File: ClamBCRTChecks.cpp

package info (click to toggle)
clamav 0.101.2+dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 29,464 kB
  • sloc: ansic: 158,856; sh: 8,156; cpp: 5,173; makefile: 2,077; yacc: 1,351; lex: 714; python: 120; perl: 17
file content (1040 lines) | stat: -rw-r--r-- 39,251 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
/*
 *  Compile LLVM bytecode to ClamAV bytecode.
 *
 *  Copyright (C) 2013-2019 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *  Copyright (C) 2009-2013 Sourcefire, Inc.
 *
 *  Authors: Török Edvin, Kevin Lin
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 *  MA 02110-1301, USA.
 */
#define DEBUG_TYPE "clambc-rtcheck"
#include "ClamBCModule.h"
#include "ClamBCDiagnostics.h"
#include "llvm30_compat.h" /* libclamav-specific */
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/CallGraph.h"
#if LLVM_VERSION < 32
#include "llvm/Analysis/DebugInfo.h"
#elif LLVM_VERSION < 35
#include "llvm/DebugInfo.h"
#else
#include "llvm/IR/DebugInfo.h"
#endif
#if LLVM_VERSION < 35
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Verifier.h"
#else
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Verifier.h"
#endif
#include "llvm/Analysis/ConstantFolding.h"
#if LLVM_VERSION < 29
//#include "llvm/Analysis/LiveValues.h" (unused)
#include "llvm/Analysis/PointerTracking.h"
#else
#include "llvm/Analysis/ValueTracking.h"
#include "PointerTracking.h" /* included from old LLVM source */
#endif
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#if LLVM_VERSION < 38
#include "llvm/Config/config.h"
#endif
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#if LLVM_VERSION < 35
#include "llvm/Support/DataFlow.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#else
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#endif
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/Debug.h"
#if LLVM_VERSION < 32
#include "llvm/Target/TargetData.h"
#elif LLVM_VERSION < 33
#include "llvm/DataLayout.h"
#else
#include "llvm/IR/DataLayout.h"
#endif
#if LLVM_VERSION < 33
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#else
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#endif

#if LLVM_VERSION < 33
#include "llvm/Support/InstVisitor.h"
#elif LLVM_VERSION < 35
#include "llvm/InstVisitor.h"
#else
#include "llvm/IR/InstVisitor.h"
#endif

#define DEFINEPASS(passname) passname() : FunctionPass(ID)

using namespace llvm;
#if LLVM_VERSION < 29
/* function is succeeded in later LLVM with LLVM corresponding standalone */
static Value *GetUnderlyingObject(Value *P, TargetData *TD)
{
    return P->getUnderlyingObject();
}
#endif

namespace llvm {
  class PtrVerifier;
#if LLVM_VERSION >= 29
  void initializePtrVerifierPass(PassRegistry&);
#endif

  class PtrVerifier : public FunctionPass {
  private:
      DenseSet<Function*> badFunctions;
      std::vector<Instruction*> delInst;
#if LLVM_VERSION < 35
      CallGraphNode *rootNode;
#else
      CallGraph *CG;
#endif
  public:
      static char ID;
#if LLVM_VERSION < 35
      DEFINEPASS(PtrVerifier), rootNode(0), PT(), TD(), SE(), expander(),
#else
      DEFINEPASS(PtrVerifier), CG(0), PT(), TD(), SE(), expander(),
#endif
          DT(), AbrtBB(), Changed(false), valid(false), EP() {
#if LLVM_VERSION >= 29
          initializePtrVerifierPass(*PassRegistry::getPassRegistry());
#endif
      }

      virtual bool runOnFunction(Function &F) {
          /*
#ifndef CLAMBC_COMPILER
          // Bytecode was already verified and had stack protector applied.
          // We get called again because ALL bytecode functions loaded are part of
          // the same module.
          if (F.hasFnAttr(Attribute::StackProtectReq))
              return false;
#endif
          */

          DEBUG(errs() << "Running on " << F.getName() << "\n");
          DEBUG(F.dump());
          Changed = false;
          BaseMap.clear();
          BoundsMap.clear();
          delInst.clear();
          AbrtBB = 0;
          valid = true;

#if LLVM_VERSION < 35
          if (!rootNode) {
              rootNode = getAnalysis<CallGraph>().getRoot();
#else
          if (!CG) {
              CG = &getAnalysis<CallGraphWrapperPass>().getCallGraph();
#endif
              // No recursive functions for now.
              // In the future we may insert runtime checks for stack depth.
#if LLVM_VERSION < 35
              for (scc_iterator<CallGraphNode*> SCCI = scc_begin(rootNode),
                       E = scc_end(rootNode); SCCI != E; ++SCCI) {
#else
              for (scc_iterator<CallGraph*> SCCI = scc_begin(CG); !SCCI.isAtEnd(); ++SCCI) {
#endif
                  const std::vector<CallGraphNode*> &nextSCC = *SCCI;
                  if (nextSCC.size() > 1 || SCCI.hasLoop()) {
                      errs() << "INVALID: Recursion detected, callgraph SCC components: ";
                      for (std::vector<CallGraphNode*>::const_iterator I = nextSCC.begin(),
                               E = nextSCC.end(); I != E; ++I) {
                          Function *FF = (*I)->getFunction();
                          if (FF) {
                              errs() << FF->getName() << ", ";
                              badFunctions.insert(FF);
                          }
                      }
                      if (SCCI.hasLoop())
                          errs() << "(self-loop)";
                      errs() << "\n";
                  }
                  // we could also have recursion via function pointers, but we don't
                  // allow calls to unknown functions, see runOnFunction() below
              }
          }

          BasicBlock::iterator It = F.getEntryBlock().begin();
          while (isa<AllocaInst>(It) || isa<PHINode>(It)) ++It;
          EP = &*It;
#if LLVM_VERSION < 32
          TD = &getAnalysis<TargetData>();
#elif LLVM_VERSION < 35
          TD = &getAnalysis<DataLayout>();
#elif LLVM_VERSION < 37
          DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
          TD = DLP ? &DLP->getDataLayout() : 0;
#else
          TD = &F.getEntryBlock().getModule()->getDataLayout();
#endif
#if LLVM_VERSION < 38
          SE = &getAnalysis<ScalarEvolution>();
#else
          SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
#endif
          PT = &getAnalysis<PointerTracking>();
#if LLVM_VERSION < 35
          DT = &getAnalysis<DominatorTree>();
#else
          DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
#endif
#if LLVM_VERSION < 37
          expander = new SCEVExpander(*SE OPT("SCEVexpander"));
#else
          expander = new SCEVExpander(*SE, *TD OPT("SCEVexpander"));
#endif

          std::vector<Instruction*> insns;

          BasicBlock *LastBB = 0;
          for (inst_iterator I=inst_begin(F),E=inst_end(F); I != E;++I) {
              Instruction *II = &*I;
              /* only appears in the libclamav version */
              if (II->getParent() != LastBB) {
                  LastBB = II->getParent();
                  if (DT->getNode(LastBB) == 0)
                      continue;
              }
              /* end-block */
              if (isa<LoadInst>(II) || isa<StoreInst>(II) || isa<MemIntrinsic>(II))
                  insns.push_back(II);
              else if (CallInst *CI = dyn_cast<CallInst>(II)) {
                  Value *V = CI->getCalledValue()->stripPointerCasts();
                  Function *F = dyn_cast<Function>(V);
                  if (!F) {
                      printLocation(CI, true);
                      errs() << "Could not determine call target\n";
                      valid = 0;
                      continue;
                  }
                  // this statement disable checks on user-defined CallInst
                  //if (!F->isDeclaration())
                  //continue;
                  insns.push_back(CI);
              }
          }

          for (unsigned Idx = 0; Idx < insns.size(); ++Idx) {
              Instruction *II = insns[Idx];
              DEBUG(dbgs() << "checking " << *II << "\n");
              if (LoadInst *LI = dyn_cast<LoadInst>(II)) {
                  constType *Ty = LI->getType();
                  valid &= validateAccess(LI->getPointerOperand(),
                                          TD->getTypeAllocSize(Ty), LI);
              } else if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
                  constType *Ty = SI->getOperand(0)->getType();
                  valid &= validateAccess(SI->getPointerOperand(),
                                          TD->getTypeAllocSize(Ty), SI);
              } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
                  valid &= validateAccess(MI->getDest(), MI->getLength(), MI);
                  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
                      valid &= validateAccess(MTI->getSource(), MI->getLength(), MI);
                  }
              } else if (CallInst *CI = dyn_cast<CallInst>(II)) {
                  Value *V = CI->getCalledValue()->stripPointerCasts();
                  Function *F = cast<Function>(V);
                  constFunctionType *FTy = F->getFunctionType();
                  CallSite CS(CI);
                  if (F->getName().equals("memcmp") && FTy->getNumParams() == 3) {
                      valid &= validateAccess(CS.getArgument(0), CS.getArgument(2), CI);
                      valid &= validateAccess(CS.getArgument(1), CS.getArgument(2), CI);
                      continue;
                  }
                  unsigned i;
#ifdef CLAMBC_COMPILER
                  i = 0;
#else
                  i = 1;// skip hidden ctx*
#endif
                  for (;i<FTy->getNumParams();i++) {
                      if (isa<PointerType>(FTy->getParamType(i))) {
                          Value *Ptr = CS.getArgument(i);
                          if (i+1 >= FTy->getNumParams()) {
                              printLocation(CI, false);
                              errs() << "Call to external function with pointer parameter last"
                                  " cannot be analyzed\n";
                              errs() << *CI << "\n";
                              valid = 0;
                              break;
                          }
                          Value *Size = CS.getArgument(i+1);
                          if (!Size->getType()->isIntegerTy()) {
                              printLocation(CI, false);
                              errs() << "Pointer argument must be followed by integer argument"
                                  " representing its size\n";
                              errs() << *CI << "\n";
                              valid = 0;
                              break;
                          }
                          valid &= validateAccess(Ptr, Size, CI);
                      }
                  }
              }
          }
          if (badFunctions.count(&F))
              valid = 0;

          if (!valid) {
              DEBUG(F.dump());
              ClamBCModule::stop("Verification found errors!", &F);
              // replace function with call to abort
              std::vector<constType*>args;
              FunctionType* abrtTy = FunctionType::get(Type::getVoidTy(F.getContext()),args,false);
              Constant *func_abort = F.getParent()->getOrInsertFunction("abort", abrtTy);

              BasicBlock *BB = &F.getEntryBlock();
              Instruction *I = &*BB->begin();
              Instruction *UI = new UnreachableInst(F.getContext(), I);
              CallInst *AbrtC = CallInst::Create(func_abort, "", UI);
              AbrtC->setCallingConv(CallingConv::C);
              AbrtC->setTailCall(true);
#if LLVM_VERSION < 32
              AbrtC->setDoesNotReturn(true);
              AbrtC->setDoesNotThrow(true);
#else
              AbrtC->setDoesNotReturn();
              AbrtC->setDoesNotThrow();
#endif
              // remove all instructions from entry
#if LLVM_VERSION < 38
              BasicBlock::iterator BBI = I, BBE=BB->end();
#else
              BasicBlock::iterator BBI = I->getIterator(), BBE=BB->end();
#endif
              while (BBI != BBE) {
                  if (!BBI->use_empty())
                      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
                  BB->getInstList().erase(BBI++);
              }
          }

          // bb#9967 - deleting obsolete termination instructions
          for (unsigned i = 0; i < delInst.size(); ++i)
              delInst[i]->eraseFromParent();

          delete expander;
          return Changed;
      }

      virtual void releaseMemory() {
          badFunctions.clear();
      }

      virtual void getAnalysisUsage(AnalysisUsage &AU) const {
#if LLVM_VERSION < 32
          AU.addRequired<TargetData>();
#elif LLVM_VERSION < 35
          AU.addRequired<DataLayout>();
#elif LLVM_VERSION < 37
          AU.addRequired<DataLayoutPass>();
#else
    // No DataLayout pass needed anymore.
#endif
#if LLVM_VERSION < 35
          AU.addRequired<DominatorTree>();
#else
          AU.addRequired<DominatorTreeWrapperPass>();
#endif
#if LLVM_VERSION < 38
          AU.addRequired<ScalarEvolution>();
#else
          AU.addRequired<ScalarEvolutionWrapperPass>();
#endif
          AU.addRequired<PointerTracking>();
#if LLVM_VERSION < 35
          AU.addRequired<CallGraph>();
#else
          AU.addRequired<CallGraphWrapperPass>();
#endif
      }

      bool isValid() const { return valid; }
  private:
      PointerTracking *PT;
#if LLVM_VERSION < 32
      TargetData *TD;
#elif LLVM_VERSION < 35
      DataLayout *TD;
#else
      const DataLayout *TD;
#endif
      ScalarEvolution *SE;
      SCEVExpander *expander;
      DominatorTree *DT;
      DenseMap<Value*, Value*> BaseMap;
      DenseMap<Value*, Value*> BoundsMap;
      BasicBlock *AbrtBB;
      bool Changed;
      bool valid;
      Instruction *EP;

      Instruction *getInsertPoint(Value *V)
      {
#if LLVM_VERSION < 38
          BasicBlock::iterator It = EP;
#else
          BasicBlock::iterator It = EP->getIterator();
#endif
          if (Instruction *I = dyn_cast<Instruction>(V)) {
#if LLVM_VERSION < 38
              It = I;
#else
              It = I->getIterator();
#endif
              ++It;
          }
          return &*It;
      }

      Value *getPointerBase(Value *Ptr)
      {
          if (BaseMap.count(Ptr))
              return BaseMap[Ptr];
          Value *P = Ptr->stripPointerCasts();
          if (BaseMap.count(P)) {
              return BaseMap[Ptr] = BaseMap[P];
          }
#if LLVM_VERSION < 37
          Value *P2 = GetUnderlyingObject(P, TD);
#else
          Value *P2 = GetUnderlyingObject(P, *TD);
#endif
          if (P2 != P) {
              Value *V = getPointerBase(P2);
              return BaseMap[Ptr] = V;
          }

          constType *P8Ty =
              PointerType::getUnqual(Type::getInt8Ty(Ptr->getContext()));
          if (PHINode *PN = dyn_cast<PHINode>(Ptr)) {
#if LLVM_VERSION < 38
              BasicBlock::iterator It = PN;
#else
              BasicBlock::iterator It = PN->getIterator();
#endif
              ++It;
              PHINode *newPN = PHINode::Create(P8Ty, HINT(PN->getNumIncomingValues()) ".verif.base", &*It);
              Changed = true;
              BaseMap[Ptr] = newPN;

              for (unsigned i=0;i<PN->getNumIncomingValues();i++) {
                  Value *Inc = PN->getIncomingValue(i);
                  Value *V = getPointerBase(Inc);
                  newPN->addIncoming(V, PN->getIncomingBlock(i));
              }
              return newPN;
          }
          if (SelectInst *SI = dyn_cast<SelectInst>(Ptr)) {
#if LLVM_VERSION < 38
              BasicBlock::iterator It = SI;
#else
              BasicBlock::iterator It = SI->getIterator();
#endif
              ++It;
              Value *TrueB = getPointerBase(SI->getTrueValue());
              Value *FalseB = getPointerBase(SI->getFalseValue());
              if (TrueB && FalseB) {
                  SelectInst *NewSI = SelectInst::Create(SI->getCondition(), TrueB,
                                                         FalseB, ".select.base", &*It);
                  Changed = true;
                  return BaseMap[Ptr] = NewSI;
              }
          }
          if (Ptr->getType() != P8Ty) {
              if (Constant *C = dyn_cast<Constant>(Ptr))
                  Ptr = ConstantExpr::getPointerCast(C, P8Ty);
              else {
                  Instruction *I = getInsertPoint(Ptr);
                  Ptr = new BitCastInst(Ptr, P8Ty, "", I);
              }
          }
          return BaseMap[Ptr] = Ptr;
      }

      Value* getValAtIdx(Function *F, unsigned Idx) {
          Value *Val= NULL;

          // check if accessed Idx is within function parameter list
          if (Idx < F->arg_size()) {
              Function::arg_iterator It = F->arg_begin();
              Function::arg_iterator ItEnd = F->arg_end();
              for (unsigned i = 0; i < Idx; ++i, ++It) {
                  // redundant check, should not be possible
                  if (It == ItEnd) {
                      // Houston, the impossible has become possible
                      //printDiagnostic("Idx is outside of Function parameters", F);
                      errs() << "Idx is outside of Function parameters\n";
                      errs() << *F << "\n";
                      //valid = 0;
                      break;
                  }
              }
              // retrieve value ptr of argument of F at Idx
              Val = &(*It);
          }
          else {
              // Idx is outside function parameter list
              //printDiagnostic("Idx is outside of Function parameters", F);
              errs() << "Idx is outside of Function parameters\n";
              errs() << *F << "\n";
              //valid = 0;
          }
          return Val;
      }

      Value* getPointerBounds(Value *Base) {
          if (BoundsMap.count(Base))
              return BoundsMap[Base];
          constType *I64Ty =
              Type::getInt64Ty(Base->getContext());

#ifndef CLAMBC_COMPILER
          // first arg is hidden ctx
          if (Argument *A = dyn_cast<Argument>(Base)) {
              if (A->getArgNo() == 0) {
                  constType *Ty = cast<PointerType>(A->getType())->getElementType();
                  return ConstantInt::get(I64Ty, TD->getTypeAllocSize(Ty));
              } else if (Base->getType()->isPointerTy()) {
                  Function *F = A->getParent();
                  const FunctionType *FT = F->getFunctionType();

                  bool checks = true;
                  // last argument check
                  if (A->getArgNo() == (FT->getNumParams()-1)) {
                      //printDiagnostic("pointer argument cannot be last argument", F);
                      errs() << "pointer argument cannot be last argument\n";
                      errs() << *F << "\n";
                      checks = false;
                  }

                  // argument after pointer MUST be a integer (unsigned probably too)
                  if (checks && !FT->getParamType(A->getArgNo()+1)->isIntegerTy()) {
                      //printDiagnostic("argument following pointer argument is not an integer", F);
                      errs() << "argument following pointer argument is not an integer\n";
                      errs() << *F << "\n";
                      checks = false;
                  }

                  if (checks)
                      return BoundsMap[Base] = getValAtIdx(F, A->getArgNo()+1);
              }
          }
          if (LoadInst *LI = dyn_cast<LoadInst>(Base)) {
#if LLVM_VERSION < 37
              Value *V = GetUnderlyingObject(LI->getPointerOperand()->stripPointerCasts(), TD);
#else
              Value *V = GetUnderlyingObject(LI->getPointerOperand()->stripPointerCasts(), *TD);
#endif
              if (Argument *A = dyn_cast<Argument>(V)) {
                  if (A->getArgNo() == 0) {
                      // pointers from hidden ctx are trusted to be at least the
                      // size they say they are
                      constType *Ty = cast<PointerType>(LI->getType())->getElementType();
                      return ConstantInt::get(I64Ty, TD->getTypeAllocSize(Ty));
                  }
              }
          }
#else
          if (Base->getType()->isPointerTy()) {
              if (Argument *A = dyn_cast<Argument>(Base)) {
                  Function *F = A->getParent();
                  const FunctionType *FT = F->getFunctionType();

                  bool checks = true;
                  // last argument check
                  if (A->getArgNo() == (FT->getNumParams()-1)) {
                      //printDiagnostic("pointer argument cannot be last argument", F);
                      errs() << "pointer argument cannot be last argument\n";
                      errs() << *F << "\n";
                      checks = false;
                  }

                  // argument after pointer MUST be a integer (unsigned probably too)
                  if (checks && !FT->getParamType(A->getArgNo()+1)->isIntegerTy()) {
                      //printDiagnostic("argument following pointer argument is not an integer", F);
                      errs() << "argument following pointer argument is not an integer\n";
                      errs() << *F << "\n";
                      checks = false;
                  }

                  if (checks)
                      return BoundsMap[Base] = getValAtIdx(F, A->getArgNo()+1);
              }
          }
#endif
          if (PHINode *PN = dyn_cast<PHINode>(Base)) {
#if LLVM_VERSION < 38
              BasicBlock::iterator It = PN;
#else
              BasicBlock::iterator It = PN->getIterator();
#endif
              ++It;
              PHINode *newPN = PHINode::Create(I64Ty, HINT(PN->getNumIncomingValues()) ".verif.bounds", &*It);
              Changed = true;
              BoundsMap[Base] = newPN;

              bool good = true;
              for (unsigned i=0;i<PN->getNumIncomingValues();i++) {
                  Value *Inc = PN->getIncomingValue(i);
                  Value *B = getPointerBounds(Inc);
                  if (!B) {
                      good = false;
                      B = ConstantInt::get(newPN->getType(), 0);
                      DEBUG(dbgs() << "bounds not found while solving phi node: " << *Inc
                            << "\n");
                  }
                  newPN->addIncoming(B, PN->getIncomingBlock(i));
              }
              if (!good)
                  newPN = 0;
              return BoundsMap[Base] = newPN;
          }
          if (SelectInst *SI = dyn_cast<SelectInst>(Base)) {
#if LLVM_VERSION < 38
              BasicBlock::iterator It = SI;
#else
              BasicBlock::iterator It = SI->getIterator();
#endif
              ++It;
              Value *TrueB = getPointerBounds(SI->getTrueValue());
              Value *FalseB = getPointerBounds(SI->getFalseValue());
              if (TrueB && FalseB) {
                  SelectInst *NewSI = SelectInst::Create(SI->getCondition(), TrueB,
                                                         FalseB, ".select.bounds", &*It);
                  Changed = true;
                  return BoundsMap[Base] = NewSI;
              }
          }

          constType *Ty;
          Value *V = PT->computeAllocationCountValue(Base, Ty);
          if (!V) {
              Base = Base->stripPointerCasts();
              if (CallInst *CI = dyn_cast<CallInst>(Base)) {
                  Function *F = CI->getCalledFunction();
                  constFunctionType *FTy = F->getFunctionType();
                  // last operand is always size for this API call kind
                  if (F->isDeclaration() && FTy->getNumParams() > 0) {
                      CallSite CS(CI);
                      if (FTy->getParamType(FTy->getNumParams()-1)->isIntegerTy())
                          V = CS.getArgument(FTy->getNumParams()-1);
                  }
              }
              if (!V)
                  return BoundsMap[Base] = 0;
          } else {
              unsigned size = TD->getTypeAllocSize(Ty);
              if (size > 1) {
                  Constant *C = cast<Constant>(V);
                  C = ConstantExpr::getMul(C,
                                           ConstantInt::get(Type::getInt32Ty(C->getContext()),
                                                            size));
                  V = C;
              }
          }
          if (V->getType() != I64Ty) {
              if (Constant *C = dyn_cast<Constant>(V))
                  V = ConstantExpr::getZExt(C, I64Ty);
              else {
                  Instruction *I = getInsertPoint(V);
                  V = new ZExtInst(V, I64Ty, "", I);
              }
          }
          return BoundsMap[Base] = V;
      }

      MDNode *getLocation(Instruction *I, bool &Approximate, unsigned MDDbgKind)
      {
          Approximate = false;
          if (MDNode *Dbg = I->getMetadata(MDDbgKind))
              return Dbg;
          if (!MDDbgKind)
              return 0;
          Approximate = true;
#if LLVM_VERSION < 38
          BasicBlock::iterator It = I;
#else
          BasicBlock::iterator It = I->getIterator();
#endif
          while (It != I->getParent()->begin()) {
              --It;
              if (MDNode *Dbg = It->getMetadata(MDDbgKind))
                  return Dbg;
          }
          BasicBlock *BB = I->getParent();
          while ((BB = BB->getUniquePredecessor())) {
              It = BB->end();
              while (It != BB->begin()) {
                  --It;
                  if (MDNode *Dbg = It->getMetadata(MDDbgKind))
                      return Dbg;
              }
          }
          return 0;
      }

      bool insertCheck(const SCEV *Idx, const SCEV *Limit, Instruction *I,
                       bool strict)
      {
          if (isa<SCEVCouldNotCompute>(Idx) && isa<SCEVCouldNotCompute>(Limit)) {
              errs() << "Could not compute the index and the limit!: \n" << *I << "\n";
              return false;
          }
          if (isa<SCEVCouldNotCompute>(Idx)) {
              errs() << "Could not compute index: \n" << *I << "\n";
              return false;
          }
          if (isa<SCEVCouldNotCompute>(Limit)) {
              errs() << "Could not compute limit: " << *I << "\n";
              return false;
          }
          BasicBlock *BB = I->getParent();
#if LLVM_VERSION < 38
          BasicBlock::iterator It = I;
#else
          BasicBlock::iterator It = I->getIterator();
#endif
#if LLVM_VERSION < 37
          BasicBlock *newBB = SplitBlock(BB, &*It, this);
#else
          BasicBlock *newBB = SplitBlock(BB, &*It);
#endif
          PHINode *PN;
          unsigned MDDbgKind = I->getContext().getMDKindID("dbg");
          //verifyFunction(*BB->getParent());
          if (!AbrtBB) {
              std::vector<constType*>args;
              FunctionType* abrtTy = FunctionType::get(Type::getVoidTy(BB->getContext()),args,false);
              args.push_back(Type::getInt32Ty(BB->getContext()));
              FunctionType* rterrTy = FunctionType::get(Type::getInt32Ty(BB->getContext()),args,false);
              Constant *func_abort = BB->getParent()->getParent()->getOrInsertFunction("abort", abrtTy);
              Constant *func_rterr = BB->getParent()->getParent()->getOrInsertFunction("bytecode_rt_error",
                                                                                       rterrTy);
              AbrtBB = BasicBlock::Create(BB->getContext(), "rterr.trig", BB->getParent());
              
              PN = PHINode::Create(Type::getInt32Ty(BB->getContext()),HINT(1) "",
                                   AbrtBB);
              if (MDDbgKind) {
                  CallInst *RtErrCall = CallInst::Create(func_rterr, PN, "", AbrtBB);
                  RtErrCall->setCallingConv(CallingConv::C);
                  RtErrCall->setTailCall(true);
#if LLVM_VERSION < 32
                  RtErrCall->setDoesNotThrow(true);
#else
                  RtErrCall->setDoesNotThrow();
#endif
              }
              CallInst* AbrtC = CallInst::Create(func_abort, "", AbrtBB);
              AbrtC->setCallingConv(CallingConv::C);
              AbrtC->setTailCall(true);
#if LLVM_VERSION < 32
              AbrtC->setDoesNotReturn(true);
              AbrtC->setDoesNotThrow(true);
#else
              AbrtC->setDoesNotReturn();
              AbrtC->setDoesNotThrow();
#endif
              new UnreachableInst(BB->getContext(), AbrtBB);
              DT->addNewBlock(AbrtBB, BB);
              //verifyFunction(*BB->getParent());
          } else {
              PN = cast<PHINode>(AbrtBB->begin());
          }
          unsigned locationid = 0;
          bool Approximate;
          if (MDNode *Dbg = getLocation(I, Approximate, MDDbgKind)) {
#if LLVM_VERSION < 37
              DILocation Loc(Dbg);
              locationid = Loc.getLineNumber() << 8;
              unsigned col = Loc.getColumnNumber();
#else
              DebugLoc Loc(Dbg);
              locationid = Loc.getLine() << 8;
              unsigned col = Loc.getCol();
#endif
              if (col > 254)
                  col = 254;
              if (Approximate)
                  col = 255;
              locationid |= col;
          }
          PN->addIncoming(ConstantInt::get(Type::getInt32Ty(BB->getContext()),
                                           locationid), BB);
          TerminatorInst *TI = BB->getTerminator();
          Value *IdxV = expander->expandCodeFor(Idx, Limit->getType(), TI);
          Value *LimitV = expander->expandCodeFor(Limit, Limit->getType(), TI);
          if (isa<Instruction>(IdxV) &&
              !DT->dominates(cast<Instruction>(IdxV)->getParent(),I->getParent())) {
              printLocation(I, true);
              errs() << "basic block with value [ " << IdxV->getName();
              errs() << " ] with limit [ " << LimitV->getName();
              errs() << " ] does not dominate" << *I << "\n";
              return false;
          }
          if (isa<Instruction>(LimitV) &&
              !DT->dominates(cast<Instruction>(LimitV)->getParent(),I->getParent())) {
              printLocation(I, true);
              errs() << "basic block with limit [" << LimitV->getName();
              errs() << " ] on value [ " << IdxV->getName();
              errs() << " ] does not dominate" << *I << "\n";
              return false;
          }
          Value *Cond = new ICmpInst(TI, strict ?
                                     ICmpInst::ICMP_ULT :
                                     ICmpInst::ICMP_ULE, IdxV, LimitV);
          BranchInst::Create(newBB, AbrtBB, Cond, TI);
          //TI->eraseFromParent();
          delInst.push_back(TI);
          // Update dominator info
          BasicBlock *DomBB =
              DT->findNearestCommonDominator(BB, DT->getNode(AbrtBB)->getIDom()->getBlock());
          DT->changeImmediateDominator(AbrtBB, DomBB);
          return true;
      }

      static void MakeCompatible(ScalarEvolution *SE, const SCEV*& LHS, const SCEV*& RHS)
      {
          if (const SCEVZeroExtendExpr *ZL = dyn_cast<SCEVZeroExtendExpr>(LHS))
              LHS = ZL->getOperand();
          if (const SCEVZeroExtendExpr *ZR = dyn_cast<SCEVZeroExtendExpr>(RHS))
              RHS = ZR->getOperand();

          constType* LTy = SE->getEffectiveSCEVType(LHS->getType());
          constType *RTy = SE->getEffectiveSCEVType(RHS->getType());
          if (SE->getTypeSizeInBits(RTy) > SE->getTypeSizeInBits(LTy))
              LTy = RTy;
          LHS = SE->getNoopOrZeroExtend(LHS, LTy);
          RHS = SE->getNoopOrZeroExtend(RHS, LTy);
      }

      bool checkCond(Instruction *ICI, Instruction *I, bool equal)
      {
          for (Value::use_iterator JU=ICI->use_begin(),JUE=ICI->use_end();
               JU != JUE; ++JU) {
              Value *JU_V = *JU;
              if (BranchInst *BI = dyn_cast<BranchInst>(JU_V)) {
                  if (!BI->isConditional())
                      continue;
                  BasicBlock *S = BI->getSuccessor(equal);
                  if (DT->dominates(S, I->getParent()))
                      return true;
              }
              if (BinaryOperator *BI = dyn_cast<BinaryOperator>(JU_V)) {
                  if (BI->getOpcode() == Instruction::Or &&
                      checkCond(BI, I, equal))
                      return true;
                  if (BI->getOpcode() == Instruction::And &&
                      checkCond(BI, I, !equal))
                      return true;
              }
          }
          return false;
      }

      bool checkCondition(Instruction *CI, Instruction *I)
      {
          for (Value::use_iterator U=CI->use_begin(),UE=CI->use_end();
               U != UE; ++U) {
              Value *U_V = *U;
              if (ICmpInst *ICI = dyn_cast<ICmpInst>(U_V)) {
                  if (ICI->getOperand(0)->stripPointerCasts() == CI &&
                      isa<ConstantPointerNull>(ICI->getOperand(1))) {
                      if (checkCond(ICI, I, ICI->getPredicate() == ICmpInst::ICMP_EQ))
                          return true;
                  }
              }
          }
          return false;
      }

      bool validateAccess(Value *Pointer, Value *Length, Instruction *I)
      {
          // get base
          Value *Base = getPointerBase(Pointer);

          Value *SBase = Base->stripPointerCasts();
          // get bounds
          Value *Bounds = getPointerBounds(SBase);
          if (!Bounds) {
              printLocation(I, true);
              errs() << "no bounds for base ";
              printValue(SBase);
              errs() << " while checking access to ";
              printValue(Pointer);
              errs() << " of length ";
              printValue(Length);
              errs() << "\n";

              return false;
          }

          // checks if a NULL pointer check (returned from function) is made:
          if (CallInst *CI = dyn_cast<CallInst>(Base->stripPointerCasts())) {
              // by checking if use is in the same block (i.e. no branching decisions)
              if (I->getParent() == CI->getParent()) {
                  printLocation(I, true);
                  errs() << "no null pointer check of pointer ";
                  printValue(Base, false, true);
                  errs() << " obtained by function call";
                  errs() << " before use in same block\n";
                  return false;
              }
              // by checking if a conditional contains the values in question somewhere
              // between their usage
              if (!checkCondition(CI, I)) {
                  printLocation(I, true);
                  errs() << "no null pointer check of pointer ";
                  printValue(Base, false, true);
                  errs() << " obtained by function call";
                  errs() << " before use\n";
                  return false;
              }
          }

      constType *I64Ty =
          Type::getInt64Ty(Base->getContext());
      const SCEV *SLen = SE->getSCEV(Length);
      const SCEV *OffsetP = SE->getMinusSCEV(SE->getSCEV(Pointer),
                                             SE->getSCEV(Base));
      SLen = SE->getNoopOrZeroExtend(SLen, I64Ty);
      OffsetP = SE->getNoopOrZeroExtend(OffsetP, I64Ty);
      const SCEV *Limit = SE->getSCEV(Bounds);
      Limit = SE->getNoopOrZeroExtend(Limit, I64Ty);

      DEBUG(dbgs() << "Checking access to " << *Pointer << " of length " <<
            *Length << "\n");
      if (OffsetP == Limit) {
          printLocation(I, true);
          errs() << "OffsetP == Limit: " << *OffsetP << "\n";
          errs() << " while checking access to ";
          printValue(Pointer);
          errs() << " of length ";
          printValue(Length);
          errs() << "\n";
          return false;
      }

      if (SLen == Limit) {
          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OffsetP)) {
              if (SC->isZero())
                  return true;
          }
          errs() << "SLen == Limit: " << *SLen << "\n";
          errs() << " while checking access to " << *Pointer << " of length "
                 << *Length << " at " << *I << "\n";
          return false;
      }

      bool valid = true;
      SLen = SE->getAddExpr(OffsetP, SLen);
      // check that offset + slen <= limit;
      // umax(offset+slen, limit) == limit is a sufficient (but not necessary
      // condition)
      const SCEV *MaxL = SE->getUMaxExpr(SLen, Limit);
      if (MaxL != Limit) {
          DEBUG(dbgs() << "MaxL != Limit: " << *MaxL << ", " << *Limit << "\n");
          valid &= insertCheck(SLen, Limit, I, false);
      }

      //TODO: nullpointer check
      const SCEV *Max = SE->getUMaxExpr(OffsetP, Limit);
      if (Max == Limit)
          return valid;
      DEBUG(dbgs() << "Max != Limit: " << *Max << ", " << *Limit << "\n");

      // check that offset < limit
      valid &= insertCheck(OffsetP, Limit, I, true);
      return valid;
      }

      bool validateAccess(Value *Pointer, unsigned size, Instruction *I)
      {
          return validateAccess(Pointer,
                                ConstantInt::get(Type::getInt32Ty(Pointer->getContext()),
                                                 size), I);
      }

  };
    char PtrVerifier::ID;

} /* end namespace llvm */
#if LLVM_VERSION >= 29
INITIALIZE_PASS_BEGIN(PtrVerifier, "", "", false, false)
#if LLVM_VERSION < 32
INITIALIZE_PASS_DEPENDENCY(TargetData)
#elif LLVM_VERSION < 35
INITIALIZE_PASS_DEPENDENCY(DataLayout)
#else
#if LLVM_VERSION < 37
INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
#else
// No DataLayout pass needed anymore.
#endif
#endif
#if LLVM_VERSION < 35
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
#else
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
#endif
#if LLVM_VERSION < 38
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
#else
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
#endif
#if LLVM_VERSION < 34
INITIALIZE_AG_DEPENDENCY(CallGraph)
#elif LLVM_VERSION < 35
INITIALIZE_PASS_DEPENDENCY(CallGraph)
#else
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
#endif
INITIALIZE_PASS_DEPENDENCY(PointerTracking)
INITIALIZE_PASS_END(PtrVerifier, "clambc-rtchecks", "ClamBC RTchecks", false, false)
#endif


llvm::Pass *createClamBCRTChecks()
{
    return new PtrVerifier();
}