1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to tear out a code region, such as an
// individual loop or a parallel section, into a new function, replacing it with
// a call to the new function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/FunctionUtils.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <set>
using namespace llvm;
// Provide a command-line option to aggregate function arguments into a struct
// for functions produced by the code extractor. This is useful when converting
// extracted functions to pthread-based code, as only one argument (void*) can
// be passed in to pthread_create().
static cl::opt<bool>
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
cl::desc("Aggregate arguments to code-extracted functions"));
namespace {
class CodeExtractor {
typedef SetVector<Value*> Values;
SetVector<BasicBlock*> BlocksToExtract;
DominatorTree* DT;
bool AggregateArgs;
unsigned NumExitBlocks;
const Type *RetTy;
public:
CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
: DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
bool isEligible(const std::vector<BasicBlock*> &code);
private:
/// definedInRegion - Return true if the specified value is defined in the
/// extracted region.
bool definedInRegion(Value *V) const {
if (Instruction *I = dyn_cast<Instruction>(V))
if (BlocksToExtract.count(I->getParent()))
return true;
return false;
}
/// definedInCaller - Return true if the specified value is defined in the
/// function being code extracted, but not in the region being extracted.
/// These values must be passed in as live-ins to the function.
bool definedInCaller(Value *V) const {
if (isa<Argument>(V)) return true;
if (Instruction *I = dyn_cast<Instruction>(V))
if (!BlocksToExtract.count(I->getParent()))
return true;
return false;
}
void severSplitPHINodes(BasicBlock *&Header);
void splitReturnBlocks();
void findInputsOutputs(Values &inputs, Values &outputs);
Function *constructFunction(const Values &inputs,
const Values &outputs,
BasicBlock *header,
BasicBlock *newRootNode, BasicBlock *newHeader,
Function *oldFunction, Module *M);
void moveCodeToFunction(Function *newFunction);
void emitCallAndSwitchStatement(Function *newFunction,
BasicBlock *newHeader,
Values &inputs,
Values &outputs);
};
}
/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
/// region, we need to split the entry block of the region so that the PHI node
/// is easier to deal with.
void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
bool HasPredsFromRegion = false;
unsigned NumPredsOutsideRegion = 0;
if (Header != &Header->getParent()->getEntryBlock()) {
PHINode *PN = dyn_cast<PHINode>(Header->begin());
if (!PN) return; // No PHI nodes.
// If the header node contains any PHI nodes, check to see if there is more
// than one entry from outside the region. If so, we need to sever the
// header block into two.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (BlocksToExtract.count(PN->getIncomingBlock(i)))
HasPredsFromRegion = true;
else
++NumPredsOutsideRegion;
// If there is one (or fewer) predecessor from outside the region, we don't
// need to do anything special.
if (NumPredsOutsideRegion <= 1) return;
}
// Otherwise, we need to split the header block into two pieces: one
// containing PHI nodes merging values from outside of the region, and a
// second that contains all of the code for the block and merges back any
// incoming values from inside of the region.
BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
Header->getName()+".ce");
// We only want to code extract the second block now, and it becomes the new
// header of the region.
BasicBlock *OldPred = Header;
BlocksToExtract.remove(OldPred);
BlocksToExtract.insert(NewBB);
Header = NewBB;
// Okay, update dominator sets. The blocks that dominate the new one are the
// blocks that dominate TIBB plus the new block itself.
if (DT)
DT->splitBlock(NewBB);
// Okay, now we need to adjust the PHI nodes and any branches from within the
// region to go to the new header block instead of the old header block.
if (HasPredsFromRegion) {
PHINode *PN = cast<PHINode>(OldPred->begin());
// Loop over all of the predecessors of OldPred that are in the region,
// changing them to branch to NewBB instead.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
TI->replaceUsesOfWith(OldPred, NewBB);
}
// Okay, everthing within the region is now branching to the right block, we
// just have to update the PHI nodes now, inserting PHI nodes into NewBB.
for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
PHINode *PN = cast<PHINode>(AfterPHIs);
// Create a new PHI node in the new region, which has an incoming value
// from OldPred of PN.
PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
NewBB->begin());
NewPN->addIncoming(PN, OldPred);
// Loop over all of the incoming value in PN, moving them to NewPN if they
// are from the extracted region.
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
PN->removeIncomingValue(i);
--i;
}
}
}
}
}
void CodeExtractor::splitReturnBlocks() {
for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
E = BlocksToExtract.end(); I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
if (DT) {
// Old dominates New. New node domiantes all other nodes dominated
//by Old.
DomTreeNode *OldNode = DT->getNode(*I);
SmallVector<DomTreeNode*, 8> Children;
for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
DI != DE; ++DI)
Children.push_back(*DI);
DomTreeNode *NewNode = DT->addNewBlock(New, *I);
for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
E = Children.end(); I != E; ++I)
DT->changeImmediateDominator(*I, NewNode);
}
}
}
// findInputsOutputs - Find inputs to, outputs from the code region.
//
void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
std::set<BasicBlock*> ExitBlocks;
for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
ce = BlocksToExtract.end(); ci != ce; ++ci) {
BasicBlock *BB = *ci;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
// If a used value is defined outside the region, it's an input. If an
// instruction is used outside the region, it's an output.
for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
if (definedInCaller(*O))
inputs.insert(*O);
// Consider uses of this instruction (outputs).
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
if (!definedInRegion(*UI)) {
outputs.insert(I);
break;
}
} // for: insts
// Keep track of the exit blocks from the region.
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (!BlocksToExtract.count(TI->getSuccessor(i)))
ExitBlocks.insert(TI->getSuccessor(i));
} // for: basic blocks
NumExitBlocks = ExitBlocks.size();
}
/// constructFunction - make a function based on inputs and outputs, as follows:
/// f(in0, ..., inN, out0, ..., outN)
///
Function *CodeExtractor::constructFunction(const Values &inputs,
const Values &outputs,
BasicBlock *header,
BasicBlock *newRootNode,
BasicBlock *newHeader,
Function *oldFunction,
Module *M) {
DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
// This function returns unsigned, outputs will go back by reference.
switch (NumExitBlocks) {
case 0:
case 1: RetTy = Type::getVoidTy(header->getContext()); break;
case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
default: RetTy = Type::getInt16Ty(header->getContext()); break;
}
std::vector<const Type*> paramTy;
// Add the types of the input values to the function's argument list
for (Values::const_iterator i = inputs.begin(),
e = inputs.end(); i != e; ++i) {
const Value *value = *i;
DEBUG(dbgs() << "value used in func: " << *value << "\n");
paramTy.push_back(value->getType());
}
// Add the types of the output values to the function's argument list.
for (Values::const_iterator I = outputs.begin(), E = outputs.end();
I != E; ++I) {
DEBUG(dbgs() << "instr used in func: " << **I << "\n");
if (AggregateArgs)
paramTy.push_back((*I)->getType());
else
paramTy.push_back(PointerType::getUnqual((*I)->getType()));
}
DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
for (std::vector<const Type*>::iterator i = paramTy.begin(),
e = paramTy.end(); i != e; ++i)
DEBUG(dbgs() << **i << ", ");
DEBUG(dbgs() << ")\n");
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
PointerType *StructPtr =
PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
paramTy.clear();
paramTy.push_back(StructPtr);
}
const FunctionType *funcType =
FunctionType::get(RetTy, paramTy, false);
// Create the new function
Function *newFunction = Function::Create(funcType,
GlobalValue::InternalLinkage,
oldFunction->getName() + "_" +
header->getName(), M);
// If the old function is no-throw, so is the new one.
if (oldFunction->doesNotThrow())
newFunction->setDoesNotThrow(true);
newFunction->getBasicBlockList().push_back(newRootNode);
// Create an iterator to name all of the arguments we inserted.
Function::arg_iterator AI = newFunction->arg_begin();
// Rewrite all users of the inputs in the extracted region to use the
// arguments (or appropriate addressing into struct) instead.
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
Value *RewriteVal;
if (AggregateArgs) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
TerminatorInst *TI = newFunction->begin()->getTerminator();
GetElementPtrInst *GEP =
GetElementPtrInst::Create(AI, Idx, Idx+2,
"gep_" + inputs[i]->getName(), TI);
RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
} else
RewriteVal = AI++;
std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
use != useE; ++use)
if (Instruction* inst = dyn_cast<Instruction>(*use))
if (BlocksToExtract.count(inst->getParent()))
inst->replaceUsesOfWith(inputs[i], RewriteVal);
}
// Set names for input and output arguments.
if (!AggregateArgs) {
AI = newFunction->arg_begin();
for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
AI->setName(inputs[i]->getName());
for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
AI->setName(outputs[i]->getName()+".out");
}
// Rewrite branches to basic blocks outside of the loop to new dummy blocks
// within the new function. This must be done before we lose track of which
// blocks were originally in the code region.
std::vector<User*> Users(header->use_begin(), header->use_end());
for (unsigned i = 0, e = Users.size(); i != e; ++i)
// The BasicBlock which contains the branch is not in the region
// modify the branch target to a new block
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
if (!BlocksToExtract.count(TI->getParent()) &&
TI->getParent()->getParent() == oldFunction)
TI->replaceUsesOfWith(header, newHeader);
return newFunction;
}
/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
/// that uses the value within the basic block, and return the predecessor
/// block associated with that use, or return 0 if none is found.
static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
for (Value::use_iterator UI = Used->use_begin(),
UE = Used->use_end(); UI != UE; ++UI) {
PHINode *P = dyn_cast<PHINode>(*UI);
if (P && P->getParent() == BB)
return P->getIncomingBlock(UI);
}
return 0;
}
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
/// the call instruction, splitting any PHI nodes in the header block as
/// necessary.
void CodeExtractor::
emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Values &inputs, Values &outputs) {
// Emit a call to the new function, passing in: *pointer to struct (if
// aggregating parameters), or plan inputs and allocated memory for outputs
std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
LLVMContext &Context = newFunction->getContext();
// Add inputs as params, or to be filled into the struct
for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
if (AggregateArgs)
StructValues.push_back(*i);
else
params.push_back(*i);
// Create allocas for the outputs
for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
if (AggregateArgs) {
StructValues.push_back(*i);
} else {
AllocaInst *alloca =
new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
codeReplacer->getParent()->begin()->begin());
ReloadOutputs.push_back(alloca);
params.push_back(alloca);
}
}
AllocaInst *Struct = 0;
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
std::vector<const Type*> ArgTypes;
for (Values::iterator v = StructValues.begin(),
ve = StructValues.end(); v != ve; ++v)
ArgTypes.push_back((*v)->getType());
// Allocate a struct at the beginning of this function
Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
Struct =
new AllocaInst(StructArgTy, 0, "structArg",
codeReplacer->getParent()->begin()->begin());
params.push_back(Struct);
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
GetElementPtrInst *GEP =
GetElementPtrInst::Create(Struct, Idx, Idx + 2,
"gep_" + StructValues[i]->getName());
codeReplacer->getInstList().push_back(GEP);
StoreInst *SI = new StoreInst(StructValues[i], GEP);
codeReplacer->getInstList().push_back(SI);
}
}
// Emit the call to the function
CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
NumExitBlocks > 1 ? "targetBlock" : "");
codeReplacer->getInstList().push_back(call);
Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
unsigned FirstOut = inputs.size();
if (!AggregateArgs)
std::advance(OutputArgBegin, inputs.size());
// Reload the outputs passed in by reference
for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
Value *Output = 0;
if (AggregateArgs) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
GetElementPtrInst *GEP
= GetElementPtrInst::Create(Struct, Idx, Idx + 2,
"gep_reload_" + outputs[i]->getName());
codeReplacer->getInstList().push_back(GEP);
Output = GEP;
} else {
Output = ReloadOutputs[i];
}
LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
Reloads.push_back(load);
codeReplacer->getInstList().push_back(load);
std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
for (unsigned u = 0, e = Users.size(); u != e; ++u) {
Instruction *inst = cast<Instruction>(Users[u]);
if (!BlocksToExtract.count(inst->getParent()))
inst->replaceUsesOfWith(outputs[i], load);
}
}
// Now we can emit a switch statement using the call as a value.
SwitchInst *TheSwitch =
SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
codeReplacer, 0, codeReplacer);
// Since there may be multiple exits from the original region, make the new
// function return an unsigned, switch on that number. This loop iterates
// over all of the blocks in the extracted region, updating any terminator
// instructions in the to-be-extracted region that branch to blocks that are
// not in the region to be extracted.
std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
unsigned switchVal = 0;
for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
e = BlocksToExtract.end(); i != e; ++i) {
TerminatorInst *TI = (*i)->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (!BlocksToExtract.count(TI->getSuccessor(i))) {
BasicBlock *OldTarget = TI->getSuccessor(i);
// add a new basic block which returns the appropriate value
BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
if (!NewTarget) {
// If we don't already have an exit stub for this non-extracted
// destination, create one now!
NewTarget = BasicBlock::Create(Context,
OldTarget->getName() + ".exitStub",
newFunction);
unsigned SuccNum = switchVal++;
Value *brVal = 0;
switch (NumExitBlocks) {
case 0:
case 1: break; // No value needed.
case 2: // Conditional branch, return a bool
brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
break;
default:
brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
break;
}
ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
// Update the switch instruction.
TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
SuccNum),
OldTarget);
// Restore values just before we exit
Function::arg_iterator OAI = OutputArgBegin;
for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
// For an invoke, the normal destination is the only one that is
// dominated by the result of the invocation
BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
bool DominatesDef = true;
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
DefBlock = Invoke->getNormalDest();
// Make sure we are looking at the original successor block, not
// at a newly inserted exit block, which won't be in the dominator
// info.
for (std::map<BasicBlock*, BasicBlock*>::iterator I =
ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
if (DefBlock == I->second) {
DefBlock = I->first;
break;
}
// In the extract block case, if the block we are extracting ends
// with an invoke instruction, make sure that we don't emit a
// store of the invoke value for the unwind block.
if (!DT && DefBlock != OldTarget)
DominatesDef = false;
}
if (DT) {
DominatesDef = DT->dominates(DefBlock, OldTarget);
// If the output value is used by a phi in the target block,
// then we need to test for dominance of the phi's predecessor
// instead. Unfortunately, this a little complicated since we
// have already rewritten uses of the value to uses of the reload.
BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
OldTarget);
if (pred && DT && DT->dominates(DefBlock, pred))
DominatesDef = true;
}
if (DominatesDef) {
if (AggregateArgs) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
FirstOut+out);
GetElementPtrInst *GEP =
GetElementPtrInst::Create(OAI, Idx, Idx + 2,
"gep_" + outputs[out]->getName(),
NTRet);
new StoreInst(outputs[out], GEP, NTRet);
} else {
new StoreInst(outputs[out], OAI, NTRet);
}
}
// Advance output iterator even if we don't emit a store
if (!AggregateArgs) ++OAI;
}
}
// rewrite the original branch instruction with this new target
TI->setSuccessor(i, NewTarget);
}
}
// Now that we've done the deed, simplify the switch instruction.
const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
switch (NumExitBlocks) {
case 0:
// There are no successors (the block containing the switch itself), which
// means that previously this was the last part of the function, and hence
// this should be rewritten as a `ret'
// Check if the function should return a value
if (OldFnRetTy->isVoidTy()) {
ReturnInst::Create(Context, 0, TheSwitch); // Return void
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
// return what we have
ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
} else {
// Otherwise we must have code extracted an unwind or something, just
// return whatever we want.
ReturnInst::Create(Context,
Constant::getNullValue(OldFnRetTy), TheSwitch);
}
TheSwitch->eraseFromParent();
break;
case 1:
// Only a single destination, change the switch into an unconditional
// branch.
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
TheSwitch->eraseFromParent();
break;
case 2:
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
call, TheSwitch);
TheSwitch->eraseFromParent();
break;
default:
// Otherwise, make the default destination of the switch instruction be one
// of the other successors.
TheSwitch->setOperand(0, call);
TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
break;
}
}
void CodeExtractor::moveCodeToFunction(Function *newFunction) {
Function *oldFunc = (*BlocksToExtract.begin())->getParent();
Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
e = BlocksToExtract.end(); i != e; ++i) {
// Delete the basic block from the old function, and the list of blocks
oldBlocks.remove(*i);
// Insert this basic block into the new function
newBlocks.push_back(*i);
}
}
/// ExtractRegion - Removes a loop from a function, replaces it with a call to
/// new function. Returns pointer to the new function.
///
/// algorithm:
///
/// find inputs and outputs for the region
///
/// for inputs: add to function as args, map input instr* to arg#
/// for outputs: add allocas for scalars,
/// add to func as args, map output instr* to arg#
///
/// rewrite func to use argument #s instead of instr*
///
/// for each scalar output in the function: at every exit, store intermediate
/// computed result back into memory.
///
Function *CodeExtractor::
ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
if (!isEligible(code))
return 0;
// 1) Find inputs, outputs
// 2) Construct new function
// * Add allocas for defs, pass as args by reference
// * Pass in uses as args
// 3) Move code region, add call instr to func
//
BlocksToExtract.insert(code.begin(), code.end());
Values inputs, outputs;
// Assumption: this is a single-entry code region, and the header is the first
// block in the region.
BasicBlock *header = code[0];
for (unsigned i = 1, e = code.size(); i != e; ++i)
for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
PI != E; ++PI)
assert(BlocksToExtract.count(*PI) &&
"No blocks in this region may have entries from outside the region"
" except for the first block!");
// If we have to split PHI nodes or the entry block, do so now.
severSplitPHINodes(header);
// If we have any return instructions in the region, split those blocks so
// that the return is not in the region.
splitReturnBlocks();
Function *oldFunction = header->getParent();
// This takes place of the original loop
BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
"codeRepl", oldFunction,
header);
// The new function needs a root node because other nodes can branch to the
// head of the region, but the entry node of a function cannot have preds.
BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
"newFuncRoot");
newFuncRoot->getInstList().push_back(BranchInst::Create(header));
// Find inputs to, outputs from the code region.
findInputsOutputs(inputs, outputs);
// Construct new function based on inputs/outputs & add allocas for all defs.
Function *newFunction = constructFunction(inputs, outputs, header,
newFuncRoot,
codeReplacer, oldFunction,
oldFunction->getParent());
emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
moveCodeToFunction(newFunction);
// Loop over all of the PHI nodes in the header block, and change any
// references to the old incoming edge to be the new incoming edge.
for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
PN->setIncomingBlock(i, newFuncRoot);
}
// Look at all successors of the codeReplacer block. If any of these blocks
// had PHI nodes in them, we need to update the "from" block to be the code
// replacer, not the original block in the extracted region.
std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
succ_end(codeReplacer));
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
std::set<BasicBlock*> ProcessedPreds;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
PN->setIncomingBlock(i, codeReplacer);
else {
// There were multiple entries in the PHI for this block, now there
// is only one, so remove the duplicated entries.
PN->removeIncomingValue(i, false);
--i; --e;
}
}
}
//cerr << "NEW FUNCTION: " << *newFunction;
// verifyFunction(*newFunction);
// cerr << "OLD FUNCTION: " << *oldFunction;
// verifyFunction(*oldFunction);
DEBUG(if (verifyFunction(*newFunction))
report_fatal_error("verifyFunction failed!"));
return newFunction;
}
bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
// Deny code region if it contains allocas or vastarts.
for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
BB != e; ++BB)
for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
I != Ie; ++I)
if (isa<AllocaInst>(*I))
return false;
else if (const CallInst *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction())
if (F->getIntrinsicID() == Intrinsic::vastart)
return false;
return true;
}
/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
/// function
///
Function* llvm::ExtractCodeRegion(DominatorTree &DT,
const std::vector<BasicBlock*> &code,
bool AggregateArgs) {
return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
}
/// ExtractBasicBlock - slurp a natural loop into a brand new function
///
Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
}
/// ExtractBasicBlock - slurp a basic block into a brand new function
///
Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
std::vector<BasicBlock*> Blocks;
Blocks.push_back(BB);
return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
}
|