1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
|
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
STATISTIC(NumCacheNonLocalPtr,
"Number of fully cached non-local ptr responses");
STATISTIC(NumCacheDirtyNonLocalPtr,
"Number of cached, but dirty, non-local ptr responses");
STATISTIC(NumUncacheNonLocalPtr,
"Number of uncached non-local ptr responses");
STATISTIC(NumCacheCompleteNonLocalPtr,
"Number of block queries that were completely cached");
char MemoryDependenceAnalysis::ID = 0;
// Register this pass...
INITIALIZE_PASS(MemoryDependenceAnalysis, "memdep",
"Memory Dependence Analysis", false, true);
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
: FunctionPass(ID), PredCache(0) {
}
MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
}
/// Clean up memory in between runs
void MemoryDependenceAnalysis::releaseMemory() {
LocalDeps.clear();
NonLocalDeps.clear();
NonLocalPointerDeps.clear();
ReverseLocalDeps.clear();
ReverseNonLocalDeps.clear();
ReverseNonLocalPtrDeps.clear();
PredCache->clear();
}
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
}
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
if (PredCache == 0)
PredCache.reset(new PredIteratorCache());
return false;
}
/// RemoveFromReverseMap - This is a helper function that removes Val from
/// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
template <typename KeyTy>
static void RemoveFromReverseMap(DenseMap<Instruction*,
SmallPtrSet<KeyTy, 4> > &ReverseMap,
Instruction *Inst, KeyTy Val) {
typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
InstIt = ReverseMap.find(Inst);
assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
bool Found = InstIt->second.erase(Val);
assert(Found && "Invalid reverse map!"); Found=Found;
if (InstIt->second.empty())
ReverseMap.erase(InstIt);
}
/// getCallSiteDependencyFrom - Private helper for finding the local
/// dependencies of a call site.
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
BasicBlock::iterator ScanIt, BasicBlock *BB) {
// Walk backwards through the block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If this inst is a memory op, get the pointer it accessed
Value *Pointer = 0;
uint64_t PointerSize = 0;
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
Pointer = S->getPointerOperand();
PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Pointer = V->getOperand(0);
PointerSize = AA->getTypeStoreSize(V->getType());
} else if (const CallInst *CI = isFreeCall(Inst)) {
Pointer = CI->getArgOperand(0);
// calls to free() erase the entire structure
PointerSize = ~0ULL;
} else if (CallSite InstCS = cast<Value>(Inst)) {
// Debug intrinsics don't cause dependences.
if (isa<DbgInfoIntrinsic>(Inst)) continue;
// If these two calls do not interfere, look past it.
switch (AA->getModRefInfo(CS, InstCS)) {
case AliasAnalysis::NoModRef:
// If the two calls are the same, return InstCS as a Def, so that
// CS can be found redundant and eliminated.
if (isReadOnlyCall && InstCS.onlyReadsMemory() &&
CS.getInstruction()->isIdenticalToWhenDefined(Inst))
return MemDepResult::getDef(Inst);
// Otherwise if the two calls don't interact (e.g. InstCS is readnone)
// keep scanning.
continue;
default:
return MemDepResult::getClobber(Inst);
}
} else {
// Non-memory instruction.
continue;
}
if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
return MemDepResult::getClobber(Inst);
}
// No dependence found. If this is the entry block of the function, it is a
// clobber, otherwise it is non-local.
if (BB != &BB->getParent()->getEntryBlock())
return MemDepResult::getNonLocal();
return MemDepResult::getClobber(ScanIt);
}
/// getPointerDependencyFrom - Return the instruction on which a memory
/// location depends. If isLoad is true, this routine ignore may-aliases with
/// read-only operations.
MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
BasicBlock::iterator ScanIt, BasicBlock *BB) {
Value *InvariantTag = 0;
// Walk backwards through the basic block, looking for dependencies.
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If we're in an invariant region, no dependencies can be found before
// we pass an invariant-begin marker.
if (InvariantTag == Inst) {
InvariantTag = 0;
continue;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
// Debug intrinsics don't cause dependences.
if (isa<DbgInfoIntrinsic>(Inst)) continue;
// If we pass an invariant-end marker, then we've just entered an
// invariant region and can start ignoring dependencies.
if (II->getIntrinsicID() == Intrinsic::invariant_end) {
// FIXME: This only considers queries directly on the invariant-tagged
// pointer, not on query pointers that are indexed off of them. It'd
// be nice to handle that at some point.
AliasAnalysis::AliasResult R = AA->alias(II->getArgOperand(2), MemPtr);
if (R == AliasAnalysis::MustAlias) {
InvariantTag = II->getArgOperand(0);
continue;
}
// If we reach a lifetime begin or end marker, then the query ends here
// because the value is undefined.
} else if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
// FIXME: This only considers queries directly on the invariant-tagged
// pointer, not on query pointers that are indexed off of them. It'd
// be nice to handle that at some point.
AliasAnalysis::AliasResult R = AA->alias(II->getArgOperand(1), MemPtr);
if (R == AliasAnalysis::MustAlias)
return MemDepResult::getDef(II);
}
}
// If we're querying on a load and we're in an invariant region, we're done
// at this point. Nothing a load depends on can live in an invariant region.
if (isLoad && InvariantTag) continue;
// Values depend on loads if the pointers are must aliased. This means that
// a load depends on another must aliased load from the same value.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Value *Pointer = LI->getPointerOperand();
uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
// If we found a pointer, check if it could be the same as our pointer.
AliasAnalysis::AliasResult R =
AA->alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
// May-alias loads don't depend on each other without a dependence.
if (isLoad && R == AliasAnalysis::MayAlias)
continue;
// Stores depend on may and must aliased loads, loads depend on must-alias
// loads.
return MemDepResult::getDef(Inst);
}
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// There can't be stores to the value we care about inside an
// invariant region.
if (InvariantTag) continue;
// If alias analysis can tell that this store is guaranteed to not modify
// the query pointer, ignore it. Use getModRefInfo to handle cases where
// the query pointer points to constant memory etc.
if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
continue;
// Ok, this store might clobber the query pointer. Check to see if it is
// a must alias: in this case, we want to return this as a def.
Value *Pointer = SI->getPointerOperand();
uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
// If we found a pointer, check if it could be the same as our pointer.
AliasAnalysis::AliasResult R =
AA->alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
if (R == AliasAnalysis::MayAlias)
return MemDepResult::getClobber(Inst);
return MemDepResult::getDef(Inst);
}
// If this is an allocation, and if we know that the accessed pointer is to
// the allocation, return Def. This means that there is no dependence and
// the access can be optimized based on that. For example, a load could
// turn into undef.
// Note: Only determine this to be a malloc if Inst is the malloc call, not
// a subsequent bitcast of the malloc call result. There can be stores to
// the malloced memory between the malloc call and its bitcast uses, and we
// need to continue scanning until the malloc call.
if (isa<AllocaInst>(Inst) ||
(isa<CallInst>(Inst) && extractMallocCall(Inst))) {
Value *AccessPtr = MemPtr->getUnderlyingObject();
if (AccessPtr == Inst ||
AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
return MemDepResult::getDef(Inst);
continue;
}
// See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
case AliasAnalysis::NoModRef:
// If the call has no effect on the queried pointer, just ignore it.
continue;
case AliasAnalysis::Mod:
// If we're in an invariant region, we can ignore calls that ONLY
// modify the pointer.
if (InvariantTag) continue;
return MemDepResult::getClobber(Inst);
case AliasAnalysis::Ref:
// If the call is known to never store to the pointer, and if this is a
// load query, we can safely ignore it (scan past it).
if (isLoad)
continue;
default:
// Otherwise, there is a potential dependence. Return a clobber.
return MemDepResult::getClobber(Inst);
}
}
// No dependence found. If this is the entry block of the function, it is a
// clobber, otherwise it is non-local.
if (BB != &BB->getParent()->getEntryBlock())
return MemDepResult::getNonLocal();
return MemDepResult::getClobber(ScanIt);
}
/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
MemDepResult &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it. Note that this depends
// on MemDepResult's default constructing to 'dirty'.
if (!LocalCache.isDirty())
return LocalCache;
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getInst()) {
ScanPos = Inst;
RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
}
BasicBlock *QueryParent = QueryInst->getParent();
Value *MemPtr = 0;
uint64_t MemSize = 0;
// Do the scan.
if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
// No dependence found. If this is the entry block of the function, it is a
// clobber, otherwise it is non-local.
if (QueryParent != &QueryParent->getParent()->getEntryBlock())
LocalCache = MemDepResult::getNonLocal();
else
LocalCache = MemDepResult::getClobber(QueryInst);
} else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
// If this is a volatile store, don't mess around with it. Just return the
// previous instruction as a clobber.
if (SI->isVolatile())
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
else {
MemPtr = SI->getPointerOperand();
MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
}
} else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
// If this is a volatile load, don't mess around with it. Just return the
// previous instruction as a clobber.
if (LI->isVolatile())
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
else {
MemPtr = LI->getPointerOperand();
MemSize = AA->getTypeStoreSize(LI->getType());
}
} else if (const CallInst *CI = isFreeCall(QueryInst)) {
MemPtr = CI->getArgOperand(0);
// calls to free() erase the entire structure, not just a field.
MemSize = ~0UL;
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
int IntrinsicID = 0; // Intrinsic IDs start at 1.
IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst);
if (II)
IntrinsicID = II->getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
MemPtr = II->getArgOperand(1);
MemSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
break;
case Intrinsic::invariant_end:
MemPtr = II->getArgOperand(2);
MemSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
break;
default:
CallSite QueryCS(QueryInst);
bool isReadOnly = AA->onlyReadsMemory(QueryCS);
LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
QueryParent);
break;
}
} else {
// Non-memory instruction.
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
}
// If we need to do a pointer scan, make it happen.
if (MemPtr) {
bool isLoad = !QueryInst->mayWriteToMemory();
if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) {
isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
}
LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos,
QueryParent);
}
// Remember the result!
if (Instruction *I = LocalCache.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return LocalCache;
}
#ifndef NDEBUG
/// AssertSorted - This method is used when -debug is specified to verify that
/// cache arrays are properly kept sorted.
static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
int Count = -1) {
if (Count == -1) Count = Cache.size();
if (Count == 0) return;
for (unsigned i = 1; i != unsigned(Count); ++i)
assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
}
#endif
/// getNonLocalCallDependency - Perform a full dependency query for the
/// specified call, returning the set of blocks that the value is
/// potentially live across. The returned set of results will include a
/// "NonLocal" result for all blocks where the value is live across.
///
/// This method assumes the instruction returns a "NonLocal" dependency
/// within its own block.
///
/// This returns a reference to an internal data structure that may be
/// invalidated on the next non-local query or when an instruction is
/// removed. Clients must copy this data if they want it around longer than
/// that.
const MemoryDependenceAnalysis::NonLocalDepInfo &
MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
"getNonLocalCallDependency should only be used on calls with non-local deps!");
PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
NonLocalDepInfo &Cache = CacheP.first;
/// DirtyBlocks - This is the set of blocks that need to be recomputed. In
/// the cached case, this can happen due to instructions being deleted etc. In
/// the uncached case, this starts out as the set of predecessors we care
/// about.
SmallVector<BasicBlock*, 32> DirtyBlocks;
if (!Cache.empty()) {
// Okay, we have a cache entry. If we know it is not dirty, just return it
// with no computation.
if (!CacheP.second) {
++NumCacheNonLocal;
return Cache;
}
// If we already have a partially computed set of results, scan them to
// determine what is dirty, seeding our initial DirtyBlocks worklist.
for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
I != E; ++I)
if (I->getResult().isDirty())
DirtyBlocks.push_back(I->getBB());
// Sort the cache so that we can do fast binary search lookups below.
std::sort(Cache.begin(), Cache.end());
++NumCacheDirtyNonLocal;
//cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
// << Cache.size() << " cached: " << *QueryInst;
} else {
// Seed DirtyBlocks with each of the preds of QueryInst's block.
BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
DirtyBlocks.push_back(*PI);
++NumUncacheNonLocal;
}
// isReadonlyCall - If this is a read-only call, we can be more aggressive.
bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
SmallPtrSet<BasicBlock*, 64> Visited;
unsigned NumSortedEntries = Cache.size();
DEBUG(AssertSorted(Cache));
// Iterate while we still have blocks to update.
while (!DirtyBlocks.empty()) {
BasicBlock *DirtyBB = DirtyBlocks.back();
DirtyBlocks.pop_back();
// Already processed this block?
if (!Visited.insert(DirtyBB))
continue;
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
DEBUG(AssertSorted(Cache, NumSortedEntries));
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
NonLocalDepEntry(DirtyBB));
if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
--Entry;
NonLocalDepEntry *ExistingResult = 0;
if (Entry != Cache.begin()+NumSortedEntries &&
Entry->getBB() == DirtyBB) {
// If we already have an entry, and if it isn't already dirty, the block
// is done.
if (!Entry->getResult().isDirty())
continue;
// Otherwise, remember this slot so we can update the value.
ExistingResult = &*Entry;
}
// If the dirty entry has a pointer, start scanning from it so we don't have
// to rescan the entire block.
BasicBlock::iterator ScanPos = DirtyBB->end();
if (ExistingResult) {
if (Instruction *Inst = ExistingResult->getResult().getInst()) {
ScanPos = Inst;
// We're removing QueryInst's use of Inst.
RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
QueryCS.getInstruction());
}
}
// Find out if this block has a local dependency for QueryInst.
MemDepResult Dep;
if (ScanPos != DirtyBB->begin()) {
Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
} else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
// No dependence found. If this is the entry block of the function, it is
// a clobber, otherwise it is non-local.
Dep = MemDepResult::getNonLocal();
} else {
Dep = MemDepResult::getClobber(ScanPos);
}
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
ExistingResult->setResult(Dep);
else
Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the association!
if (!Dep.isNonLocal()) {
// Keep the ReverseNonLocalDeps map up to date so we can efficiently
// update this when we remove instructions.
if (Instruction *Inst = Dep.getInst())
ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
} else {
// If the block *is* completely transparent to the load, we need to check
// the predecessors of this block. Add them to our worklist.
for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
DirtyBlocks.push_back(*PI);
}
}
return Cache;
}
/// getNonLocalPointerDependency - Perform a full dependency query for an
/// access to the specified (non-volatile) memory location, returning the
/// set of instructions that either define or clobber the value.
///
/// This method assumes the pointer has a "NonLocal" dependency within its
/// own block.
///
void MemoryDependenceAnalysis::
getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
SmallVectorImpl<NonLocalDepResult> &Result) {
assert(Pointer->getType()->isPointerTy() &&
"Can't get pointer deps of a non-pointer!");
Result.clear();
// We know that the pointer value is live into FromBB find the def/clobbers
// from presecessors.
const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
PHITransAddr Address(Pointer, TD);
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
// a block with multiple different pointers. This can happen during PHI
// translation.
DenseMap<BasicBlock*, Value*> Visited;
if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB,
Result, Visited, true))
return;
Result.clear();
Result.push_back(NonLocalDepResult(FromBB,
MemDepResult::getClobber(FromBB->begin()),
Pointer));
}
/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
/// Pointer/PointeeSize using either cached information in Cache or by doing a
/// lookup (which may use dirty cache info if available). If we do a lookup,
/// add the result to the cache.
MemDepResult MemoryDependenceAnalysis::
GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
bool isLoad, BasicBlock *BB,
NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
NonLocalDepEntry(BB));
if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
--Entry;
NonLocalDepEntry *ExistingResult = 0;
if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
ExistingResult = &*Entry;
// If we have a cached entry, and it is non-dirty, use it as the value for
// this dependency.
if (ExistingResult && !ExistingResult->getResult().isDirty()) {
++NumCacheNonLocalPtr;
return ExistingResult->getResult();
}
// Otherwise, we have to scan for the value. If we have a dirty cache
// entry, start scanning from its position, otherwise we scan from the end
// of the block.
BasicBlock::iterator ScanPos = BB->end();
if (ExistingResult && ExistingResult->getResult().getInst()) {
assert(ExistingResult->getResult().getInst()->getParent() == BB &&
"Instruction invalidated?");
++NumCacheDirtyNonLocalPtr;
ScanPos = ExistingResult->getResult().getInst();
// Eliminating the dirty entry from 'Cache', so update the reverse info.
ValueIsLoadPair CacheKey(Pointer, isLoad);
RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
} else {
++NumUncacheNonLocalPtr;
}
// Scan the block for the dependency.
MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
ScanPos, BB);
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
ExistingResult->setResult(Dep);
else
Cache->push_back(NonLocalDepEntry(BB, Dep));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the reverse association because we just added it
// to Cache!
if (Dep.isNonLocal())
return Dep;
// Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
// update MemDep when we remove instructions.
Instruction *Inst = Dep.getInst();
assert(Inst && "Didn't depend on anything?");
ValueIsLoadPair CacheKey(Pointer, isLoad);
ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
return Dep;
}
/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
/// number of elements in the array that are already properly ordered. This is
/// optimized for the case when only a few entries are added.
static void
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
unsigned NumSortedEntries) {
switch (Cache.size() - NumSortedEntries) {
case 0:
// done, no new entries.
break;
case 2: {
// Two new entries, insert the last one into place.
NonLocalDepEntry Val = Cache.back();
Cache.pop_back();
MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.end()-1, Val);
Cache.insert(Entry, Val);
// FALL THROUGH.
}
case 1:
// One new entry, Just insert the new value at the appropriate position.
if (Cache.size() != 1) {
NonLocalDepEntry Val = Cache.back();
Cache.pop_back();
MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.end(), Val);
Cache.insert(Entry, Val);
}
break;
default:
// Added many values, do a full scale sort.
std::sort(Cache.begin(), Cache.end());
break;
}
}
/// getNonLocalPointerDepFromBB - Perform a dependency query based on
/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
/// results to the results vector and keep track of which blocks are visited in
/// 'Visited'.
///
/// This has special behavior for the first block queries (when SkipFirstBlock
/// is true). In this special case, it ignores the contents of the specified
/// block and starts returning dependence info for its predecessors.
///
/// This function returns false on success, or true to indicate that it could
/// not compute dependence information for some reason. This should be treated
/// as a clobber dependence on the first instruction in the predecessor block.
bool MemoryDependenceAnalysis::
getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize,
bool isLoad, BasicBlock *StartBB,
SmallVectorImpl<NonLocalDepResult> &Result,
DenseMap<BasicBlock*, Value*> &Visited,
bool SkipFirstBlock) {
// Look up the cached info for Pointer.
ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
&NonLocalPointerDeps[CacheKey];
NonLocalDepInfo *Cache = &CacheInfo->second;
// If we have valid cached information for exactly the block we are
// investigating, just return it with no recomputation.
if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
// We have a fully cached result for this query then we can just return the
// cached results and populate the visited set. However, we have to verify
// that we don't already have conflicting results for these blocks. Check
// to ensure that if a block in the results set is in the visited set that
// it was for the same pointer query.
if (!Visited.empty()) {
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
if (VI == Visited.end() || VI->second == Pointer.getAddr())
continue;
// We have a pointer mismatch in a block. Just return clobber, saying
// that something was clobbered in this result. We could also do a
// non-fully cached query, but there is little point in doing this.
return true;
}
}
Value *Addr = Pointer.getAddr();
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
Visited.insert(std::make_pair(I->getBB(), Addr));
if (!I->getResult().isNonLocal())
Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
}
++NumCacheCompleteNonLocalPtr;
return false;
}
// Otherwise, either this is a new block, a block with an invalid cache
// pointer or one that we're about to invalidate by putting more info into it
// than its valid cache info. If empty, the result will be valid cache info,
// otherwise it isn't.
if (Cache->empty())
CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
else
CacheInfo->first = BBSkipFirstBlockPair();
SmallVector<BasicBlock*, 32> Worklist;
Worklist.push_back(StartBB);
// Keep track of the entries that we know are sorted. Previously cached
// entries will all be sorted. The entries we add we only sort on demand (we
// don't insert every element into its sorted position). We know that we
// won't get any reuse from currently inserted values, because we don't
// revisit blocks after we insert info for them.
unsigned NumSortedEntries = Cache->size();
DEBUG(AssertSorted(*Cache));
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.pop_back_val();
// Skip the first block if we have it.
if (!SkipFirstBlock) {
// Analyze the dependency of *Pointer in FromBB. See if we already have
// been here.
assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
// Get the dependency info for Pointer in BB. If we have cached
// information, we will use it, otherwise we compute it.
DEBUG(AssertSorted(*Cache, NumSortedEntries));
MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize,
isLoad, BB, Cache,
NumSortedEntries);
// If we got a Def or Clobber, add this to the list of results.
if (!Dep.isNonLocal()) {
Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
continue;
}
}
// If 'Pointer' is an instruction defined in this block, then we need to do
// phi translation to change it into a value live in the predecessor block.
// If not, we just add the predecessors to the worklist and scan them with
// the same Pointer.
if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
SkipFirstBlock = false;
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
// Verify that we haven't looked at this block yet.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
if (InsertRes.second) {
// First time we've looked at *PI.
Worklist.push_back(*PI);
continue;
}
// If we have seen this block before, but it was with a different
// pointer then we have a phi translation failure and we have to treat
// this as a clobber.
if (InsertRes.first->second != Pointer.getAddr())
goto PredTranslationFailure;
}
continue;
}
// We do need to do phi translation, if we know ahead of time we can't phi
// translate this value, don't even try.
if (!Pointer.IsPotentiallyPHITranslatable())
goto PredTranslationFailure;
// We may have added values to the cache list before this PHI translation.
// If so, we haven't done anything to ensure that the cache remains sorted.
// Sort it now (if needed) so that recursive invocations of
// getNonLocalPointerDepFromBB and other routines that could reuse the cache
// value will only see properly sorted cache arrays.
if (Cache && NumSortedEntries != Cache->size()) {
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
NumSortedEntries = Cache->size();
}
Cache = 0;
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
BasicBlock *Pred = *PI;
// Get the PHI translated pointer in this predecessor. This can fail if
// not translatable, in which case the getAddr() returns null.
PHITransAddr PredPointer(Pointer);
PredPointer.PHITranslateValue(BB, Pred, 0);
Value *PredPtrVal = PredPointer.getAddr();
// Check to see if we have already visited this pred block with another
// pointer. If so, we can't do this lookup. This failure can occur
// with PHI translation when a critical edge exists and the PHI node in
// the successor translates to a pointer value different than the
// pointer the block was first analyzed with.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
if (!InsertRes.second) {
// If the predecessor was visited with PredPtr, then we already did
// the analysis and can ignore it.
if (InsertRes.first->second == PredPtrVal)
continue;
// Otherwise, the block was previously analyzed with a different
// pointer. We can't represent the result of this case, so we just
// treat this as a phi translation failure.
goto PredTranslationFailure;
}
// If PHI translation was unable to find an available pointer in this
// predecessor, then we have to assume that the pointer is clobbered in
// that predecessor. We can still do PRE of the load, which would insert
// a computation of the pointer in this predecessor.
if (PredPtrVal == 0) {
// Add the entry to the Result list.
NonLocalDepResult Entry(Pred,
MemDepResult::getClobber(Pred->getTerminator()),
PredPtrVal);
Result.push_back(Entry);
// Since we had a phi translation failure, the cache for CacheKey won't
// include all of the entries that we need to immediately satisfy future
// queries. Mark this in NonLocalPointerDeps by setting the
// BBSkipFirstBlockPair pointer to null. This requires reuse of the
// cached value to do more work but not miss the phi trans failure.
NonLocalPointerDeps[CacheKey].first = BBSkipFirstBlockPair();
continue;
}
// FIXME: it is entirely possible that PHI translating will end up with
// the same value. Consider PHI translating something like:
// X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
// to recurse here, pedantically speaking.
// If we have a problem phi translating, fall through to the code below
// to handle the failure condition.
if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred,
Result, Visited))
goto PredTranslationFailure;
}
// Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->second;
NumSortedEntries = Cache->size();
// Since we did phi translation, the "Cache" set won't contain all of the
// results for the query. This is ok (we can still use it to accelerate
// specific block queries) but we can't do the fastpath "return all
// results from the set" Clear out the indicator for this.
CacheInfo->first = BBSkipFirstBlockPair();
SkipFirstBlock = false;
continue;
PredTranslationFailure:
if (Cache == 0) {
// Refresh the CacheInfo/Cache pointer if it got invalidated.
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->second;
NumSortedEntries = Cache->size();
}
// Since we failed phi translation, the "Cache" set won't contain all of the
// results for the query. This is ok (we can still use it to accelerate
// specific block queries) but we can't do the fastpath "return all
// results from the set". Clear out the indicator for this.
CacheInfo->first = BBSkipFirstBlockPair();
// If *nothing* works, mark the pointer as being clobbered by the first
// instruction in this block.
//
// If this is the magic first block, return this as a clobber of the whole
// incoming value. Since we can't phi translate to one of the predecessors,
// we have to bail out.
if (SkipFirstBlock)
return true;
for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
assert(I != Cache->rend() && "Didn't find current block??");
if (I->getBB() != BB)
continue;
assert(I->getResult().isNonLocal() &&
"Should only be here with transparent block");
I->setResult(MemDepResult::getClobber(BB->begin()));
ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
Pointer.getAddr()));
break;
}
}
// Okay, we're done now. If we added new values to the cache, re-sort it.
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
DEBUG(AssertSorted(*Cache));
return false;
}
/// RemoveCachedNonLocalPointerDependencies - If P exists in
/// CachedNonLocalPointerInfo, remove it.
void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
CachedNonLocalPointerInfo::iterator It =
NonLocalPointerDeps.find(P);
if (It == NonLocalPointerDeps.end()) return;
// Remove all of the entries in the BB->val map. This involves removing
// instructions from the reverse map.
NonLocalDepInfo &PInfo = It->second.second;
for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
Instruction *Target = PInfo[i].getResult().getInst();
if (Target == 0) continue; // Ignore non-local dep results.
assert(Target->getParent() == PInfo[i].getBB());
// Eliminating the dirty entry from 'Cache', so update the reverse info.
RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
}
// Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
NonLocalPointerDeps.erase(It);
}
/// invalidateCachedPointerInfo - This method is used to invalidate cached
/// information about the specified pointer, because it may be too
/// conservative in memdep. This is an optional call that can be used when
/// the client detects an equivalence between the pointer and some other
/// value and replaces the other value with ptr. This can make Ptr available
/// in more places that cached info does not necessarily keep.
void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
// If Ptr isn't really a pointer, just ignore it.
if (!Ptr->getType()->isPointerTy()) return;
// Flush store info for the pointer.
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
// Flush load info for the pointer.
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
}
/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
/// This needs to be done when the CFG changes, e.g., due to splitting
/// critical edges.
void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
PredCache->clear();
}
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
// Walk through the Non-local dependencies, removing this one as the value
// for any cached queries.
NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
if (NLDI != NonLocalDeps.end()) {
NonLocalDepInfo &BlockMap = NLDI->second.first;
for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
DI != DE; ++DI)
if (Instruction *Inst = DI->getResult().getInst())
RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
NonLocalDeps.erase(NLDI);
}
// If we have a cached local dependence query for this instruction, remove it.
//
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
if (LocalDepEntry != LocalDeps.end()) {
// Remove us from DepInst's reverse set now that the local dep info is gone.
if (Instruction *Inst = LocalDepEntry->second.getInst())
RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
// Remove this local dependency info.
LocalDeps.erase(LocalDepEntry);
}
// If we have any cached pointer dependencies on this instruction, remove
// them. If the instruction has non-pointer type, then it can't be a pointer
// base.
// Remove it from both the load info and the store info. The instruction
// can't be in either of these maps if it is non-pointer.
if (RemInst->getType()->isPointerTy()) {
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
}
// Loop over all of the things that depend on the instruction we're removing.
//
SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
// If we find RemInst as a clobber or Def in any of the maps for other values,
// we need to replace its entry with a dirty version of the instruction after
// it. If RemInst is a terminator, we use a null dirty value.
//
// Using a dirty version of the instruction after RemInst saves having to scan
// the entire block to get to this point.
MemDepResult NewDirtyVal;
if (!RemInst->isTerminator())
NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
// RemInst can't be the terminator if it has local stuff depending on it.
assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
"Nothing can locally depend on a terminator");
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
E = ReverseDeps.end(); I != E; ++I) {
Instruction *InstDependingOnRemInst = *I;
assert(InstDependingOnRemInst != RemInst &&
"Already removed our local dep info");
LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
// Make sure to remember that new things depend on NewDepInst.
assert(NewDirtyVal.getInst() && "There is no way something else can have "
"a local dep on this if it is a terminator!");
ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
InstDependingOnRemInst));
}
ReverseLocalDeps.erase(ReverseDepIt);
// Add new reverse deps after scanning the set, to avoid invalidating the
// 'ReverseDeps' reference.
while (!ReverseDepsToAdd.empty()) {
ReverseLocalDeps[ReverseDepsToAdd.back().first]
.insert(ReverseDepsToAdd.back().second);
ReverseDepsToAdd.pop_back();
}
}
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
I != E; ++I) {
assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
PerInstNLInfo &INLD = NonLocalDeps[*I];
// The information is now dirty!
INLD.second = true;
for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
DE = INLD.first.end(); DI != DE; ++DI) {
if (DI->getResult().getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
DI->setResult(NewDirtyVal);
if (Instruction *NextI = NewDirtyVal.getInst())
ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
}
}
ReverseNonLocalDeps.erase(ReverseDepIt);
// Add new reverse deps after scanning the set, to avoid invalidating 'Set'
while (!ReverseDepsToAdd.empty()) {
ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
.insert(ReverseDepsToAdd.back().second);
ReverseDepsToAdd.pop_back();
}
}
// If the instruction is in ReverseNonLocalPtrDeps then it appears as a
// value in the NonLocalPointerDeps info.
ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
ReverseNonLocalPtrDeps.find(RemInst);
if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
E = Set.end(); I != E; ++I) {
ValueIsLoadPair P = *I;
assert(P.getPointer() != RemInst &&
"Already removed NonLocalPointerDeps info for RemInst");
NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
// The cache is not valid for any specific block anymore.
NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
// Update any entries for RemInst to use the instruction after it.
for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
DI != DE; ++DI) {
if (DI->getResult().getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
DI->setResult(NewDirtyVal);
if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
}
// Re-sort the NonLocalDepInfo. Changing the dirty entry to its
// subsequent value may invalidate the sortedness.
std::sort(NLPDI.begin(), NLPDI.end());
}
ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
while (!ReversePtrDepsToAdd.empty()) {
ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
.insert(ReversePtrDepsToAdd.back().second);
ReversePtrDepsToAdd.pop_back();
}
}
assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
AA->deleteValue(RemInst);
DEBUG(verifyRemoved(RemInst));
}
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
assert(I->second.getInst() != D &&
"Inst occurs in data structures");
}
for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
E = NonLocalPointerDeps.end(); I != E; ++I) {
assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
const NonLocalDepInfo &Val = I->second.second;
for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
II != E; ++II)
assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
}
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
E = NonLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
const PerInstNLInfo &INLD = I->second;
for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
EE = INLD.first.end(); II != EE; ++II)
assert(II->getResult().getInst() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
E = ReverseLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
E = ReverseNonLocalDeps.end();
I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
for (ReverseNonLocalPtrDepTy::const_iterator
I = ReverseNonLocalPtrDeps.begin(),
E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in rev NLPD map");
for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
E = I->second.end(); II != E; ++II)
assert(*II != ValueIsLoadPair(D, false) &&
*II != ValueIsLoadPair(D, true) &&
"Inst occurs in ReverseNonLocalPtrDeps map");
}
}
|