1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "splitter"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: mf_(mf),
lis_(lis),
loops_(mli),
tii_(*mf.getTarget().getInstrInfo()),
curli_(0) {}
void SplitAnalysis::clear() {
usingInstrs_.clear();
usingBlocks_.clear();
usingLoops_.clear();
curli_ = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
void SplitAnalysis::analyzeUses() {
const MachineRegisterInfo &MRI = mf_.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
MachineInstr *MI = I.skipInstruction();) {
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
continue;
MachineBasicBlock *MBB = MI->getParent();
if (usingBlocks_[MBB]++)
continue;
if (MachineLoop *Loop = loops_.getLoopFor(MBB))
usingLoops_[Loop]++;
}
DEBUG(dbgs() << " counted "
<< usingInstrs_.size() << " instrs, "
<< usingBlocks_.size() << " blocks, "
<< usingLoops_.size() << " loops.\n");
}
/// removeUse - Update statistics by noting that MI no longer uses curli.
void SplitAnalysis::removeUse(const MachineInstr *MI) {
if (!usingInstrs_.erase(MI))
return;
// Decrement MBB count.
const MachineBasicBlock *MBB = MI->getParent();
BlockCountMap::iterator bi = usingBlocks_.find(MBB);
assert(bi != usingBlocks_.end() && "MBB missing");
assert(bi->second && "0 count in map");
if (--bi->second)
return;
// No more uses in MBB.
usingBlocks_.erase(bi);
// Decrement loop count.
MachineLoop *Loop = loops_.getLoopFor(MBB);
if (!Loop)
return;
LoopCountMap::iterator li = usingLoops_.find(Loop);
assert(li != usingLoops_.end() && "Loop missing");
assert(li->second && "0 count in map");
if (--li->second)
return;
// No more blocks in Loop.
usingLoops_.erase(li);
}
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
Blocks.clear();
// Blocks in the loop.
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
// Predecessor blocks.
const MachineBasicBlock *Header = Loop->getHeader();
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
E = Header->pred_end(); I != E; ++I)
if (!Blocks.Loop.count(*I))
Blocks.Preds.insert(*I);
// Exit blocks.
for (MachineLoop::block_iterator I = Loop->block_begin(),
E = Loop->block_end(); I != E; ++I) {
const MachineBasicBlock *MBB = *I;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if (!Blocks.Loop.count(*SI))
Blocks.Exits.insert(*SI);
}
}
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
LoopPeripheralUse use = ContainedInLoop;
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I) {
const MachineBasicBlock *MBB = I->first;
// Is this a peripheral block?
if (use < MultiPeripheral &&
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
if (I->second > 1) use = MultiPeripheral;
else use = SinglePeripheral;
continue;
}
// Is it a loop block?
if (Blocks.Loop.count(MBB))
continue;
// It must be an unrelated block.
return OutsideLoop;
}
return use;
}
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has phi uses of curli. Collect the exit
/// blocks that need special treatment into CriticalExits.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
CriticalExits.clear();
// A critical exit block contains a phi def of curli, and has a predecessor
// that is not in the loop nor a loop predecessor.
// For such an exit block, the edges carrying the new variable must be moved
// to a new pre-exit block.
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
// This exit may not have curli live in at all. No need to split.
if (!SuccVNI)
continue;
// If this is not a PHI def, it is either using a value from before the
// loop, or a value defined inside the loop. Both are safe.
if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
continue;
// This exit block does have a PHI. Does it also have a predecessor that is
// not a loop block or loop predecessor?
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
continue;
// This is a critical exit block, and we need to split the exit edge.
CriticalExits.insert(Succ);
break;
}
}
}
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
// If we don't allow critical edge splitting, require no critical exits.
if (!AllowSplit)
return CriticalExits.empty();
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
// We want to insert a new pre-exit MBB before Succ, and change all the
// in-loop blocks to branch to the pre-exit instead of Succ.
// Check that all the in-loop predecessors can be changed.
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
// The external predecessors won't be altered.
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
continue;
if (!canAnalyzeBranch(Pred))
return false;
}
// If Succ's layout predecessor falls through, that too must be analyzable.
// We need to insert the pre-exit block in the gap.
MachineFunction::const_iterator MFI = Succ;
if (MFI == mf_.begin())
continue;
if (!canAnalyzeBranch(--MFI))
return false;
}
// No problems found.
return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
curli_ = li;
analyzeUses();
}
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
assert(curli_ && "Call analyze() before getBestSplitLoop");
if (usingLoops_.empty())
return 0;
LoopPtrSet Loops, SecondLoops;
LoopBlocks Blocks;
BlockPtrSet CriticalExits;
// Find first-class and second class candidate loops.
// We prefer to split around loops where curli is used outside the periphery.
for (LoopCountMap::const_iterator I = usingLoops_.begin(),
E = usingLoops_.end(); I != E; ++I) {
const MachineLoop *Loop = I->first;
getLoopBlocks(Loop, Blocks);
// FIXME: We need an SSA updater to properly handle multiple exit blocks.
if (Blocks.Exits.size() > 1) {
DEBUG(dbgs() << " multiple exits from " << *Loop);
continue;
}
LoopPtrSet *LPS = 0;
switch(analyzeLoopPeripheralUse(Blocks)) {
case OutsideLoop:
LPS = &Loops;
break;
case MultiPeripheral:
LPS = &SecondLoops;
break;
case ContainedInLoop:
DEBUG(dbgs() << " contained in " << *Loop);
continue;
case SinglePeripheral:
DEBUG(dbgs() << " single peripheral use in " << *Loop);
continue;
}
// Will it be possible to split around this loop?
getCriticalExits(Blocks, CriticalExits);
DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from "
<< *Loop);
if (!canSplitCriticalExits(Blocks, CriticalExits))
continue;
// This is a possible split.
assert(LPS);
LPS->insert(Loop);
}
DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + "
<< SecondLoops.size() << " candidate loops.\n");
// If there are no first class loops available, look at second class loops.
if (Loops.empty())
Loops = SecondLoops;
if (Loops.empty())
return 0;
// Pick the earliest loop.
// FIXME: Are there other heuristics to consider?
const MachineLoop *Best = 0;
SlotIndex BestIdx;
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
++I) {
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
if (!Best || Idx < BestIdx)
Best = *I, BestIdx = Idx;
}
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
return Best;
}
/// getMultiUseBlocks - if curli has more than one use in a basic block, it
/// may be an advantage to split curli for the duration of the block.
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
// If curli is local to one block, there is no point to splitting it.
if (usingBlocks_.size() <= 1)
return false;
// Add blocks with multiple uses.
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I)
switch (I->second) {
case 0:
case 1:
continue;
case 2: {
// It doesn't pay to split a 2-instr block if it redefines curli.
VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
VNInfo *VN2 =
curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
// live-in and live-out with a different value.
if (VN1 && VN2 && VN1 != VN2)
continue;
} // Fall through.
default:
Blocks.insert(I->first);
}
return !Blocks.empty();
}
//===----------------------------------------------------------------------===//
// LiveIntervalMap
//===----------------------------------------------------------------------===//
// defValue - Introduce a li_ def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Is this a simple 1-1 mapping? Not likely.
if (Idx == ParentVNI->def)
return mapValue(ParentVNI, Idx);
// This is a complex def. Mark with a NULL in valueMap.
VNInfo *OldVNI =
valueMap_.insert(
ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0))).first->second;
// The static_cast<VNInfo *> is only needed to work around a bug in an
// old version of the C++0x standard which the following compilers
// implemented and have yet to fix:
//
// Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel
// Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01
//
// If/When we move to C++0x, this can be replaced by nullptr.
(void)OldVNI;
assert(OldVNI == 0 && "Simple/Complex values mixed");
// Should we insert a minimal snippet of VNI LiveRange, or can we count on
// callers to do that? We need it for lookups of complex values.
VNInfo *VNI = li_.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator());
return VNI;
}
// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) {
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
valueMap_.insert(ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0)));
// The static_cast<VNInfo *> is only needed to work around a bug in an
// old version of the C++0x standard which the following compilers
// implemented and have yet to fix:
//
// Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel
// Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01
//
// If/When we move to C++0x, this can be replaced by nullptr.
// This was an unknown value. Create a simple mapping.
if (InsP.second)
return InsP.first->second = li_.createValueCopy(ParentVNI,
lis_.getVNInfoAllocator());
// This was a simple mapped value.
if (InsP.first->second)
return InsP.first->second;
// This is a complex mapped value. There may be multiple defs, and we may need
// to create phi-defs.
MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
// Is there a def in the same MBB we can extend?
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
return VNI;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
// Perform a depth-first search for predecessor blocks where we know the
// dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
// Track MBBs where we have created or learned the dominating value.
// This may change during the DFS as we create new phi-defs.
typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
MBBValueMap DomValue;
for (idf_iterator<MachineBasicBlock*>
IDFI = idf_begin(IdxMBB),
IDFE = idf_end(IdxMBB); IDFI != IDFE;) {
MachineBasicBlock *MBB = *IDFI;
SlotIndex End = lis_.getMBBEndIdx(MBB);
// We are operating on the restricted CFG where ParentVNI is live.
if (parentli_.getVNInfoAt(End.getPrevSlot()) != ParentVNI) {
IDFI.skipChildren();
continue;
}
// Do we have a dominating value in this block?
VNInfo *VNI = extendTo(MBB, End);
if (!VNI) {
++IDFI;
continue;
}
// Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs
// as needed along the way.
for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
// Start from MBB's immediate successor. End at IdxMBB.
MachineBasicBlock *Succ = IDFI.getPath(PI-1);
std::pair<MBBValueMap::iterator, bool> InsP =
DomValue.insert(MBBValueMap::value_type(Succ, VNI));
// This is the first time we backtrack to Succ.
if (InsP.second)
continue;
// We reached Succ again with the same VNI. Nothing is going to change.
VNInfo *OVNI = InsP.first->second;
if (OVNI == VNI)
break;
// Succ already has a phi-def. No need to continue.
SlotIndex Start = lis_.getMBBStartIdx(Succ);
if (OVNI->def == Start)
break;
// We have a collision between the old and new VNI at Succ. That means
// neither dominates and we need a new phi-def.
VNI = li_.getNextValue(Start, 0, true, lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
InsP.first->second = VNI;
// Replace OVNI with VNI in the remaining path.
for (; PI > 1 ; --PI) {
MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
if (I == DomValue.end() || I->second != OVNI)
break;
I->second = VNI;
}
}
// No need to search the children, we found a dominating value.
IDFI.skipChildren();
}
// The search should at least find a dominating value for IdxMBB.
assert(!DomValue.empty() && "Couldn't find a reaching definition");
// Since we went through the trouble of a full DFS visiting all reaching defs,
// the values in DomValue are now accurate. No more phi-defs are needed for
// these blocks, so we can color the live ranges.
// This makes the next mapValue call much faster.
VNInfo *IdxVNI = 0;
for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
++I) {
MachineBasicBlock *MBB = I->first;
VNInfo *VNI = I->second;
SlotIndex Start = lis_.getMBBStartIdx(MBB);
if (MBB == IdxMBB) {
// Don't add full liveness to IdxMBB, stop at Idx.
if (Start != Idx)
li_.addRange(LiveRange(Start, Idx, VNI));
// The caller had better add some liveness to IdxVNI, or it leaks.
IdxVNI = VNI;
} else
li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
}
assert(IdxVNI && "Didn't find value for Idx");
return IdxVNI;
}
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
LiveInterval::iterator I = std::upper_bound(li_.begin(), li_.end(), Idx);
if (I == li_.begin())
return 0;
--I;
if (I->start < lis_.getMBBStartIdx(MBB))
return 0;
if (I->end < Idx)
I->end = Idx;
return I->valno;
}
// addSimpleRange - Add a simple range from parentli_ to li_.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
const VNInfo *ParentVNI) {
VNInfo *VNI = mapValue(ParentVNI, Start);
// A simple mappoing is easy.
if (VNI->def == ParentVNI->def) {
li_.addRange(LiveRange(Start, End, VNI));
return;
}
// ParentVNI is a complex value. We must map per MBB.
MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End);
if (MBB == MBBE) {
li_.addRange(LiveRange(Start, End, VNI));
return;
}
// First block.
li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
// Run sequence of full blocks.
for (++MBB; MBB != MBBE; ++MBB) {
Start = lis_.getMBBStartIdx(MBB);
li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
mapValue(ParentVNI, Start)));
}
// Final block.
Start = lis_.getMBBStartIdx(MBB);
if (Start != End)
li_.addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
}
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
// Check if --I begins before Start and overlaps.
if (I != B) {
--I;
if (I->end > Start)
addSimpleRange(Start, std::min(End, I->end), I->valno);
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
addSimpleRange(I->start, std::min(End, I->end), I->valno);
}
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
SmallVectorImpl<LiveInterval*> &intervals)
: sa_(sa), lis_(lis), vrm_(vrm),
mri_(vrm.getMachineFunction().getRegInfo()),
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
curli_(sa_.getCurLI()),
dupli_(0), openli_(0),
intervals_(intervals),
firstInterval(intervals_.size())
{
assert(curli_ && "SplitEditor created from empty SplitAnalysis");
// Make sure curli_ is assigned a stack slot, so all our intervals get the
// same slot as curli_.
if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
vrm_.assignVirt2StackSlot(curli_->reg);
}
LiveInterval *SplitEditor::createInterval() {
unsigned curli = sa_.getCurLI()->reg;
unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli));
LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
vrm_.grow();
vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli));
return &Intv;
}
LiveInterval *SplitEditor::getDupLI() {
if (!dupli_) {
// Create an interval for dupli that is a copy of curli.
dupli_ = createInterval();
dupli_->Copy(*curli_, &mri_, lis_.getVNInfoAllocator());
}
return dupli_;
}
VNInfo *SplitEditor::mapValue(const VNInfo *curliVNI) {
VNInfo *&VNI = valueMap_[curliVNI];
if (!VNI)
VNI = openli_->createValueCopy(curliVNI, lis_.getVNInfoAllocator());
return VNI;
}
/// Insert a COPY instruction curli -> li. Allocate a new value from li
/// defined by the COPY. Note that rewrite() will deal with the curli
/// register, so this function can be used to copy from any interval - openli,
/// curli, or dupli.
VNInfo *SplitEditor::insertCopy(LiveInterval &LI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
LI.reg).addReg(curli_->reg);
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator());
}
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!openli_ && "Previous LI not closed before openIntv");
openli_ = createInterval();
intervals_.push_back(openli_);
liveThrough_ = false;
}
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
/// not live before Idx, a COPY is not inserted.
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
assert(openli_ && "openIntv not called before enterIntvBefore");
// Copy from curli_ if it is live.
if (VNInfo *CurVNI = curli_->getVNInfoAt(Idx.getUseIndex())) {
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
VNInfo *VNI = insertCopy(*openli_, *MI->getParent(), MI);
openli_->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
// Make sure CurVNI is properly mapped.
VNInfo *&mapVNI = valueMap_[CurVNI];
// We dont have SSA update yet, so only one entry per value is allowed.
assert(!mapVNI && "enterIntvBefore called more than once for the same value");
mapVNI = VNI;
}
DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_ << '\n');
}
/// enterIntvAtEnd - Enter openli at the end of MBB.
/// PhiMBB is a successor inside openli where a PHI value is created.
/// Currently, all entries must share the same PhiMBB.
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) {
assert(openli_ && "openIntv not called before enterIntvAtEnd");
SlotIndex EndA = lis_.getMBBEndIdx(&A);
VNInfo *CurVNIA = curli_->getVNInfoAt(EndA.getPrevIndex());
if (!CurVNIA) {
DEBUG(dbgs() << " enterIntvAtEnd, curli not live out of BB#"
<< A.getNumber() << ".\n");
return;
}
// Add a phi kill value and live range out of A.
VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator());
openli_->addRange(LiveRange(VNIA->def, EndA, VNIA));
// FIXME: If this is the only entry edge, we don't need the extra PHI value.
// FIXME: If there are multiple entry blocks (so not a loop), we need proper
// SSA update.
// Now look at the start of B.
SlotIndex StartB = lis_.getMBBStartIdx(&B);
SlotIndex EndB = lis_.getMBBEndIdx(&B);
const LiveRange *CurB = curli_->getLiveRangeContaining(StartB);
if (!CurB) {
DEBUG(dbgs() << " enterIntvAtEnd: curli not live in to BB#"
<< B.getNumber() << ".\n");
return;
}
VNInfo *VNIB = openli_->getVNInfoAt(StartB);
if (!VNIB) {
// Create a phi value.
VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false,
lis_.getVNInfoAllocator());
VNIB->setIsPHIDef(true);
VNInfo *&mapVNI = valueMap_[CurB->valno];
if (mapVNI) {
// Multiple copies - must create PHI value.
abort();
} else {
// This is the first copy of dupLR. Mark the mapping.
mapVNI = VNIB;
}
}
DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_ << '\n');
}
/// useIntv - indicate that all instructions in MBB should use openli.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(openli_ && "openIntv not called before useIntv");
// Map the curli values from the interval into openli_
LiveInterval::const_iterator B = curli_->begin(), E = curli_->end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
if (I != B) {
--I;
// I begins before Start, but overlaps.
if (I->end > Start)
openli_->addRange(LiveRange(Start, std::min(End, I->end),
mapValue(I->valno)));
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
openli_->addRange(LiveRange(I->start, std::min(End, I->end),
mapValue(I->valno)));
DEBUG(dbgs() << " use [" << Start << ';' << End << "): " << *openli_
<< '\n');
}
/// leaveIntvAfter - Leave openli after the instruction at Idx.
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
assert(openli_ && "openIntv not called before leaveIntvAfter");
const LiveRange *CurLR = curli_->getLiveRangeContaining(Idx.getDefIndex());
if (!CurLR || CurLR->end <= Idx.getBoundaryIndex()) {
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n");
return;
}
// Was this value of curli live through openli?
if (!openli_->liveAt(CurLR->valno->def)) {
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": using external value\n");
liveThrough_ = true;
return;
}
// We are going to insert a back copy, so we must have a dupli_.
LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Idx.getDefIndex());
assert(DupLR && "dupli not live into black, but curli is?");
// Insert the COPY instruction.
MachineBasicBlock::iterator I = lis_.getInstructionFromIndex(Idx);
MachineInstr *MI = BuildMI(*I->getParent(), llvm::next(I), I->getDebugLoc(),
tii_.get(TargetOpcode::COPY), dupli_->reg)
.addReg(openli_->reg);
SlotIndex CopyIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
openli_->addRange(LiveRange(Idx.getDefIndex(), CopyIdx,
mapValue(CurLR->valno)));
DupLR->valno->def = CopyIdx;
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_ << '\n');
}
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(openli_ && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
const LiveRange *CurLR = curli_->getLiveRangeContaining(Start);
// Is curli even live-in to MBB?
if (!CurLR) {
DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n");
return;
}
// Is curli defined by PHI at the beginning of MBB?
bool isPHIDef = CurLR->valno->isPHIDef() &&
CurLR->valno->def.getBaseIndex() == Start;
// If MBB is using a value of curli that was defined outside the openli range,
// we don't want to copy it back here.
if (!isPHIDef && !openli_->liveAt(CurLR->valno->def)) {
DEBUG(dbgs() << " leaveIntvAtTop at " << Start
<< ": using external value\n");
liveThrough_ = true;
return;
}
// We are going to insert a back copy, so we must have a dupli_.
LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Start);
assert(DupLR && "dupli not live into black, but curli is?");
// Insert the COPY instruction.
MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(),
tii_.get(TargetOpcode::COPY), dupli_->reg)
.addReg(openli_->reg);
SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
// Adjust dupli and openli values.
if (isPHIDef) {
// dupli was already a PHI on entry to MBB. Simply insert an openli PHI,
// and shift the dupli def down to the COPY.
VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
openli_->addRange(LiveRange(VNI->def, Idx, VNI));
dupli_->removeRange(Start, Idx);
DupLR->valno->def = Idx;
DupLR->valno->setIsPHIDef(false);
} else {
// The dupli value was defined somewhere inside the openli range.
DEBUG(dbgs() << " leaveIntvAtTop source value defined at "
<< DupLR->valno->def << "\n");
// FIXME: We may not need a PHI here if all predecessors have the same
// value.
VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
openli_->addRange(LiveRange(VNI->def, Idx, VNI));
// FIXME: What if DupLR->valno is used by multiple exits? SSA Update.
// closeIntv is going to remove the superfluous live ranges.
DupLR->valno->def = Idx;
DupLR->valno->setIsPHIDef(false);
}
DEBUG(dbgs() << " leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n');
}
/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
assert(openli_ && "openIntv not called before closeIntv");
DEBUG(dbgs() << " closeIntv cleaning up\n");
DEBUG(dbgs() << " open " << *openli_ << '\n');
if (liveThrough_) {
DEBUG(dbgs() << " value live through region, leaving dupli as is.\n");
} else {
// live out with copies inserted, or killed by region. Either way we need to
// remove the overlapping region from dupli.
getDupLI();
for (LiveInterval::iterator I = openli_->begin(), E = openli_->end();
I != E; ++I) {
dupli_->removeRange(I->start, I->end);
}
// FIXME: A block branching to the entry block may also branch elsewhere
// curli is live. We need both openli and curli to be live in that case.
DEBUG(dbgs() << " dup2 " << *dupli_ << '\n');
}
openli_ = 0;
valueMap_.clear();
}
/// rewrite - after all the new live ranges have been created, rewrite
/// instructions using curli to use the new intervals.
void SplitEditor::rewrite() {
assert(!openli_ && "Previous LI not closed before rewrite");
const LiveInterval *curli = sa_.getCurLI();
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg),
RE = mri_.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
// FIXME: We can do much better with debug values.
MO.setReg(0);
continue;
}
SlotIndex Idx = lis_.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
LiveInterval *LI = dupli_;
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
LiveInterval *testli = intervals_[i];
if (testli->liveAt(Idx)) {
LI = testli;
break;
}
}
if (LI) {
MO.setReg(LI->reg);
sa_.removeUse(MI);
DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI);
}
}
// dupli_ goes in last, after rewriting.
if (dupli_) {
if (dupli_->empty()) {
DEBUG(dbgs() << " dupli became empty?\n");
lis_.removeInterval(dupli_->reg);
dupli_ = 0;
} else {
dupli_->RenumberValues(lis_);
intervals_.push_back(dupli_);
}
}
// Calculate spill weight and allocation hints for new intervals.
VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
LiveInterval &li = *intervals_[i];
vrai.CalculateRegClass(li.reg);
vrai.CalculateWeightAndHint(li);
DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
<< ":" << li << '\n');
}
}
//===----------------------------------------------------------------------===//
// Loop Splitting
//===----------------------------------------------------------------------===//
bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
SplitAnalysis::LoopBlocks Blocks;
sa_.getLoopBlocks(Loop, Blocks);
// Break critical edges as needed.
SplitAnalysis::BlockPtrSet CriticalExits;
sa_.getCriticalExits(Blocks, CriticalExits);
assert(CriticalExits.empty() && "Cannot break critical exits yet");
// Create new live interval for the loop.
openIntv();
// Insert copies in the predecessors.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
E = Blocks.Preds.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
enterIntvAtEnd(MBB, *Loop->getHeader());
}
// Switch all loop blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
E = Blocks.Loop.end(); I != E; ++I)
useIntv(**I);
// Insert back copies in the exit blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
E = Blocks.Exits.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
leaveIntvAtTop(MBB);
}
// Done.
closeIntv();
rewrite();
return dupli_;
}
//===----------------------------------------------------------------------===//
// Single Block Splitting
//===----------------------------------------------------------------------===//
/// splitSingleBlocks - Split curli into a separate live interval inside each
/// basic block in Blocks. Return true if curli has been completely replaced,
/// false if curli is still intact, and needs to be spilled or split further.
bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
// Determine the first and last instruction using curli in each block.
typedef std::pair<SlotIndex,SlotIndex> IndexPair;
typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
IndexPairMap MBBRange;
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
E = sa_.usingInstrs_.end(); I != E; ++I) {
const MachineBasicBlock *MBB = (*I)->getParent();
if (!Blocks.count(MBB))
continue;
SlotIndex Idx = lis_.getInstructionIndex(*I);
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
IndexPair &IP = MBBRange[MBB];
if (!IP.first.isValid() || Idx < IP.first)
IP.first = Idx;
if (!IP.second.isValid() || Idx > IP.second)
IP.second = Idx;
}
// Create a new interval for each block.
for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
E = Blocks.end(); I != E; ++I) {
IndexPair &IP = MBBRange[*I];
DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": ["
<< IP.first << ';' << IP.second << ")\n");
assert(IP.first.isValid() && IP.second.isValid());
openIntv();
enterIntvBefore(IP.first);
useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
leaveIntvAfter(IP.second);
closeIntv();
}
rewrite();
return dupli_;
}
//===----------------------------------------------------------------------===//
// Sub Block Splitting
//===----------------------------------------------------------------------===//
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
/// and it wou pay to subdivide the interval inside that block, return it.
/// Otherwise return NULL. The returned block can be passed to
/// SplitEditor::splitInsideBlock.
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
// The interval must be exclusive to one block.
if (usingBlocks_.size() != 1)
return 0;
// Don't to this for less than 4 instructions. We want to be sure that
// splitting actually reduces the instruction count per interval.
if (usingInstrs_.size() < 4)
return 0;
return usingBlocks_.begin()->first;
}
/// splitInsideBlock - Split curli into multiple intervals inside MBB. Return
/// true if curli has been completely replaced, false if curli is still
/// intact, and needs to be spilled or split further.
bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
SmallVector<SlotIndex, 32> Uses;
Uses.reserve(sa_.usingInstrs_.size());
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
E = sa_.usingInstrs_.end(); I != E; ++I)
if ((*I)->getParent() == MBB)
Uses.push_back(lis_.getInstructionIndex(*I));
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
<< Uses.size() << " instructions.\n");
assert(Uses.size() >= 3 && "Need at least 3 instructions");
array_pod_sort(Uses.begin(), Uses.end());
// Simple algorithm: Find the largest gap between uses as determined by slot
// indices. Create new intervals for instructions before the gap and after the
// gap.
unsigned bestPos = 0;
int bestGap = 0;
DEBUG(dbgs() << " dist (" << Uses[0]);
for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
int g = Uses[i-1].distance(Uses[i]);
DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
if (g > bestGap)
bestPos = i, bestGap = g;
}
DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
// bestPos points to the first use after the best gap.
assert(bestPos > 0 && "Invalid gap");
// FIXME: Don't create intervals for low densities.
// First interval before the gap. Don't create single-instr intervals.
if (bestPos > 1) {
openIntv();
enterIntvBefore(Uses.front());
useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
leaveIntvAfter(Uses[bestPos-1]);
closeIntv();
}
// Second interval after the gap.
if (bestPos < Uses.size()-1) {
openIntv();
enterIntvBefore(Uses[bestPos]);
useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
leaveIntvAfter(Uses.back());
closeIntv();
}
rewrite();
return dupli_;
}
|