			object.SetBeginTime( CLAM::TTime(0.0) );
			object.SetEndTime( (CLAM::TTime(samples)/CLAM::TTime(sampleRate))*1000. );

			for ( CLAM::TSize i=0; i<samples; i++ )
				object.GetBuffer()[i]=0.625+0.5*sin(2.0*sineFreq*400.0*(((float)i)/sampleRate));
		}

		void setupSine_F0400Hz_SR8kHz_884samples( CLAM::Audio& object )
		{
			const CLAM::TSize samples = 884;
			const CLAM::TSize sampleRate = 8000;
			const CLAM::TData sineFreq = 400.0f;

			object.SetSize( samples );
			object.SetSampleRate( sampleRate );
			object.SetBeginTime( CLAM::TTime(0.0) );
			object.SetEndTime( CLAM::TTime(samples)/CLAM::TTime(sampleRate) *1000.);

			for ( CLAM::TSize i=0; i<samples; i++ )
				object.GetBuffer()[i]=0.625+0.5*sin(2.0*sineFreq*400.0*(((float)i)/sampleRate));
			
		}
		static void loadBack2BackDataset( const std::string& pathToTestData )
		{
			if ( !smBack2BackDataLoaded )
			{
				CLAM::XMLStorage::Restore( smReferenceP2Spectrum,
							   pathToTestData + "OneSineSpectrum_RectWindow_P2.xml" );
				CLAM::XMLStorage::Restore( smReferenceNP2Spectrum,
						      pathToTestData + "OneSineSpectrum_RectWindow_NP2.xml" );

				smBack2BackDataLoaded = true;
			}
		}

	public:

		void setUp()
		{
			mPathToTestData = GetTestDataDirectory("spectralData/");
			loadBack2BackDataset( mPathToTestData );
		}

		void tearDown()
		{
		}

	private:

		void test_FFTW_WithPowerOfTwoSignalSpectrum()
		{
			// The signal that should be
			CLAM::Audio  expectedOutput;
			// The signal synthesized by the IFFT processing
			CLAM::Audio  actualOutput;

			setupSine_F0400Hz_SR8kHz_1024samples( expectedOutput );

			actualOutput.SetSize( expectedOutput.GetSize() );
			actualOutput.SetSampleRate( expectedOutput.GetSampleRate() );

			CLAM::IFFTConfig processingConfig;
			CLAM::IFFT_rfftw processing;

			processingConfig.SetAudioSize( expectedOutput.GetSize() );

			processing.Configure( processingConfig );

			//(*processing.GetInPorts().Begin())->Attach( smReferenceP2Spectrum );
			//(*processing.GetOutPorts().Begin())->Attach( actualOutput );
			
			processing.Start();

			processing.Do( smReferenceP2Spectrum, actualOutput );

			processing.Stop();

			double similarity = evaluateSimilarity( expectedOutput.GetBuffer(),
								actualOutput.GetBuffer() );

			CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
		}

		void test_FFTW_WithNonPowerOfTwoSignalSpectrum()
		{
			// The signal that should be
			CLAM::Audio  expectedOutput;
			// The signal synthesized by the IFFT processing
			CLAM::Audio  actualOutput;

			setupSine_F0400Hz_SR8kHz_884samples( expectedOutput );

			actualOutput.SetSize( expectedOutput.GetSize() );
			actualOutput.SetSampleRate( expectedOutput.GetSampleRate() );

			CLAM::IFFTConfig processingConfig;
			CLAM::IFFT_rfftw processing;

			processingConfig.SetAudioSize( expectedOutput.GetSize() );

			processing.Configure( processingConfig );

			//(*processing.GetInPorts().Begin())->Attach( smReferenceNP2Spectrum );
			//(*processing.GetOutPorts().Begin())->Attach( actualOutput );

			processing.Start();

			processing.Do( smReferenceNP2Spectrum, actualOutput );

			processing.Stop();

			double similarity = evaluateSimilarity( expectedOutput.GetBuffer(),
								actualOutput.GetBuffer() );

			CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
		}
		
	};
	
	double IFFTFunctionalTest::smEqualityThreshold = 0.9999;
	bool IFFTFunctionalTest::smBack2BackDataLoaded = false;
	CLAM::Spectrum IFFTFunctionalTest::smReferenceP2Spectrum;
	CLAM::Spectrum IFFTFunctionalTest::smReferenceNP2Spectrum;	
}

#endif