1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeVectors method.
//
// The vector legalizer looks for vector operations which might need to be
// scalarized and legalizes them. This is a separate step from Legalize because
// scalarizing can introduce illegal types. For example, suppose we have an
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
// operation, which introduces nodes with the illegal type i64 which must be
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
// the operation must be unrolled, which introduces nodes with the illegal
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
// or operations that happen to take a vector which are custom-lowered;
// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
namespace {
class VectorLegalizer {
SelectionDAG& DAG;
const TargetLowering &TLI;
bool Changed; // Keep track of whether anything changed
/// LegalizedNodes - For nodes that are of legal width, and that have more
/// than one use, this map indicates what regularized operand to use. This
/// allows us to avoid legalizing the same thing more than once.
DenseMap<SDValue, SDValue> LegalizedNodes;
// Adds a node to the translation cache
void AddLegalizedOperand(SDValue From, SDValue To) {
LegalizedNodes.insert(std::make_pair(From, To));
// If someone requests legalization of the new node, return itself.
if (From != To)
LegalizedNodes.insert(std::make_pair(To, To));
}
// Legalizes the given node
SDValue LegalizeOp(SDValue Op);
// Assuming the node is legal, "legalize" the results
SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
// Implements unrolling a VSETCC.
SDValue UnrollVSETCC(SDValue Op);
// Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB
// isn't legal.
SDValue ExpandFNEG(SDValue Op);
// Implements vector promotion; this is essentially just bitcasting the
// operands to a different type and bitcasting the result back to the
// original type.
SDValue PromoteVectorOp(SDValue Op);
public:
bool Run();
VectorLegalizer(SelectionDAG& dag) :
DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
};
bool VectorLegalizer::Run() {
// The legalize process is inherently a bottom-up recursive process (users
// legalize their uses before themselves). Given infinite stack space, we
// could just start legalizing on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, compute an ordering of the nodes where each
// node is only legalized after all of its operands are legalized.
DAG.AssignTopologicalOrder();
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
LegalizeOp(SDValue(I, 0));
// Finally, it's possible the root changed. Get the new root.
SDValue OldRoot = DAG.getRoot();
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
DAG.setRoot(LegalizedNodes[OldRoot]);
LegalizedNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes();
return Changed;
}
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
// Generic legalization: just pass the operand through.
for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
return Result.getValue(Op.getResNo());
}
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
SDNode* Node = Op.getNode();
// Legalize the operands
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
SDValue Result =
SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0);
bool HasVectorValue = false;
for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
J != E;
++J)
HasVectorValue |= J->isVector();
if (!HasVectorValue)
return TranslateLegalizeResults(Op, Result);
EVT QueryType;
switch (Op.getOpcode()) {
default:
return TranslateLegalizeResults(Op, Result);
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::SELECT:
case ISD::SELECT_CC:
case ISD::VSETCC:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FPOWI:
case ISD::FPOW:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FFLOOR:
QueryType = Node->getValueType(0);
break;
case ISD::SIGN_EXTEND_INREG:
case ISD::FP_ROUND_INREG:
QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
QueryType = Node->getOperand(0).getValueType();
break;
}
switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
case TargetLowering::Promote:
// "Promote" the operation by bitcasting
Result = PromoteVectorOp(Op);
Changed = true;
break;
case TargetLowering::Legal: break;
case TargetLowering::Custom: {
SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.getNode()) {
Result = Tmp1;
break;
}
// FALL THROUGH
}
case TargetLowering::Expand:
if (Node->getOpcode() == ISD::FNEG)
Result = ExpandFNEG(Op);
else if (Node->getOpcode() == ISD::VSETCC)
Result = UnrollVSETCC(Op);
else
Result = DAG.UnrollVectorOp(Op.getNode());
break;
}
// Make sure that the generated code is itself legal.
if (Result != Op) {
Result = LegalizeOp(Result);
Changed = true;
}
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
AddLegalizedOperand(Op, Result);
return Result;
}
SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) {
// Vector "promotion" is basically just bitcasting and doing the operation
// in a different type. For example, x86 promotes ISD::AND on v2i32 to
// v1i64.
EVT VT = Op.getValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
EVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
Operands[j] = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op);
}
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
Zero, Op.getOperand(0));
}
return DAG.UnrollVectorOp(Op.getNode());
}
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
EVT VT = Op.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
DAG.getIntPtrConstant(i));
SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
DAG.getIntPtrConstant(i));
Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT),
LHSElem, RHSElem, CC);
Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i],
DAG.getConstant(APInt::getAllOnesValue
(EltVT.getSizeInBits()), EltVT),
DAG.getConstant(0, EltVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems);
}
}
bool SelectionDAG::LegalizeVectors() {
return VectorLegalizer(*this).Run();
}
|