1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
SplitEdges("machine-sink-split",
cl::desc("Split critical edges during machine sinking"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned>
SplitLimit("split-limit",
cl::init(~0u), cl::Hidden);
STATISTIC(NumSunk, "Number of machine instructions sunk");
STATISTIC(NumSplit, "Number of critical edges split");
namespace {
class MachineSinking : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *RegInfo; // Machine register information
MachineDominatorTree *DT; // Machine dominator tree
MachineLoopInfo *LI;
AliasAnalysis *AA;
BitVector AllocatableSet; // Which physregs are allocatable?
public:
static char ID; // Pass identification
MachineSinking() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
}
private:
bool ProcessBlock(MachineBasicBlock &MBB);
MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *From,
MachineBasicBlock *To);
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB, bool &LocalUse) const;
};
} // end anonymous namespace
char MachineSinking::ID = 0;
INITIALIZE_PASS(MachineSinking, "machine-sink",
"Machine code sinking", false, false);
FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block. If any use is in the
/// definition block, then return false since it is never legal to move def
/// after uses.
bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
bool &LocalUse) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Only makes sense for vregs");
// Ignoring debug uses is necessary so debug info doesn't affect the code.
// This may leave a referencing dbg_value in the original block, before
// the definition of the vreg. Dwarf generator handles this although the
// user might not get the right info at runtime.
for (MachineRegisterInfo::use_nodbg_iterator
I = RegInfo->use_nodbg_begin(Reg), E = RegInfo->use_nodbg_end();
I != E; ++I) {
// Determine the block of the use.
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseInst->isPHI()) {
// PHI nodes use the operand in the predecessor block, not the block with
// the PHI.
UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
} else if (UseBlock == DefMBB) {
LocalUse = true;
return false;
}
// Check that it dominates.
if (!DT->dominates(MBB, UseBlock))
return false;
}
return true;
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "******** Machine Sinking ********\n");
const TargetMachine &TM = MF.getTarget();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
RegInfo = &MF.getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
LI = &getAnalysis<MachineLoopInfo>();
AA = &getAnalysis<AliasAnalysis>();
AllocatableSet = TRI->getAllocatableSet(MF);
bool EverMadeChange = false;
while (1) {
bool MadeChange = false;
// Process all basic blocks.
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
I != E; ++I)
MadeChange |= ProcessBlock(*I);
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
}
return EverMadeChange;
}
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
// Can't sink anything out of a block that has less than two successors.
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
// Don't bother sinking code out of unreachable blocks. In addition to being
// unprofitable, it can also lead to infinite looping, because in an
// unreachable loop there may be nowhere to stop.
if (!DT->isReachableFromEntry(&MBB)) return false;
bool MadeChange = false;
// Walk the basic block bottom-up. Remember if we saw a store.
MachineBasicBlock::iterator I = MBB.end();
--I;
bool ProcessedBegin, SawStore = false;
do {
MachineInstr *MI = I; // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by
// sinking.
ProcessedBegin = I == MBB.begin();
if (!ProcessedBegin)
--I;
if (MI->isDebugValue())
continue;
if (SinkInstruction(MI, SawStore))
++NumSunk, MadeChange = true;
// If we just processed the first instruction in the block, we're done.
} while (!ProcessedBegin);
return MadeChange;
}
MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineBasicBlock *FromBB,
MachineBasicBlock *ToBB) {
// Avoid breaking back edge. From == To means backedge for single BB loop.
if (!SplitEdges || NumSplit == SplitLimit || FromBB == ToBB)
return 0;
// Check for more "complex" loops.
if (LI->getLoopFor(FromBB) != LI->getLoopFor(ToBB) ||
!LI->isLoopHeader(ToBB)) {
// It's not always legal to break critical edges and sink the computation
// to the edge.
//
// BB#1:
// v1024
// Beq BB#3
// <fallthrough>
// BB#2:
// ... no uses of v1024
// <fallthrough>
// BB#3:
// ...
// = v1024
//
// If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
//
// BB#1:
// ...
// Bne BB#2
// BB#4:
// v1024 =
// B BB#3
// BB#2:
// ... no uses of v1024
// <fallthrough>
// BB#3:
// ...
// = v1024
//
// This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
// flow. We need to ensure the new basic block where the computation is
// sunk to dominates all the uses.
// It's only legal to break critical edge and sink the computation to the
// new block if all the predecessors of "To", except for "From", are
// not dominated by "From". Given SSA property, this means these
// predecessors are dominated by "To".
for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
E = ToBB->pred_end(); PI != E; ++PI) {
if (*PI == FromBB)
continue;
if (!DT->dominates(ToBB, *PI))
return 0;
}
// FIXME: Determine if it's cost effective to break this edge.
return FromBB->SplitCriticalEdge(ToBB, this);
}
return 0;
}
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// Check if it's safe to move the instruction.
if (!MI->isSafeToMove(TII, AA, SawStore))
return false;
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
// instructions sunk into the top of a large block, but it would be better to
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
// and z and only shrink the live range of x.
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
MachineBasicBlock *ParentBlock = MI->getParent();
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
MachineBasicBlock *SuccToSinkTo = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue; // Ignore non-register operands.
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!RegInfo->def_empty(Reg))
return false;
if (AllocatableSet.test(Reg))
return false;
// Check for a def among the register's aliases too.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
if (!RegInfo->def_empty(AliasReg))
return false;
if (AllocatableSet.test(AliasReg))
return false;
}
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return false;
}
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
// If it's not safe to move defs of the register class, then abort.
if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
return false;
// FIXME: This picks a successor to sink into based on having one
// successor that dominates all the uses. However, there are cases where
// sinking can happen but where the sink point isn't a successor. For
// example:
//
// x = computation
// if () {} else {}
// use x
//
// the instruction could be sunk over the whole diamond for the
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
// after that.
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
// If a previous operand picked a block to sink to, then this operand
// must be sinkable to the same block.
bool LocalUse = false;
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock, LocalUse))
return false;
continue;
}
// Otherwise, we should look at all the successors and decide which one
// we should sink to.
for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
E = ParentBlock->succ_end(); SI != E; ++SI) {
bool LocalUse = false;
if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock, LocalUse)) {
SuccToSinkTo = *SI;
break;
}
if (LocalUse)
// Def is used locally, it's never safe to move this def.
return false;
}
// If we couldn't find a block to sink to, ignore this instruction.
if (SuccToSinkTo == 0)
return false;
}
}
// If there are no outputs, it must have side-effects.
if (SuccToSinkTo == 0)
return false;
// It's not safe to sink instructions to EH landing pad. Control flow into
// landing pad is implicitly defined.
if (SuccToSinkTo->isLandingPad())
return false;
// It is not possible to sink an instruction into its own block. This can
// happen with loops.
if (MI->getParent() == SuccToSinkTo)
return false;
// If the instruction to move defines a dead physical register which is live
// when leaving the basic block, don't move it because it could turn into a
// "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI->getOperand(I);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
if (SuccToSinkTo->isLiveIn(Reg))
return false;
}
DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
// FIXME: Split critical edges if not backedges.
if (SuccToSinkTo->pred_size() > 1) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
bool TryBreak = false;
bool store = true;
if (!MI->isSafeToMove(TII, AA, store)) {
DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
TryBreak = true;
}
// We don't want to sink across a critical edge if we don't dominate the
// successor. We could be introducing calculations to new code paths.
if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
TryBreak = true;
}
// Don't sink instructions into a loop.
if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
DEBUG(dbgs() << " *** NOTE: Loop header found\n");
TryBreak = true;
}
// Otherwise we are OK with sinking along a critical edge.
if (!TryBreak)
DEBUG(dbgs() << "Sinking along critical edge.\n");
else {
MachineBasicBlock *NewSucc = SplitCriticalEdge(ParentBlock, SuccToSinkTo);
if (!NewSucc) {
DEBUG(dbgs() <<
" *** PUNTING: Not legal or profitable to break critical edge\n");
return false;
} else {
DEBUG(dbgs() << " *** Splitting critical edge:"
" BB#" << ParentBlock->getNumber()
<< " -- BB#" << NewSucc->getNumber()
<< " -- BB#" << SuccToSinkTo->getNumber() << '\n');
SuccToSinkTo = NewSucc;
++NumSplit;
}
}
}
// Determine where to insert into. Skip phi nodes.
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
++InsertPos;
// Move the instruction.
SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
++MachineBasicBlock::iterator(MI));
// Conservatively, clear any kill flags, since it's possible that they are no
// longer correct.
MI->clearKillInfo();
return true;
}
|