1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
//===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass instruments the specified program with counters for edge profiling.
// Edge profiling can give a reasonable approximation of the hot paths through a
// program, and is used for a wide variety of program transformations.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-optimal-edge-profiling"
#include "ProfilingUtils.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Statistic.h"
#include "MaximumSpanningTree.h"
#include <set>
using namespace llvm;
STATISTIC(NumEdgesInserted, "The # of edges inserted.");
namespace {
class OptimalEdgeProfiler : public ModulePass {
bool runOnModule(Module &M);
public:
static char ID; // Pass identification, replacement for typeid
OptimalEdgeProfiler() : ModulePass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(ProfileEstimatorPassID);
AU.addRequired<ProfileInfo>();
}
virtual const char *getPassName() const {
return "Optimal Edge Profiler";
}
};
}
char OptimalEdgeProfiler::ID = 0;
INITIALIZE_PASS(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
"Insert optimal instrumentation for edge profiling",
false, false);
ModulePass *llvm::createOptimalEdgeProfilerPass() {
return new OptimalEdgeProfiler();
}
inline static void printEdgeCounter(ProfileInfo::Edge e,
BasicBlock* b,
unsigned i) {
DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \
<< ((b)?(b)->getNameStr():"0") << " (# " << (i) << ")\n");
}
bool OptimalEdgeProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
errs() << "WARNING: cannot insert edge profiling into a module"
<< " with no main function!\n";
return false; // No main, no instrumentation!
}
// NumEdges counts all the edges that may be instrumented. Later on its
// decided which edges to actually instrument, to achieve optimal profiling.
// For the entry block a virtual edge (0,entry) is reserved, for each block
// with no successors an edge (BB,0) is reserved. These edges are necessary
// to calculate a truly optimal maximum spanning tree and thus an optimal
// instrumentation.
unsigned NumEdges = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
// Reserve space for (0,entry) edge.
++NumEdges;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
// Keep track of which blocks need to be instrumented. We don't want to
// instrument blocks that are added as the result of breaking critical
// edges!
if (BB->getTerminator()->getNumSuccessors() == 0) {
// Reserve space for (BB,0) edge.
++NumEdges;
} else {
NumEdges += BB->getTerminator()->getNumSuccessors();
}
}
}
// In the profiling output a counter for each edge is reserved, but only few
// are used. This is done to be able to read back in the profile without
// calulating the maximum spanning tree again, instead each edge counter that
// is not used is initialised with -1 to signal that this edge counter has to
// be calculated from other edge counters on reading the profile info back
// in.
const Type *Int32 = Type::getInt32Ty(M.getContext());
const ArrayType *ATy = ArrayType::get(Int32, NumEdges);
GlobalVariable *Counters =
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(ATy), "OptEdgeProfCounters");
NumEdgesInserted = 0;
std::vector<Constant*> Initializer(NumEdges);
Constant* Zero = ConstantInt::get(Int32, 0);
Constant* Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted);
// Instrument all of the edges not in MST...
unsigned i = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
DEBUG(dbgs()<<"Working on "<<F->getNameStr()<<"\n");
// Calculate a Maximum Spanning Tree with the edge weights determined by
// ProfileEstimator. ProfileEstimator also assign weights to the virtual
// edges (0,entry) and (BB,0) (for blocks with no successors) and this
// edges also participate in the maximum spanning tree calculation.
// The third parameter of MaximumSpanningTree() has the effect that not the
// actual MST is returned but the edges _not_ in the MST.
ProfileInfo::EdgeWeights ECs =
getAnalysis<ProfileInfo>(*F).getEdgeWeights(F);
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
MaximumSpanningTree<BasicBlock> MST (EdgeVector);
std::stable_sort(MST.begin(),MST.end());
// Check if (0,entry) not in the MST. If not, instrument edge
// (IncrementCounterInBlock()) and set the counter initially to zero, if
// the edge is in the MST the counter is initialised to -1.
BasicBlock *entry = &(F->getEntryBlock());
ProfileInfo::Edge edge = ProfileInfo::getEdge(0,entry);
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
printEdgeCounter(edge,entry,i);
IncrementCounterInBlock(entry, i, Counters); ++NumEdgesInserted;
Initializer[i++] = (Zero);
} else{
Initializer[i++] = (Uncounted);
}
// InsertedBlocks contains all blocks that were inserted for splitting an
// edge, this blocks do not have to be instrumented.
DenseSet<BasicBlock*> InsertedBlocks;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
// Check if block was not inserted and thus does not have to be
// instrumented.
if (InsertedBlocks.count(BB)) continue;
// Okay, we have to add a counter of each outgoing edge not in MST. If
// the outgoing edge is not critical don't split it, just insert the
// counter in the source or destination of the edge. Also, if the block
// has no successors, the virtual edge (BB,0) is processed.
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,0);
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
printEdgeCounter(edge,BB,i);
IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
Initializer[i++] = (Zero);
} else{
Initializer[i++] = (Uncounted);
}
}
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
BasicBlock *Succ = TI->getSuccessor(s);
ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
if (!std::binary_search(MST.begin(), MST.end(), edge)) {
// If the edge is critical, split it.
bool wasInserted = SplitCriticalEdge(TI, s, this);
Succ = TI->getSuccessor(s);
if (wasInserted)
InsertedBlocks.insert(Succ);
// Okay, we are guaranteed that the edge is no longer critical. If
// we only have a single successor, insert the counter in this block,
// otherwise insert it in the successor block.
if (TI->getNumSuccessors() == 1) {
// Insert counter at the start of the block
printEdgeCounter(edge,BB,i);
IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
} else {
// Insert counter at the start of the block
printEdgeCounter(edge,Succ,i);
IncrementCounterInBlock(Succ, i, Counters); ++NumEdgesInserted;
}
Initializer[i++] = (Zero);
} else {
Initializer[i++] = (Uncounted);
}
}
}
}
// Check if the number of edges counted at first was the number of edges we
// considered for instrumentation.
assert(i==NumEdges && "the number of edges in counting array is wrong");
// Assing the now completely defined initialiser to the array.
Constant *init = ConstantArray::get(ATy, Initializer);
Counters->setInitializer(init);
// Add the initialization call to main.
InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters);
return true;
}
|