1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
|
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-alloc-split"
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
cl::Hidden);
static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
cl::Hidden);
STATISTIC(NumSplits, "Number of intervals split");
STATISTIC(NumRemats, "Number of intervals split by rematerialization");
STATISTIC(NumFolds, "Number of intervals split with spill folding");
STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
STATISTIC(NumDeadSpills, "Number of dead spills removed");
namespace {
class PreAllocSplitting : public MachineFunctionPass {
MachineFunction *CurrMF;
const TargetMachine *TM;
const TargetInstrInfo *TII;
const TargetRegisterInfo* TRI;
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
SlotIndexes *SIs;
LiveIntervals *LIs;
LiveStacks *LSs;
VirtRegMap *VRM;
// Barrier - Current barrier being processed.
MachineInstr *Barrier;
// BarrierMBB - Basic block where the barrier resides in.
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
SlotIndex BarrierIdx;
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
// CurrSLI - Current stack slot live interval.
LiveInterval *CurrSLI;
// CurrSValNo - Current val# for the stack slot live interval.
VNInfo *CurrSValNo;
// IntervalSSMap - A map from live interval to spill slots.
DenseMap<unsigned, int> IntervalSSMap;
// Def2SpillMap - A map from a def instruction index to spill index.
DenseMap<SlotIndex, SlotIndex> Def2SpillMap;
public:
static char ID;
PreAllocSplitting()
: MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addPreserved<RegisterCoalescer>();
AU.addPreserved<CalculateSpillWeights>();
if (StrongPHIElim)
AU.addPreservedID(StrongPHIEliminationID);
else
AU.addPreservedID(PHIEliminationID);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
IntervalSSMap.clear();
Def2SpillMap.clear();
}
virtual const char *getPassName() const {
return "Pre-Register Allocaton Live Interval Splitting";
}
/// print - Implement the dump method.
virtual void print(raw_ostream &O, const Module* M = 0) const {
LIs->print(O, M);
}
private:
MachineBasicBlock::iterator
findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
SmallPtrSet<MachineInstr*, 4>&);
MachineBasicBlock::iterator
findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
SmallPtrSet<MachineInstr*, 4>&);
int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
bool IsAvailableInStack(MachineBasicBlock*, unsigned,
SlotIndex, SlotIndex,
SlotIndex&, int&) const;
void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
bool SplitRegLiveInterval(LiveInterval*);
bool SplitRegLiveIntervals(const TargetRegisterClass **,
SmallPtrSet<LiveInterval*, 8>&);
bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
MachineBasicBlock* BarrierMBB);
bool Rematerialize(unsigned vreg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
MachineInstr* DefMI,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int& SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
MachineInstr* FoldRestore(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
void RenumberValno(VNInfo* VN);
void ReconstructLiveInterval(LiveInterval* LI);
bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
unsigned Reg, int FrameIndex, bool& TwoAddr);
VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
MachineBasicBlock* MBB, LiveInterval* LI,
SmallPtrSet<MachineInstr*, 4>& Visited,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock);
VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
MachineBasicBlock* MBB, LiveInterval* LI,
SmallPtrSet<MachineInstr*, 4>& Visited,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock);
};
} // end anonymous namespace
char PreAllocSplitting::ID = 0;
INITIALIZE_PASS(PreAllocSplitting, "pre-alloc-splitting",
"Pre-Register Allocation Live Interval Splitting",
false, false);
char &llvm::PreAllocSplittingID = PreAllocSplitting::ID;
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
MachineInstr *DefMI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
MachineBasicBlock::iterator Pt = MBB->begin();
MachineBasicBlock::iterator MII = MI;
MachineBasicBlock::iterator EndPt = DefMI
? MachineBasicBlock::iterator(DefMI) : MBB->begin();
while (MII != EndPt && !RefsInMBB.count(MII) &&
MII->getOpcode() != TRI->getCallFrameSetupOpcode())
--MII;
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
while (MII != EndPt && !RefsInMBB.count(MII)) {
// We can't insert the spill between the barrier (a call), and its
// corresponding call frame setup.
if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
--MII;
if (MII == EndPt) {
return Pt;
}
}
continue;
} else {
Pt = MII;
}
if (RefsInMBB.count(MII))
return Pt;
--MII;
}
return Pt;
}
/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
SlotIndex LastIdx,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
// FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
// begin index accordingly.
MachineBasicBlock::iterator Pt = MBB->end();
MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
// We start at the call, so walk forward until we find the call frame teardown
// since we can't insert restores before that. Bail if we encounter a use
// during this time.
MachineBasicBlock::iterator MII = MI;
if (MII == EndPt) return Pt;
while (MII != EndPt && !RefsInMBB.count(MII) &&
MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
++MII;
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
++MII;
// FIXME: Limit the number of instructions to examine to reduce
// compile time?
while (MII != EndPt) {
SlotIndex Index = LIs->getInstructionIndex(MII);
if (Index > LastIdx)
break;
// We can't insert a restore between the barrier (a call) and its
// corresponding call frame teardown.
if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
do {
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
++MII;
} while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
} else {
Pt = MII;
}
if (RefsInMBB.count(MII))
return Pt;
++MII;
}
return Pt;
}
/// CreateSpillStackSlot - Create a stack slot for the live interval being
/// split. If the live interval was previously split, just reuse the same
/// slot.
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
const TargetRegisterClass *RC) {
int SS;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
if (I != IntervalSSMap.end()) {
SS = I->second;
} else {
SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
IntervalSSMap[Reg] = SS;
}
// Create live interval for stack slot.
CurrSLI = &LSs->getOrCreateInterval(SS, RC);
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
LSs->getVNInfoAllocator());
return SS;
}
/// IsAvailableInStack - Return true if register is available in a split stack
/// slot at the specified index.
bool
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
unsigned Reg, SlotIndex DefIndex,
SlotIndex RestoreIndex,
SlotIndex &SpillIndex,
int& SS) const {
if (!DefMBB)
return false;
DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
if (I == IntervalSSMap.end())
return false;
DenseMap<SlotIndex, SlotIndex>::const_iterator
II = Def2SpillMap.find(DefIndex);
if (II == Def2SpillMap.end())
return false;
// If last spill of def is in the same mbb as barrier mbb (where restore will
// be), make sure it's not below the intended restore index.
// FIXME: Undo the previous spill?
assert(LIs->getMBBFromIndex(II->second) == DefMBB);
if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
return false;
SS = I->second;
SpillIndex = II->second;
return true;
}
/// UpdateSpillSlotInterval - Given the specified val# of the register live
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
SlotIndex RestoreIndex) {
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
"Expect restore in the barrier mbb");
MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
if (MBB == BarrierMBB) {
// Intra-block spill + restore. We are done.
LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
CurrSLI->addRange(SLR);
return;
}
SmallPtrSet<MachineBasicBlock*, 4> Processed;
SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
CurrSLI->addRange(SLR);
Processed.insert(MBB);
// Start from the spill mbb, figure out the extend of the spill slot's
// live interval.
SmallVector<MachineBasicBlock*, 4> WorkList;
const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
if (LR->end > EndIdx)
// If live range extend beyond end of mbb, add successors to work list.
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
while (!WorkList.empty()) {
MachineBasicBlock *MBB = WorkList.back();
WorkList.pop_back();
if (Processed.count(MBB))
continue;
SlotIndex Idx = LIs->getMBBStartIdx(MBB);
LR = CurrLI->getLiveRangeContaining(Idx);
if (LR && LR->valno == ValNo) {
EndIdx = LIs->getMBBEndIdx(MBB);
if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
// Spill slot live interval stops at the restore.
LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
CurrSLI->addRange(SLR);
} else if (LR->end > EndIdx) {
// Live range extends beyond end of mbb, process successors.
LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
CurrSLI->addRange(SLR);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
} else {
LiveRange SLR(Idx, LR->end, CurrSValNo);
CurrSLI->addRange(SLR);
}
Processed.insert(MBB);
}
}
}
/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
/// construction algorithm to compute the ranges and valnos for an interval.
VNInfo*
PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
MachineBasicBlock* MBB, LiveInterval* LI,
SmallPtrSet<MachineInstr*, 4>& Visited,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock) {
// Return memoized result if it's available.
if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
return NewVNs[UseI];
else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
return NewVNs[UseI];
else if (!IsIntraBlock && LiveOut.count(MBB))
return LiveOut[MBB];
// Check if our block contains any uses or defs.
bool ContainsDefs = Defs.count(MBB);
bool ContainsUses = Uses.count(MBB);
VNInfo* RetVNI = 0;
// Enumerate the cases of use/def contaning blocks.
if (!ContainsDefs && !ContainsUses) {
return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis,
IsTopLevel, IsIntraBlock);
} else if (ContainsDefs && !ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
// Search for the def in this block. If we don't find it before the
// instruction we care about, go to the fallback case. Note that that
// should never happen: this cannot be intrablock, so use should
// always be an end() iterator.
assert(UseI == MBB->end() && "No use marked in intrablock");
MachineBasicBlock::iterator Walker = UseI;
--Walker;
while (Walker != MBB->begin()) {
if (BlockDefs.count(Walker))
break;
--Walker;
}
// Once we've found it, extend its VNInfo to our instruction.
SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
DefIndex = DefIndex.getDefIndex();
SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
RetVNI = NewVNs[Walker];
LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
} else if (!ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
// Search for the use in this block that precedes the instruction we care
// about, going to the fallback case if we don't find it.
MachineBasicBlock::iterator Walker = UseI;
bool found = false;
while (Walker != MBB->begin()) {
--Walker;
if (BlockUses.count(Walker)) {
found = true;
break;
}
}
if (!found)
return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis,
IsTopLevel, IsIntraBlock);
SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
UseIndex = UseIndex.getUseIndex();
SlotIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
} else
EndIndex = LIs->getMBBEndIdx(MBB);
// Now, recursively phi construct the VNInfo for the use we found,
// and then extend it to include the instruction we care about
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
// FIXME: Need to set kills properly for inter-block stuff.
} else if (ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
// This case is basically a merging of the two preceding case, with the
// special note that checking for defs must take precedence over checking
// for uses, because of two-address instructions.
MachineBasicBlock::iterator Walker = UseI;
bool foundDef = false;
bool foundUse = false;
while (Walker != MBB->begin()) {
--Walker;
if (BlockDefs.count(Walker)) {
foundDef = true;
break;
} else if (BlockUses.count(Walker)) {
foundUse = true;
break;
}
}
if (!foundDef && !foundUse)
return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis,
IsTopLevel, IsIntraBlock);
SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
SlotIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
} else
EndIndex = LIs->getMBBEndIdx(MBB);
if (foundDef)
RetVNI = NewVNs[Walker];
else
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
}
// Memoize results so we don't have to recompute them.
if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
else {
if (!NewVNs.count(UseI))
NewVNs[UseI] = RetVNI;
Visited.insert(UseI);
}
return RetVNI;
}
/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
///
VNInfo*
PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
MachineBasicBlock* MBB, LiveInterval* LI,
SmallPtrSet<MachineInstr*, 4>& Visited,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock) {
// NOTE: Because this is the fallback case from other cases, we do NOT
// assume that we are not intrablock here.
if (Phis.count(MBB)) return Phis[MBB];
SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
VNInfo *RetVNI = Phis[MBB] =
LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false,
LIs->getVNInfoAllocator());
if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
// If there are no uses or defs between our starting point and the
// beginning of the block, then recursive perform phi construction
// on our predecessors.
DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
Visited, Defs, Uses, NewVNs,
LiveOut, Phis, false, false);
if (Incoming != 0)
IncomingVNs[*PI] = Incoming;
}
if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
VNInfo* OldVN = RetVNI;
VNInfo* NewVN = IncomingVNs.begin()->second;
VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
if (MergedVN == OldVN) std::swap(OldVN, NewVN);
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
LOE = LiveOut.end(); LOI != LOE; ++LOI)
if (LOI->second == OldVN)
LOI->second = MergedVN;
for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
NVE = NewVNs.end(); NVI != NVE; ++NVI)
if (NVI->second == OldVN)
NVI->second = MergedVN;
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
PE = Phis.end(); PI != PE; ++PI)
if (PI->second == OldVN)
PI->second = MergedVN;
RetVNI = MergedVN;
} else {
// Otherwise, merge the incoming VNInfos with a phi join. Create a new
// VNInfo to represent the joined value.
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
I->second->setHasPHIKill(true);
}
}
SlotIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
} else
EndIndex = LIs->getMBBEndIdx(MBB);
LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
// Memoize results so we don't have to recompute them.
if (!IsIntraBlock)
LiveOut[MBB] = RetVNI;
else {
if (!NewVNs.count(UseI))
NewVNs[UseI] = RetVNI;
Visited.insert(UseI);
}
return RetVNI;
}
/// ReconstructLiveInterval - Recompute a live interval from scratch.
void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
// Clear the old ranges and valnos;
LI->clear();
// Cache the uses and defs of the register
typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
RegMap Defs, Uses;
// Keep track of the new VNs we're creating.
DenseMap<MachineInstr*, VNInfo*> NewVNs;
SmallPtrSet<VNInfo*, 2> PhiVNs;
// Cache defs, and create a new VNInfo for each def.
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
Defs[(*DI).getParent()].insert(&*DI);
SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = DefIdx.getDefIndex();
assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
// If the def is a move, set the copy field.
if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
NewVN->setCopy(&*DI);
NewVNs[&*DI] = NewVN;
}
// Cache uses as a separate pass from actually processing them.
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
UE = MRI->use_end(); UI != UE; ++UI)
Uses[(*UI).getParent()].insert(&*UI);
// Now, actually process every use and use a phi construction algorithm
// to walk from it to its reaching definitions, building VNInfos along
// the way.
DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
DenseMap<MachineBasicBlock*, VNInfo*> Phis;
SmallPtrSet<MachineInstr*, 4> Visited;
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis, true, true);
}
// Add ranges for dead defs
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = DefIdx.getDefIndex();
if (LI->liveAt(DefIdx)) continue;
VNInfo* DeadVN = NewVNs[&*DI];
LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
}
}
/// RenumberValno - Split the given valno out into a new vreg, allowing it to
/// be allocated to a different register. This function creates a new vreg,
/// copies the valno and its live ranges over to the new vreg's interval,
/// removes them from the old interval, and rewrites all uses and defs of
/// the original reg to the new vreg within those ranges.
void PreAllocSplitting::RenumberValno(VNInfo* VN) {
SmallVector<VNInfo*, 4> Stack;
SmallVector<VNInfo*, 4> VNsToCopy;
Stack.push_back(VN);
// Walk through and copy the valno we care about, and any other valnos
// that are two-address redefinitions of the one we care about. These
// will need to be rewritten as well. We also check for safety of the
// renumbering here, by making sure that none of the valno involved has
// phi kills.
while (!Stack.empty()) {
VNInfo* OldVN = Stack.back();
Stack.pop_back();
// Bail out if we ever encounter a valno that has a PHI kill. We can't
// renumber these.
if (OldVN->hasPHIKill()) return;
VNsToCopy.push_back(OldVN);
// Locate two-address redefinitions
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
VNsToCopy.end())
Stack.push_back(NextVN);
}
}
// Create the new vreg
unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
// Create the new live interval
LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
VNsToCopy.end(); OI != OE; ++OI) {
VNInfo* OldVN = *OI;
// Copy the valno over
VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
// Remove the valno from the old interval
CurrLI->removeValNo(OldVN);
}
// Rewrite defs and uses. This is done in two stages to avoid invalidating
// the reg_iterator.
SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand& MO = I.getOperand();
SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
(MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
}
for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
MachineInstr* Inst = I->first;
unsigned OpIdx = I->second;
MachineOperand& MO = Inst->getOperand(OpIdx);
MO.setReg(NewVReg);
}
// Grow the VirtRegMap, since we've created a new vreg.
VRM->grow();
// The renumbered vreg shares a stack slot with the old register.
if (IntervalSSMap.count(CurrLI->reg))
IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
++NumRenumbers;
}
bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
MachineBasicBlock& MBB = *RestorePt->getParent();
MachineBasicBlock::iterator KillPt = BarrierMBB->end();
if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
else
KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
if (KillPt == DefMI->getParent()->end())
return false;
TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
ReconstructLiveInterval(CurrLI);
RematIdx = RematIdx.getDefIndex();
RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
++NumSplits;
++NumRemats;
return true;
}
MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* DefMI,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int& SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty())
return 0;
MachineBasicBlock::iterator FoldPt = Barrier;
while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
!RefsInMBB.count(FoldPt))
--FoldPt;
int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
if (OpIdx == -1)
return 0;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(FoldPt, Ops))
return 0;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
if (I != IntervalSSMap.end()) {
SS = I->second;
} else {
SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
}
MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
if (FMI) {
LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
FoldPt->eraseFromParent();
++NumFolds;
IntervalSSMap[vreg] = SS;
CurrSLI = &LSs->getOrCreateInterval(SS, RC);
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
LSs->getVNInfoAllocator());
}
return FMI;
}
MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
return 0;
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty())
return 0;
// Can't fold a restore between a call stack setup and teardown.
MachineBasicBlock::iterator FoldPt = Barrier;
// Advance from barrier to call frame teardown.
while (FoldPt != MBB->getFirstTerminator() &&
FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
if (RefsInMBB.count(FoldPt))
return 0;
++FoldPt;
}
if (FoldPt == MBB->getFirstTerminator())
return 0;
else
++FoldPt;
// Now find the restore point.
while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
while (FoldPt != MBB->getFirstTerminator() &&
FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
if (RefsInMBB.count(FoldPt))
return 0;
++FoldPt;
}
if (FoldPt == MBB->getFirstTerminator())
return 0;
}
++FoldPt;
}
if (FoldPt == MBB->getFirstTerminator())
return 0;
int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
if (OpIdx == -1)
return 0;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(FoldPt, Ops))
return 0;
MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
if (FMI) {
LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
FoldPt->eraseFromParent();
++NumRestoreFolds;
}
return FMI;
}
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
<< " result: ");
CurrLI = LI;
// Find live range where current interval cross the barrier.
LiveInterval::iterator LR =
CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
VNInfo *ValNo = LR->valno;
assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
MachineInstr *DefMI = ValNo->isDefAccurate()
? LIs->getInstructionFromIndex(ValNo->def) : NULL;
// If this would create a new join point, do not split.
if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
DEBUG(dbgs() << "FAILED (would create a new join point).\n");
return false;
}
// Find all references in the barrier mbb.
SmallPtrSet<MachineInstr*, 4> RefsInMBB;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineInstr *RefMI = &*I;
if (RefMI->getParent() == BarrierMBB)
RefsInMBB.insert(RefMI);
}
// Find a point to restore the value after the barrier.
MachineBasicBlock::iterator RestorePt =
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
if (RestorePt == BarrierMBB->end()) {
DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
return false;
}
if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
DEBUG(dbgs() << "success (remat).\n");
return true;
}
// Add a spill either before the barrier or after the definition.
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
SlotIndex SpillIndex;
MachineInstr *SpillMI = NULL;
int SS = -1;
if (!ValNo->isDefAccurate()) {
// If we don't know where the def is we must split just before the barrier.
if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
BarrierMBB, SS, RefsInMBB))) {
SpillIndex = LIs->getInstructionIndex(SpillMI);
} else {
MachineBasicBlock::iterator SpillPt =
findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
if (SpillPt == BarrierMBB->begin()) {
DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
return false; // No gap to insert spill.
}
// Add spill.
SS = CreateSpillStackSlot(CurrLI->reg, RC);
TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
TRI);
SpillMI = prior(SpillPt);
SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
}
} else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
LIs->getZeroIndex(), SpillIndex, SS)) {
// If it's already split, just restore the value. There is no need to spill
// the def again.
if (!DefMI) {
DEBUG(dbgs() << "FAILED (def is dead).\n");
return false; // Def is dead. Do nothing.
}
if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
BarrierMBB, SS, RefsInMBB))) {
SpillIndex = LIs->getInstructionIndex(SpillMI);
} else {
// Check if it's possible to insert a spill after the def MI.
MachineBasicBlock::iterator SpillPt;
if (DefMBB == BarrierMBB) {
// Add spill after the def and the last use before the barrier.
SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
RefsInMBB);
if (SpillPt == DefMBB->begin()) {
DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
return false; // No gap to insert spill.
}
} else {
SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
if (SpillPt == DefMBB->end()) {
DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
return false; // No gap to insert spill.
}
}
// Add spill.
SS = CreateSpillStackSlot(CurrLI->reg, RC);
TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
TRI);
SpillMI = prior(SpillPt);
SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
}
}
// Remember def instruction index to spill index mapping.
if (DefMI && SpillMI)
Def2SpillMap[ValNo->def] = SpillIndex;
// Add restore.
bool FoldedRestore = false;
SlotIndex RestoreIndex;
if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
BarrierMBB, SS, RefsInMBB)) {
RestorePt = LMI;
RestoreIndex = LIs->getInstructionIndex(RestorePt);
FoldedRestore = true;
} else {
TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
MachineInstr *LoadMI = prior(RestorePt);
RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
}
// Update spill stack slot live interval.
UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
RestoreIndex.getDefIndex());
ReconstructLiveInterval(CurrLI);
if (!FoldedRestore) {
SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
RestoreIdx = RestoreIdx.getDefIndex();
RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
}
++NumSplits;
DEBUG(dbgs() << "success.\n");
return true;
}
/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
SmallPtrSet<LiveInterval*, 8>& Split) {
// First find all the virtual registers whose live intervals are intercepted
// by the current barrier.
SmallVector<LiveInterval*, 8> Intervals;
for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
// FIXME: If it's not safe to move any instruction that defines the barrier
// register class, then it means there are some special dependencies which
// codegen is not modelling. Ignore these barriers for now.
if (!TII->isSafeToMoveRegClassDefs(*RC))
continue;
const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
unsigned Reg = VRs[i];
if (!LIs->hasInterval(Reg))
continue;
LiveInterval *LI = &LIs->getInterval(Reg);
if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
// Virtual register live interval is intercepted by the barrier. We
// should split and shrink wrap its interval if possible.
Intervals.push_back(LI);
}
}
// Process the affected live intervals.
bool Change = false;
while (!Intervals.empty()) {
if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
break;
LiveInterval *LI = Intervals.back();
Intervals.pop_back();
bool result = SplitRegLiveInterval(LI);
if (result) Split.insert(LI);
Change |= result;
}
return Change;
}
unsigned PreAllocSplitting::getNumberOfNonSpills(
SmallPtrSet<MachineInstr*, 4>& MIs,
unsigned Reg, int FrameIndex,
bool& FeedsTwoAddr) {
unsigned NonSpills = 0;
for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
UI != UE; ++UI) {
int StoreFrameIndex;
unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
++NonSpills;
int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
FeedsTwoAddr = true;
}
return NonSpills;
}
/// removeDeadSpills - After doing splitting, filter through all intervals we've
/// split, and see if any of the spills are unnecessary. If so, remove them.
bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
bool changed = false;
// Walk over all of the live intervals that were touched by the splitter,
// and see if we can do any DCE and/or folding.
for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
LE = split.end(); LI != LE; ++LI) {
DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
// First, collect all the uses of the vreg, and sort them by their
// reaching definition (VNInfo).
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
SlotIndex index = LIs->getInstructionIndex(&*UI);
index = index.getUseIndex();
const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
VNUseCount[LR->valno].insert(&*UI);
}
// Now, take the definitions (VNInfo's) one at a time and try to DCE
// and/or fold them away.
for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
VE = (*LI)->vni_end(); VI != VE; ++VI) {
if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
return changed;
VNInfo* CurrVN = *VI;
// We don't currently try to handle definitions with PHI kills, because
// it would involve processing more than one VNInfo at once.
if (CurrVN->hasPHIKill()) continue;
// We also don't try to handle the results of PHI joins, since there's
// no defining instruction to analyze.
if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
// We're only interested in eliminating cruft introduced by the splitter,
// is of the form load-use or load-use-store. First, check that the
// definition is a load, and remember what stack slot we loaded it from.
MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
int FrameIndex;
if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
// If the definition has no uses at all, just DCE it.
if (VNUseCount[CurrVN].size() == 0) {
LIs->RemoveMachineInstrFromMaps(DefMI);
(*LI)->removeValNo(CurrVN);
DefMI->eraseFromParent();
VNUseCount.erase(CurrVN);
++NumDeadSpills;
changed = true;
continue;
}
// Second, get the number of non-store uses of the definition, as well as
// a flag indicating whether it feeds into a later two-address definition.
bool FeedsTwoAddr = false;
unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
(*LI)->reg, FrameIndex,
FeedsTwoAddr);
// If there's one non-store use and it doesn't feed a two-addr, then
// this is a load-use-store case that we can try to fold.
if (NonSpillCount == 1 && !FeedsTwoAddr) {
// Start by finding the non-store use MachineInstr.
SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
int StoreFrameIndex;
unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
while (UI != VNUseCount[CurrVN].end() &&
(StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
++UI;
if (UI != VNUseCount[CurrVN].end())
StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
}
if (UI == VNUseCount[CurrVN].end()) continue;
MachineInstr* use = *UI;
// Attempt to fold it away!
int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
if (OpIdx == -1) continue;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(use, Ops)) continue;
MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);
if (!NewMI) continue;
// Update relevant analyses.
LIs->RemoveMachineInstrFromMaps(DefMI);
LIs->ReplaceMachineInstrInMaps(use, NewMI);
(*LI)->removeValNo(CurrVN);
DefMI->eraseFromParent();
use->eraseFromParent();
VNUseCount[CurrVN].erase(use);
// Remove deleted instructions. Note that we need to remove them from
// the VNInfo->use map as well, just to be safe.
for (SmallPtrSet<MachineInstr*, 4>::iterator II =
VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
II != IE; ++II) {
for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
++VNI)
if (VNI->first != CurrVN)
VNI->second.erase(*II);
LIs->RemoveMachineInstrFromMaps(*II);
(*II)->eraseFromParent();
}
VNUseCount.erase(CurrVN);
for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
if (VI->second.erase(use))
VI->second.insert(NewMI);
++NumDeadSpills;
changed = true;
continue;
}
// If there's more than one non-store instruction, we can't profitably
// fold it, so bail.
if (NonSpillCount) continue;
// Otherwise, this is a load-store case, so DCE them.
for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
UI != UE; ++UI) {
LIs->RemoveMachineInstrFromMaps(*UI);
(*UI)->eraseFromParent();
}
VNUseCount.erase(CurrVN);
LIs->RemoveMachineInstrFromMaps(DefMI);
(*LI)->removeValNo(CurrVN);
DefMI->eraseFromParent();
++NumDeadSpills;
changed = true;
}
}
return changed;
}
bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
MachineBasicBlock* DefMBB,
MachineBasicBlock* BarrierMBB) {
if (DefMBB == BarrierMBB)
return false;
if (LR->valno->hasPHIKill())
return false;
SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
if (LR->end < MBBEnd)
return false;
MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
return true;
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
SmallPtrSet<MachineBasicBlock*, 4> Visited;
typedef std::pair<MachineBasicBlock*,
MachineBasicBlock::succ_iterator> ItPair;
SmallVector<ItPair, 4> Stack;
Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
while (!Stack.empty()) {
ItPair P = Stack.back();
Stack.pop_back();
MachineBasicBlock* PredMBB = P.first;
MachineBasicBlock::succ_iterator S = P.second;
if (S == PredMBB->succ_end())
continue;
else if (Visited.count(*S)) {
Stack.push_back(std::make_pair(PredMBB, ++S));
continue;
} else
Stack.push_back(std::make_pair(PredMBB, S+1));
MachineBasicBlock* MBB = *S;
Visited.insert(MBB);
if (MBB == BarrierMBB)
return true;
MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
while (MDTN) {
if (MDTN == DefMDTN)
return true;
else if (MDTN == BarrierMDTN)
break;
MDTN = MDTN->getIDom();
}
MBBEnd = LIs->getMBBEndIdx(MBB);
if (LR->end > MBBEnd)
Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
}
return false;
}
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
CurrMF = &MF;
TM = &MF.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
SIs = &getAnalysis<SlotIndexes>();
LIs = &getAnalysis<LiveIntervals>();
LSs = &getAnalysis<LiveStacks>();
VRM = &getAnalysis<VirtRegMap>();
bool MadeChange = false;
// Make sure blocks are numbered in order.
MF.RenumberBlocks();
MachineBasicBlock *Entry = MF.begin();
SmallPtrSet<MachineBasicBlock*,16> Visited;
SmallPtrSet<LiveInterval*, 8> Split;
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
DFI != E; ++DFI) {
BarrierMBB = *DFI;
for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
E = BarrierMBB->end(); I != E; ++I) {
Barrier = &*I;
const TargetRegisterClass **BarrierRCs =
Barrier->getDesc().getRegClassBarriers();
if (!BarrierRCs)
continue;
BarrierIdx = LIs->getInstructionIndex(Barrier);
MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
}
}
MadeChange |= removeDeadSpills(Split);
return MadeChange;
}
|