1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#include <cppunit/extensions/HelperMacros.h>
#include "cppUnitHelper.hxx"
#include "similarityHelper.hxx"
#include "XMLStorage.hxx"
#ifdef USE_FFTW
#include "IFFT_rfftw.hxx"
namespace CLAMTest
{
class IFFTFunctionalTest;
CPPUNIT_TEST_SUITE_REGISTRATION( IFFTFunctionalTest );
class IFFTFunctionalTest
: public CppUnit::TestFixture
{
CPPUNIT_TEST_SUITE( IFFTFunctionalTest );
CPPUNIT_TEST( test_FFTW_WithPowerOfTwoSignalSpectrum );
CPPUNIT_TEST( test_FFTW_WithNonPowerOfTwoSignalSpectrum );
CPPUNIT_TEST_SUITE_END();
protected:
static double smEqualityThreshold;
static bool smBack2BackDataLoaded;
static CLAM::Spectrum smReferenceP2Spectrum;
static CLAM::Spectrum smReferenceNP2Spectrum;
std::string mPathToTestData;
protected: // Auxiliary methods
void setupSine_F0400Hz_SR8kHz_1024samples( CLAM::Audio& object )
{
const CLAM::TSize samples = 1024;
const CLAM::TSize sampleRate = 8000;
const CLAM::TData sineFreq = 400.0f;
object.SetSize( samples );
object.SetSampleRate( sampleRate );
object.SetBeginTime( CLAM::TTime(0.0) );
object.SetEndTime( (CLAM::TTime(samples)/CLAM::TTime(sampleRate))*1000. );
for ( CLAM::TSize i=0; i<samples; i++ )
object.GetBuffer()[i]=0.625+0.5*sin(2.0*sineFreq*400.0*(((float)i)/sampleRate));
}
void setupSine_F0400Hz_SR8kHz_884samples( CLAM::Audio& object )
{
const CLAM::TSize samples = 884;
const CLAM::TSize sampleRate = 8000;
const CLAM::TData sineFreq = 400.0f;
object.SetSize( samples );
object.SetSampleRate( sampleRate );
object.SetBeginTime( CLAM::TTime(0.0) );
object.SetEndTime( CLAM::TTime(samples)/CLAM::TTime(sampleRate) *1000.);
for ( CLAM::TSize i=0; i<samples; i++ )
object.GetBuffer()[i]=0.625+0.5*sin(2.0*sineFreq*400.0*(((float)i)/sampleRate));
}
static void loadBack2BackDataset( const std::string& pathToTestData )
{
if ( !smBack2BackDataLoaded )
{
CLAM::XMLStorage::Restore( smReferenceP2Spectrum,
pathToTestData + "OneSineSpectrum_RectWindow_P2.xml" );
CLAM::XMLStorage::Restore( smReferenceNP2Spectrum,
pathToTestData + "OneSineSpectrum_RectWindow_NP2.xml" );
smBack2BackDataLoaded = true;
}
}
public:
void setUp()
{
mPathToTestData = GetTestDataDirectory("spectralData/");
loadBack2BackDataset( mPathToTestData );
}
void tearDown()
{
}
private:
void test_FFTW_WithPowerOfTwoSignalSpectrum()
{
// The signal that should be
CLAM::Audio expectedOutput;
// The signal synthesized by the IFFT processing
CLAM::Audio actualOutput;
setupSine_F0400Hz_SR8kHz_1024samples( expectedOutput );
actualOutput.SetSize( expectedOutput.GetSize() );
actualOutput.SetSampleRate( expectedOutput.GetSampleRate() );
CLAM::IFFTConfig processingConfig;
CLAM::IFFT_rfftw processing;
processingConfig.SetAudioSize( expectedOutput.GetSize() );
processing.Configure( processingConfig );
//(*processing.GetInPorts().Begin())->Attach( smReferenceP2Spectrum );
//(*processing.GetOutPorts().Begin())->Attach( actualOutput );
processing.Start();
processing.Do( smReferenceP2Spectrum, actualOutput );
processing.Stop();
double similarity = evaluateSimilarity( expectedOutput.GetBuffer(),
actualOutput.GetBuffer() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
}
void test_FFTW_WithNonPowerOfTwoSignalSpectrum()
{
// The signal that should be
CLAM::Audio expectedOutput;
// The signal synthesized by the IFFT processing
CLAM::Audio actualOutput;
setupSine_F0400Hz_SR8kHz_884samples( expectedOutput );
actualOutput.SetSize( expectedOutput.GetSize() );
actualOutput.SetSampleRate( expectedOutput.GetSampleRate() );
CLAM::IFFTConfig processingConfig;
CLAM::IFFT_rfftw processing;
processingConfig.SetAudioSize( expectedOutput.GetSize() );
processing.Configure( processingConfig );
//(*processing.GetInPorts().Begin())->Attach( smReferenceNP2Spectrum );
//(*processing.GetOutPorts().Begin())->Attach( actualOutput );
processing.Start();
processing.Do( smReferenceNP2Spectrum, actualOutput );
processing.Stop();
double similarity = evaluateSimilarity( expectedOutput.GetBuffer(),
actualOutput.GetBuffer() );
CPPUNIT_ASSERT( smEqualityThreshold <= similarity );
}
};
double IFFTFunctionalTest::smEqualityThreshold = 0.9999;
bool IFFTFunctionalTest::smBack2BackDataLoaded = false;
CLAM::Spectrum IFFTFunctionalTest::smReferenceP2Spectrum;
CLAM::Spectrum IFFTFunctionalTest::smReferenceNP2Spectrum;
}
#endif
|