1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
|
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach. It should eventually be removed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "codegenprepare"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/IRBuilder.h"
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<bool>
CriticalEdgeSplit("cgp-critical-edge-splitting",
cl::desc("Split critical edges during codegen prepare"),
cl::init(true), cl::Hidden);
namespace {
class CodeGenPrepare : public FunctionPass {
/// TLI - Keep a pointer of a TargetLowering to consult for determining
/// transformation profitability.
const TargetLowering *TLI;
ProfileInfo *PFI;
/// BackEdges - Keep a set of all the loop back edges.
///
SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
public:
static char ID; // Pass identification, replacement for typeid
explicit CodeGenPrepare(const TargetLowering *tli = 0)
: FunctionPass(ID), TLI(tli) {}
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<ProfileInfo>();
}
virtual void releaseMemory() {
BackEdges.clear();
}
private:
bool EliminateMostlyEmptyBlocks(Function &F);
bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
void EliminateMostlyEmptyBlock(BasicBlock *BB);
bool OptimizeBlock(BasicBlock &BB);
bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
DenseMap<Value*,Value*> &SunkAddrs);
bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
DenseMap<Value*,Value*> &SunkAddrs);
bool OptimizeCallInst(CallInst *CI);
bool MoveExtToFormExtLoad(Instruction *I);
bool OptimizeExtUses(Instruction *I);
void findLoopBackEdges(const Function &F);
};
}
char CodeGenPrepare::ID = 0;
INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
"Optimize for code generation", false, false);
FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
return new CodeGenPrepare(TLI);
}
/// findLoopBackEdges - Do a DFS walk to find loop back edges.
///
void CodeGenPrepare::findLoopBackEdges(const Function &F) {
SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
FindFunctionBackedges(F, Edges);
BackEdges.insert(Edges.begin(), Edges.end());
}
bool CodeGenPrepare::runOnFunction(Function &F) {
bool EverMadeChange = false;
PFI = getAnalysisIfAvailable<ProfileInfo>();
// First pass, eliminate blocks that contain only PHI nodes and an
// unconditional branch.
EverMadeChange |= EliminateMostlyEmptyBlocks(F);
// Now find loop back edges.
findLoopBackEdges(F);
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
MadeChange |= OptimizeBlock(*BB);
EverMadeChange |= MadeChange;
}
return EverMadeChange;
}
/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
/// debug info directives, and an unconditional branch. Passes before isel
/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
/// isel. Start by eliminating these blocks so we can split them the way we
/// want them.
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
bool MadeChange = false;
// Note that this intentionally skips the entry block.
for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
BasicBlock *BB = I++;
// If this block doesn't end with an uncond branch, ignore it.
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isUnconditional())
continue;
// If the instruction before the branch (skipping debug info) isn't a phi
// node, then other stuff is happening here.
BasicBlock::iterator BBI = BI;
if (BBI != BB->begin()) {
--BBI;
while (isa<DbgInfoIntrinsic>(BBI)) {
if (BBI == BB->begin())
break;
--BBI;
}
if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
continue;
}
// Do not break infinite loops.
BasicBlock *DestBB = BI->getSuccessor(0);
if (DestBB == BB)
continue;
if (!CanMergeBlocks(BB, DestBB))
continue;
EliminateMostlyEmptyBlock(BB);
MadeChange = true;
}
return MadeChange;
}
/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
/// single uncond branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
const BasicBlock *DestBB) const {
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
// the successor. If there are more complex condition (e.g. preheaders),
// don't mess around with them.
BasicBlock::const_iterator BBI = BB->begin();
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
UI != E; ++UI) {
const Instruction *User = cast<Instruction>(*UI);
if (User->getParent() != DestBB || !isa<PHINode>(User))
return false;
// If User is inside DestBB block and it is a PHINode then check
// incoming value. If incoming value is not from BB then this is
// a complex condition (e.g. preheaders) we want to avoid here.
if (User->getParent() == DestBB) {
if (const PHINode *UPN = dyn_cast<PHINode>(User))
for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
if (Insn && Insn->getParent() == BB &&
Insn->getParent() != UPN->getIncomingBlock(I))
return false;
}
}
}
}
// If BB and DestBB contain any common predecessors, then the phi nodes in BB
// and DestBB may have conflicting incoming values for the block. If so, we
// can't merge the block.
const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
if (!DestBBPN) return true; // no conflict.
// Collect the preds of BB.
SmallPtrSet<const BasicBlock*, 16> BBPreds;
if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
// It is faster to get preds from a PHI than with pred_iterator.
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
BBPreds.insert(BBPN->getIncomingBlock(i));
} else {
BBPreds.insert(pred_begin(BB), pred_end(BB));
}
// Walk the preds of DestBB.
for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
if (BBPreds.count(Pred)) { // Common predecessor?
BBI = DestBB->begin();
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
const Value *V1 = PN->getIncomingValueForBlock(Pred);
const Value *V2 = PN->getIncomingValueForBlock(BB);
// If V2 is a phi node in BB, look up what the mapped value will be.
if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
if (V2PN->getParent() == BB)
V2 = V2PN->getIncomingValueForBlock(Pred);
// If there is a conflict, bail out.
if (V1 != V2) return false;
}
}
}
return true;
}
/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
/// an unconditional branch in it.
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
BasicBlock *DestBB = BI->getSuccessor(0);
DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
// If the destination block has a single pred, then this is a trivial edge,
// just collapse it.
if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
if (SinglePred != DestBB) {
// Remember if SinglePred was the entry block of the function. If so, we
// will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
MergeBasicBlockIntoOnlyPred(DestBB, this);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
return;
}
}
// Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
// to handle the new incoming edges it is about to have.
PHINode *PN;
for (BasicBlock::iterator BBI = DestBB->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
// Remove the incoming value for BB, and remember it.
Value *InVal = PN->removeIncomingValue(BB, false);
// Two options: either the InVal is a phi node defined in BB or it is some
// value that dominates BB.
PHINode *InValPhi = dyn_cast<PHINode>(InVal);
if (InValPhi && InValPhi->getParent() == BB) {
// Add all of the input values of the input PHI as inputs of this phi.
for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
PN->addIncoming(InValPhi->getIncomingValue(i),
InValPhi->getIncomingBlock(i));
} else {
// Otherwise, add one instance of the dominating value for each edge that
// we will be adding.
if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
} else {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
PN->addIncoming(InVal, *PI);
}
}
}
// The PHIs are now updated, change everything that refers to BB to use
// DestBB and remove BB.
BB->replaceAllUsesWith(DestBB);
if (PFI) {
PFI->replaceAllUses(BB, DestBB);
PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
}
BB->eraseFromParent();
DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
}
/// FindReusablePredBB - Check all of the predecessors of the block DestPHI
/// lives in to see if there is a block that we can reuse as a critical edge
/// from TIBB.
static BasicBlock *FindReusablePredBB(PHINode *DestPHI, BasicBlock *TIBB) {
BasicBlock *Dest = DestPHI->getParent();
/// TIPHIValues - This array is lazily computed to determine the values of
/// PHIs in Dest that TI would provide.
SmallVector<Value*, 32> TIPHIValues;
/// TIBBEntryNo - This is a cache to speed up pred queries for TIBB.
unsigned TIBBEntryNo = 0;
// Check to see if Dest has any blocks that can be used as a split edge for
// this terminator.
for (unsigned pi = 0, e = DestPHI->getNumIncomingValues(); pi != e; ++pi) {
BasicBlock *Pred = DestPHI->getIncomingBlock(pi);
// To be usable, the pred has to end with an uncond branch to the dest.
BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
if (!PredBr || !PredBr->isUnconditional())
continue;
// Must be empty other than the branch and debug info.
BasicBlock::iterator I = Pred->begin();
while (isa<DbgInfoIntrinsic>(I))
I++;
if (&*I != PredBr)
continue;
// Cannot be the entry block; its label does not get emitted.
if (Pred == &Dest->getParent()->getEntryBlock())
continue;
// Finally, since we know that Dest has phi nodes in it, we have to make
// sure that jumping to Pred will have the same effect as going to Dest in
// terms of PHI values.
PHINode *PN;
unsigned PHINo = 0;
unsigned PredEntryNo = pi;
bool FoundMatch = true;
for (BasicBlock::iterator I = Dest->begin();
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
if (PHINo == TIPHIValues.size()) {
if (PN->getIncomingBlock(TIBBEntryNo) != TIBB)
TIBBEntryNo = PN->getBasicBlockIndex(TIBB);
TIPHIValues.push_back(PN->getIncomingValue(TIBBEntryNo));
}
// If the PHI entry doesn't work, we can't use this pred.
if (PN->getIncomingBlock(PredEntryNo) != Pred)
PredEntryNo = PN->getBasicBlockIndex(Pred);
if (TIPHIValues[PHINo] != PN->getIncomingValue(PredEntryNo)) {
FoundMatch = false;
break;
}
}
// If we found a workable predecessor, change TI to branch to Succ.
if (FoundMatch)
return Pred;
}
return 0;
}
/// SplitEdgeNicely - Split the critical edge from TI to its specified
/// successor if it will improve codegen. We only do this if the successor has
/// phi nodes (otherwise critical edges are ok). If there is already another
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
/// instead of introducing a new block.
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
SmallSet<std::pair<const BasicBlock*,
const BasicBlock*>, 8> &BackEdges,
Pass *P) {
BasicBlock *TIBB = TI->getParent();
BasicBlock *Dest = TI->getSuccessor(SuccNum);
assert(isa<PHINode>(Dest->begin()) &&
"This should only be called if Dest has a PHI!");
PHINode *DestPHI = cast<PHINode>(Dest->begin());
// Do not split edges to EH landing pads.
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI))
if (Invoke->getSuccessor(1) == Dest)
return;
// As a hack, never split backedges of loops. Even though the copy for any
// PHIs inserted on the backedge would be dead for exits from the loop, we
// assume that the cost of *splitting* the backedge would be too high.
if (BackEdges.count(std::make_pair(TIBB, Dest)))
return;
if (BasicBlock *ReuseBB = FindReusablePredBB(DestPHI, TIBB)) {
ProfileInfo *PFI = P->getAnalysisIfAvailable<ProfileInfo>();
if (PFI)
PFI->splitEdge(TIBB, Dest, ReuseBB);
Dest->removePredecessor(TIBB);
TI->setSuccessor(SuccNum, ReuseBB);
return;
}
SplitCriticalEdge(TI, SuccNum, P, true);
}
/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
/// sink it into user blocks to reduce the number of virtual
/// registers that must be created and coalesced.
///
/// Return true if any changes are made.
///
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
// If this is a noop copy,
EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(CI->getType());
// This is an fp<->int conversion?
if (SrcVT.isInteger() != DstVT.isInteger())
return false;
// If this is an extension, it will be a zero or sign extension, which
// isn't a noop.
if (SrcVT.bitsLT(DstVT)) return false;
// If these values will be promoted, find out what they will be promoted
// to. This helps us consider truncates on PPC as noop copies when they
// are.
if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
// If, after promotion, these are the same types, this is a noop copy.
if (SrcVT != DstVT)
return false;
BasicBlock *DefBB = CI->getParent();
/// InsertedCasts - Only insert a cast in each block once.
DenseMap<BasicBlock*, CastInst*> InsertedCasts;
bool MadeChange = false;
for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Figure out which BB this cast is used in. For PHI's this is the
// appropriate predecessor block.
BasicBlock *UserBB = User->getParent();
if (PHINode *PN = dyn_cast<PHINode>(User)) {
UserBB = PN->getIncomingBlock(UI);
}
// Preincrement use iterator so we don't invalidate it.
++UI;
// If this user is in the same block as the cast, don't change the cast.
if (UserBB == DefBB) continue;
// If we have already inserted a cast into this block, use it.
CastInst *&InsertedCast = InsertedCasts[UserBB];
if (!InsertedCast) {
BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
InsertedCast =
CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
InsertPt);
MadeChange = true;
}
// Replace a use of the cast with a use of the new cast.
TheUse = InsertedCast;
}
// If we removed all uses, nuke the cast.
if (CI->use_empty()) {
CI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
/// the number of virtual registers that must be created and coalesced. This is
/// a clear win except on targets with multiple condition code registers
/// (PowerPC), where it might lose; some adjustment may be wanted there.
///
/// Return true if any changes are made.
static bool OptimizeCmpExpression(CmpInst *CI) {
BasicBlock *DefBB = CI->getParent();
/// InsertedCmp - Only insert a cmp in each block once.
DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
bool MadeChange = false;
for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Preincrement use iterator so we don't invalidate it.
++UI;
// Don't bother for PHI nodes.
if (isa<PHINode>(User))
continue;
// Figure out which BB this cmp is used in.
BasicBlock *UserBB = User->getParent();
// If this user is in the same block as the cmp, don't change the cmp.
if (UserBB == DefBB) continue;
// If we have already inserted a cmp into this block, use it.
CmpInst *&InsertedCmp = InsertedCmps[UserBB];
if (!InsertedCmp) {
BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
InsertedCmp =
CmpInst::Create(CI->getOpcode(),
CI->getPredicate(), CI->getOperand(0),
CI->getOperand(1), "", InsertPt);
MadeChange = true;
}
// Replace a use of the cmp with a use of the new cmp.
TheUse = InsertedCmp;
}
// If we removed all uses, nuke the cmp.
if (CI->use_empty())
CI->eraseFromParent();
return MadeChange;
}
namespace {
class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
protected:
void replaceCall(Value *With) {
CI->replaceAllUsesWith(With);
CI->eraseFromParent();
}
bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
if (ConstantInt *SizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
return SizeCI->isAllOnesValue();
return false;
}
};
} // end anonymous namespace
bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
// Lower all uses of llvm.objectsize.*
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
const Type *ReturnTy = CI->getType();
Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
CI->replaceAllUsesWith(RetVal);
CI->eraseFromParent();
return true;
}
// From here on out we're working with named functions.
if (CI->getCalledFunction() == 0) return false;
// We'll need TargetData from here on out.
const TargetData *TD = TLI ? TLI->getTargetData() : 0;
if (!TD) return false;
// Lower all default uses of _chk calls. This is very similar
// to what InstCombineCalls does, but here we are only lowering calls
// that have the default "don't know" as the objectsize. Anything else
// should be left alone.
CodeGenPrepareFortifiedLibCalls Simplifier;
return Simplifier.fold(CI, TD);
}
//===----------------------------------------------------------------------===//
// Memory Optimization
//===----------------------------------------------------------------------===//
/// IsNonLocalValue - Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
if (Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() != BB;
return false;
}
/// OptimizeMemoryInst - Load and Store Instructions often have
/// addressing modes that can do significant amounts of computation. As such,
/// instruction selection will try to get the load or store to do as much
/// computation as possible for the program. The problem is that isel can only
/// see within a single block. As such, we sink as much legal addressing mode
/// stuff into the block as possible.
///
/// This method is used to optimize both load/store and inline asms with memory
/// operands.
bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
const Type *AccessTy,
DenseMap<Value*,Value*> &SunkAddrs) {
// Figure out what addressing mode will be built up for this operation.
SmallVector<Instruction*, 16> AddrModeInsts;
ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
AddrModeInsts, *TLI);
// Check to see if any of the instructions supersumed by this addr mode are
// non-local to I's BB.
bool AnyNonLocal = false;
for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
AnyNonLocal = true;
break;
}
}
// If all the instructions matched are already in this BB, don't do anything.
if (!AnyNonLocal) {
DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
return false;
}
// Insert this computation right after this user. Since our caller is
// scanning from the top of the BB to the bottom, reuse of the expr are
// guaranteed to happen later.
BasicBlock::iterator InsertPt = MemoryInst;
// Now that we determined the addressing expression we want to use and know
// that we have to sink it into this block. Check to see if we have already
// done this for some other load/store instr in this block. If so, reuse the
// computation.
Value *&SunkAddr = SunkAddrs[Addr];
if (SunkAddr) {
DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
if (SunkAddr->getType() != Addr->getType())
SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
} else {
DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
const Type *IntPtrTy =
TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
Value *Result = 0;
// Start with the base register. Do this first so that subsequent address
// matching finds it last, which will prevent it from trying to match it
// as the scaled value in case it happens to be a mul. That would be
// problematic if we've sunk a different mul for the scale, because then
// we'd end up sinking both muls.
if (AddrMode.BaseReg) {
Value *V = AddrMode.BaseReg;
if (V->getType()->isPointerTy())
V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
if (V->getType() != IntPtrTy)
V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
"sunkaddr", InsertPt);
Result = V;
}
// Add the scale value.
if (AddrMode.Scale) {
Value *V = AddrMode.ScaledReg;
if (V->getType() == IntPtrTy) {
// done.
} else if (V->getType()->isPointerTy()) {
V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
} else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
cast<IntegerType>(V->getType())->getBitWidth()) {
V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
} else {
V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
}
if (AddrMode.Scale != 1)
V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
AddrMode.Scale),
"sunkaddr", InsertPt);
if (Result)
Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
else
Result = V;
}
// Add in the BaseGV if present.
if (AddrMode.BaseGV) {
Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
InsertPt);
if (Result)
Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
else
Result = V;
}
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (Result)
Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
else
Result = V;
}
if (Result == 0)
SunkAddr = Constant::getNullValue(Addr->getType());
else
SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
}
MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
if (Addr->use_empty()) {
RecursivelyDeleteTriviallyDeadInstructions(Addr);
// This address is now available for reassignment, so erase the table entry;
// we don't want to match some completely different instruction.
SunkAddrs[Addr] = 0;
}
return true;
}
/// OptimizeInlineAsmInst - If there are any memory operands, use
/// OptimizeMemoryInst to sink their address computing into the block when
/// possible / profitable.
bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
DenseMap<Value*,Value*> &SunkAddrs) {
bool MadeChange = false;
InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
std::vector<InlineAsm::ConstraintInfo>
ConstraintInfos = IA->ParseConstraints();
/// ConstraintOperands - Information about all of the constraints.
std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
ConstraintOperands.
push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
if (OpInfo.isIndirect)
OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
// Compute the constraint code and ConstraintType to use.
TLI->ComputeConstraintToUse(OpInfo, SDValue());
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
OpInfo.isIndirect) {
Value *OpVal = OpInfo.CallOperandVal;
MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
}
}
return MadeChange;
}
/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
/// basic block as the load, unless conditions are unfavorable. This allows
/// SelectionDAG to fold the extend into the load.
///
bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
// Look for a load being extended.
LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
if (!LI) return false;
// If they're already in the same block, there's nothing to do.
if (LI->getParent() == I->getParent())
return false;
// If the load has other users and the truncate is not free, this probably
// isn't worthwhile.
if (!LI->hasOneUse() &&
TLI && !TLI->isTruncateFree(I->getType(), LI->getType()))
return false;
// Check whether the target supports casts folded into loads.
unsigned LType;
if (isa<ZExtInst>(I))
LType = ISD::ZEXTLOAD;
else {
assert(isa<SExtInst>(I) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
return false;
// Move the extend into the same block as the load, so that SelectionDAG
// can fold it.
I->removeFromParent();
I->insertAfter(LI);
return true;
}
bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
BasicBlock *DefBB = I->getParent();
// If both result of the {s|z}xt and its source are live out, rewrite all
// other uses of the source with result of extension.
Value *Src = I->getOperand(0);
if (Src->hasOneUse())
return false;
// Only do this xform if truncating is free.
if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
return false;
// Only safe to perform the optimization if the source is also defined in
// this block.
if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
return false;
bool DefIsLiveOut = false;
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
// Figure out which BB this ext is used in.
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) continue;
DefIsLiveOut = true;
break;
}
if (!DefIsLiveOut)
return false;
// Make sure non of the uses are PHI nodes.
for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) continue;
// Be conservative. We don't want this xform to end up introducing
// reloads just before load / store instructions.
if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
return false;
}
// InsertedTruncs - Only insert one trunc in each block once.
DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
bool MadeChange = false;
for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
UI != E; ++UI) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Figure out which BB this ext is used in.
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) continue;
// Both src and def are live in this block. Rewrite the use.
Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
if (!InsertedTrunc) {
BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
}
// Replace a use of the {s|z}ext source with a use of the result.
TheUse = InsertedTrunc;
MadeChange = true;
}
return MadeChange;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
bool MadeChange = false;
// Split all critical edges where the dest block has a PHI.
if (CriticalEdgeSplit) {
TerminatorInst *BBTI = BB.getTerminator();
if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) {
for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
BasicBlock *SuccBB = BBTI->getSuccessor(i);
if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
SplitEdgeNicely(BBTI, i, BackEdges, this);
}
}
}
// Keep track of non-local addresses that have been sunk into this block.
// This allows us to avoid inserting duplicate code for blocks with multiple
// load/stores of the same address.
DenseMap<Value*, Value*> SunkAddrs;
for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
Instruction *I = BBI++;
if (CastInst *CI = dyn_cast<CastInst>(I)) {
// If the source of the cast is a constant, then this should have
// already been constant folded. The only reason NOT to constant fold
// it is if something (e.g. LSR) was careful to place the constant
// evaluation in a block other than then one that uses it (e.g. to hoist
// the address of globals out of a loop). If this is the case, we don't
// want to forward-subst the cast.
if (isa<Constant>(CI->getOperand(0)))
continue;
bool Change = false;
if (TLI) {
Change = OptimizeNoopCopyExpression(CI, *TLI);
MadeChange |= Change;
}
if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I))) {
MadeChange |= MoveExtToFormExtLoad(I);
MadeChange |= OptimizeExtUses(I);
}
} else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
MadeChange |= OptimizeCmpExpression(CI);
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (TLI)
MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
SunkAddrs);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (TLI)
MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
SI->getOperand(0)->getType(),
SunkAddrs);
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
if (GEPI->hasAllZeroIndices()) {
/// The GEP operand must be a pointer, so must its result -> BitCast
Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
GEPI->getName(), GEPI);
GEPI->replaceAllUsesWith(NC);
GEPI->eraseFromParent();
MadeChange = true;
BBI = NC;
}
} else if (CallInst *CI = dyn_cast<CallInst>(I)) {
// If we found an inline asm expession, and if the target knows how to
// lower it to normal LLVM code, do so now.
if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
if (TLI->ExpandInlineAsm(CI)) {
BBI = BB.begin();
// Avoid processing instructions out of order, which could cause
// reuse before a value is defined.
SunkAddrs.clear();
} else
// Sink address computing for memory operands into the block.
MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
} else {
// Other CallInst optimizations that don't need to muck with the
// enclosing iterator here.
MadeChange |= OptimizeCallInst(CI);
}
}
}
return MadeChange;
}
|