1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Loop Rotation Pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-rotate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
#define MAX_HEADER_SIZE 16
STATISTIC(NumRotated, "Number of loops rotated");
namespace {
class LoopRotate : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopRotate() : LoopPass(ID) {}
// Rotate Loop L as many times as possible. Return true if
// loop is rotated at least once.
bool runOnLoop(Loop *L, LPPassManager &LPM);
// LCSSA form makes instruction renaming easier.
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<ScalarEvolution>();
}
// Helper functions
/// Do actual work
bool rotateLoop(Loop *L, LPPassManager &LPM);
/// Initialize local data
void initialize();
/// After loop rotation, loop pre-header has multiple sucessors.
/// Insert one forwarding basic block to ensure that loop pre-header
/// has only one successor.
void preserveCanonicalLoopForm(LPPassManager &LPM);
private:
Loop *L;
BasicBlock *OrigHeader;
BasicBlock *OrigPreHeader;
BasicBlock *OrigLatch;
BasicBlock *NewHeader;
BasicBlock *Exit;
LPPassManager *LPM_Ptr;
};
}
char LoopRotate::ID = 0;
INITIALIZE_PASS(LoopRotate, "loop-rotate", "Rotate Loops", false, false);
Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
/// Rotate Loop L as many times as possible. Return true if
/// the loop is rotated at least once.
bool LoopRotate::runOnLoop(Loop *Lp, LPPassManager &LPM) {
bool RotatedOneLoop = false;
initialize();
LPM_Ptr = &LPM;
// One loop can be rotated multiple times.
while (rotateLoop(Lp,LPM)) {
RotatedOneLoop = true;
initialize();
}
return RotatedOneLoop;
}
/// Rotate loop LP. Return true if the loop is rotated.
bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) {
L = Lp;
OrigPreHeader = L->getLoopPreheader();
if (!OrigPreHeader) return false;
OrigLatch = L->getLoopLatch();
if (!OrigLatch) return false;
OrigHeader = L->getHeader();
// If the loop has only one block then there is not much to rotate.
if (L->getBlocks().size() == 1)
return false;
// If the loop header is not one of the loop exiting blocks then
// either this loop is already rotated or it is not
// suitable for loop rotation transformations.
if (!L->isLoopExiting(OrigHeader))
return false;
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
if (!BI)
return false;
assert(BI->isConditional() && "Branch Instruction is not conditional");
// Updating PHInodes in loops with multiple exits adds complexity.
// Keep it simple, and restrict loop rotation to loops with one exit only.
// In future, lift this restriction and support for multiple exits if
// required.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() > 1)
return false;
// Check size of original header and reject
// loop if it is very big.
unsigned Size = 0;
// FIXME: Use common api to estimate size.
for (BasicBlock::const_iterator OI = OrigHeader->begin(),
OE = OrigHeader->end(); OI != OE; ++OI) {
if (isa<PHINode>(OI))
continue; // PHI nodes don't count.
if (isa<DbgInfoIntrinsic>(OI))
continue; // Debug intrinsics don't count as size.
++Size;
}
if (Size > MAX_HEADER_SIZE)
return false;
// Now, this loop is suitable for rotation.
// Anything ScalarEvolution may know about this loop or the PHI nodes
// in its header will soon be invalidated.
if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
SE->forgetLoop(L);
// Find new Loop header. NewHeader is a Header's one and only successor
// that is inside loop. Header's other successor is outside the
// loop. Otherwise loop is not suitable for rotation.
Exit = BI->getSuccessor(0);
NewHeader = BI->getSuccessor(1);
if (L->contains(Exit))
std::swap(Exit, NewHeader);
assert(NewHeader && "Unable to determine new loop header");
assert(L->contains(NewHeader) && !L->contains(Exit) &&
"Unable to determine loop header and exit blocks");
// This code assumes that the new header has exactly one predecessor.
// Remove any single-entry PHI nodes in it.
assert(NewHeader->getSinglePredecessor() &&
"New header doesn't have one pred!");
FoldSingleEntryPHINodes(NewHeader);
// Begin by walking OrigHeader and populating ValueMap with an entry for
// each Instruction.
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
DenseMap<const Value *, Value *> ValueMap;
// For PHI nodes, the value available in OldPreHeader is just the
// incoming value from OldPreHeader.
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
// For the rest of the instructions, create a clone in the OldPreHeader.
TerminatorInst *LoopEntryBranch = OrigPreHeader->getTerminator();
for (; I != E; ++I) {
Instruction *C = I->clone();
C->setName(I->getName());
C->insertBefore(LoopEntryBranch);
ValueMap[I] = C;
}
// Along with all the other instructions, we just cloned OrigHeader's
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
// successors by duplicating their incoming values for OrigHeader.
TerminatorInst *TI = OrigHeader->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreHeader);
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
// OrigPreHeader's old terminator (the original branch into the loop), and
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
LoopEntryBranch->eraseFromParent();
for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
// Now fix up users of the instructions in OrigHeader, inserting PHI nodes
// as necessary.
SSAUpdater SSA;
for (I = OrigHeader->begin(); I != E; ++I) {
Value *OrigHeaderVal = I;
Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
// The value now exits in two versions: the initial value in the preheader
// and the loop "next" value in the original header.
SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
SSA.AddAvailableValue(OrigPreHeader, OrigPreHeaderVal);
// Visit each use of the OrigHeader instruction.
for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
UE = OrigHeaderVal->use_end(); UI != UE; ) {
// Grab the use before incrementing the iterator.
Use &U = UI.getUse();
// Increment the iterator before removing the use from the list.
++UI;
// SSAUpdater can't handle a non-PHI use in the same block as an
// earlier def. We can easily handle those cases manually.
Instruction *UserInst = cast<Instruction>(U.getUser());
if (!isa<PHINode>(UserInst)) {
BasicBlock *UserBB = UserInst->getParent();
// The original users in the OrigHeader are already using the
// original definitions.
if (UserBB == OrigHeader)
continue;
// Users in the OrigPreHeader need to use the value to which the
// original definitions are mapped.
if (UserBB == OrigPreHeader) {
U = OrigPreHeaderVal;
continue;
}
}
// Anything else can be handled by SSAUpdater.
SSA.RewriteUse(U);
}
}
// NewHeader is now the header of the loop.
L->moveToHeader(NewHeader);
// Move the original header to the bottom of the loop, where it now more
// naturally belongs. This isn't necessary for correctness, and CodeGen can
// usually reorder blocks on its own to fix things like this up, but it's
// still nice to keep the IR readable.
//
// The original header should have only one predecessor at this point, since
// we checked that the loop had a proper preheader and unique backedge before
// we started.
assert(OrigHeader->getSinglePredecessor() &&
"Original loop header has too many predecessors after loop rotation!");
OrigHeader->moveAfter(OrigHeader->getSinglePredecessor());
// Also, since this original header only has one predecessor, zap its
// PHI nodes, which are now trivial.
FoldSingleEntryPHINodes(OrigHeader);
// TODO: We could just go ahead and merge OrigHeader into its predecessor
// at this point, if we don't mind updating dominator info.
// Establish a new preheader, update dominators, etc.
preserveCanonicalLoopForm(LPM);
++NumRotated;
return true;
}
/// Initialize local data
void LoopRotate::initialize() {
L = NULL;
OrigHeader = NULL;
OrigPreHeader = NULL;
NewHeader = NULL;
Exit = NULL;
}
/// After loop rotation, loop pre-header has multiple sucessors.
/// Insert one forwarding basic block to ensure that loop pre-header
/// has only one successor.
void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
// Right now original pre-header has two successors, new header and
// exit block. Insert new block between original pre-header and
// new header such that loop's new pre-header has only one successor.
BasicBlock *NewPreHeader = BasicBlock::Create(OrigHeader->getContext(),
"bb.nph",
OrigHeader->getParent(),
NewHeader);
LoopInfo &LI = getAnalysis<LoopInfo>();
if (Loop *PL = LI.getLoopFor(OrigPreHeader))
PL->addBasicBlockToLoop(NewPreHeader, LI.getBase());
BranchInst::Create(NewHeader, NewPreHeader);
BranchInst *OrigPH_BI = cast<BranchInst>(OrigPreHeader->getTerminator());
if (OrigPH_BI->getSuccessor(0) == NewHeader)
OrigPH_BI->setSuccessor(0, NewPreHeader);
else {
assert(OrigPH_BI->getSuccessor(1) == NewHeader &&
"Unexpected original pre-header terminator");
OrigPH_BI->setSuccessor(1, NewPreHeader);
}
PHINode *PN;
for (BasicBlock::iterator I = NewHeader->begin();
(PN = dyn_cast<PHINode>(I)); ++I) {
int index = PN->getBasicBlockIndex(OrigPreHeader);
assert(index != -1 && "Expected incoming value from Original PreHeader");
PN->setIncomingBlock(index, NewPreHeader);
assert(PN->getBasicBlockIndex(OrigPreHeader) == -1 &&
"Expected only one incoming value from Original PreHeader");
}
if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
DT->addNewBlock(NewPreHeader, OrigPreHeader);
DT->changeImmediateDominator(L->getHeader(), NewPreHeader);
DT->changeImmediateDominator(Exit, OrigPreHeader);
for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
BasicBlock *B = *BI;
if (L->getHeader() != B) {
DomTreeNode *Node = DT->getNode(B);
if (Node && Node->getBlock() == OrigHeader)
DT->changeImmediateDominator(*BI, L->getHeader());
}
}
DT->changeImmediateDominator(OrigHeader, OrigLatch);
}
if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) {
// New Preheader's dominance frontier is Exit block.
DominanceFrontier::DomSetType NewPHSet;
NewPHSet.insert(Exit);
DF->addBasicBlock(NewPreHeader, NewPHSet);
// New Header's dominance frontier now includes itself and Exit block
DominanceFrontier::iterator HeadI = DF->find(L->getHeader());
if (HeadI != DF->end()) {
DominanceFrontier::DomSetType & HeaderSet = HeadI->second;
HeaderSet.clear();
HeaderSet.insert(L->getHeader());
HeaderSet.insert(Exit);
} else {
DominanceFrontier::DomSetType HeaderSet;
HeaderSet.insert(L->getHeader());
HeaderSet.insert(Exit);
DF->addBasicBlock(L->getHeader(), HeaderSet);
}
// Original header (new Loop Latch)'s dominance frontier is Exit.
DominanceFrontier::iterator LatchI = DF->find(L->getLoopLatch());
if (LatchI != DF->end()) {
DominanceFrontier::DomSetType &LatchSet = LatchI->second;
LatchSet = LatchI->second;
LatchSet.clear();
LatchSet.insert(Exit);
} else {
DominanceFrontier::DomSetType LatchSet;
LatchSet.insert(Exit);
DF->addBasicBlock(L->getHeader(), LatchSet);
}
// If a loop block dominates new loop latch then add to its frontiers
// new header and Exit and remove new latch (which is equal to original
// header).
BasicBlock *NewLatch = L->getLoopLatch();
assert(NewLatch == OrigHeader && "NewLatch is inequal to OrigHeader");
if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
BasicBlock *B = *BI;
if (DT->dominates(B, NewLatch)) {
DominanceFrontier::iterator BDFI = DF->find(B);
if (BDFI != DF->end()) {
DominanceFrontier::DomSetType &BSet = BDFI->second;
BSet.erase(NewLatch);
BSet.insert(L->getHeader());
BSet.insert(Exit);
} else {
DominanceFrontier::DomSetType BSet;
BSet.insert(L->getHeader());
BSet.insert(Exit);
DF->addBasicBlock(B, BSet);
}
}
}
}
}
// Preserve canonical loop form, which means Exit block should
// have only one predecessor.
SplitEdge(L->getLoopLatch(), Exit, this);
assert(NewHeader && L->getHeader() == NewHeader &&
"Invalid loop header after loop rotation");
assert(NewPreHeader && L->getLoopPreheader() == NewPreHeader &&
"Invalid loop preheader after loop rotation");
assert(L->getLoopLatch() &&
"Invalid loop latch after loop rotation");
}
|