1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary. For example, it turns
// the left into the right code:
//
// for (...) for (...)
// if (c) if (c)
// X1 = ... X1 = ...
// else else
// X2 = ... X2 = ...
// X3 = phi(X1, X2) X3 = phi(X1, X2)
// ... = X3 + 4 X4 = phi(X3)
// ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine. The major benefit of this
// transformation is that it makes many other loop optimizations, such as
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lcssa"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
using namespace llvm;
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
namespace {
struct LCSSA : public LoopPass {
static char ID; // Pass identification, replacement for typeid
LCSSA() : LoopPass(ID) {}
// Cached analysis information for the current function.
DominatorTree *DT;
std::vector<BasicBlock*> LoopBlocks;
PredIteratorCache PredCache;
Loop *L;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG. It maintains both of these,
/// as well as the CFG. It also requires dominator information.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreserved<ScalarEvolution>();
}
private:
bool ProcessInstruction(Instruction *Inst,
const SmallVectorImpl<BasicBlock*> &ExitBlocks);
/// verifyAnalysis() - Verify loop nest.
virtual void verifyAnalysis() const {
// Check the special guarantees that LCSSA makes.
assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!");
}
/// inLoop - returns true if the given block is within the current loop
bool inLoop(BasicBlock *B) const {
return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
}
};
}
char LCSSA::ID = 0;
INITIALIZE_PASS(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false);
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
char &llvm::LCSSAID = LCSSA::ID;
/// BlockDominatesAnExit - Return true if the specified block dominates at least
/// one of the blocks in the specified list.
static bool BlockDominatesAnExit(BasicBlock *BB,
const SmallVectorImpl<BasicBlock*> &ExitBlocks,
DominatorTree *DT) {
DomTreeNode *DomNode = DT->getNode(BB);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
return true;
return false;
}
/// runOnFunction - Process all loops in the function, inner-most out.
bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
L = TheLoop;
DT = &getAnalysis<DominatorTree>();
// Get the set of exiting blocks.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.empty())
return false;
// Speed up queries by creating a sorted vector of blocks.
LoopBlocks.clear();
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
// Look at all the instructions in the loop, checking to see if they have uses
// outside the loop. If so, rewrite those uses.
bool MadeChange = false;
for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
BBI != E; ++BBI) {
BasicBlock *BB = *BBI;
// For large loops, avoid use-scanning by using dominance information: In
// particular, if a block does not dominate any of the loop exits, then none
// of the values defined in the block could be used outside the loop.
if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
continue;
for (BasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
// Reject two common cases fast: instructions with no uses (like stores)
// and instructions with one use that is in the same block as this.
if (I->use_empty() ||
(I->hasOneUse() && I->use_back()->getParent() == BB &&
!isa<PHINode>(I->use_back())))
continue;
MadeChange |= ProcessInstruction(I, ExitBlocks);
}
}
assert(L->isLCSSAForm(*DT));
PredCache.clear();
return MadeChange;
}
/// isExitBlock - Return true if the specified block is in the list.
static bool isExitBlock(BasicBlock *BB,
const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (ExitBlocks[i] == BB)
return true;
return false;
}
/// ProcessInstruction - Given an instruction in the loop, check to see if it
/// has any uses that are outside the current loop. If so, insert LCSSA PHI
/// nodes and rewrite the uses.
bool LCSSA::ProcessInstruction(Instruction *Inst,
const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
SmallVector<Use*, 16> UsesToRewrite;
BasicBlock *InstBB = Inst->getParent();
for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
UI != E; ++UI) {
User *U = *UI;
BasicBlock *UserBB = cast<Instruction>(U)->getParent();
if (PHINode *PN = dyn_cast<PHINode>(U))
UserBB = PN->getIncomingBlock(UI);
if (InstBB != UserBB && !inLoop(UserBB))
UsesToRewrite.push_back(&UI.getUse());
}
// If there are no uses outside the loop, exit with no change.
if (UsesToRewrite.empty()) return false;
++NumLCSSA; // We are applying the transformation
// Invoke instructions are special in that their result value is not available
// along their unwind edge. The code below tests to see whether DomBB dominates
// the value, so adjust DomBB to the normal destination block, which is
// effectively where the value is first usable.
BasicBlock *DomBB = Inst->getParent();
if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
DomBB = Inv->getNormalDest();
DomTreeNode *DomNode = DT->getNode(DomBB);
SSAUpdater SSAUpdate;
SSAUpdate.Initialize(Inst->getType(), Inst->getName());
// Insert the LCSSA phi's into all of the exit blocks dominated by the
// value, and add them to the Phi's map.
for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
BasicBlock *ExitBB = *BBI;
if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
// If we already inserted something for this BB, don't reprocess it.
if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa",
ExitBB->begin());
PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB));
// Add inputs from inside the loop for this PHI.
for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
PN->addIncoming(Inst, *PI);
// If the exit block has a predecessor not within the loop, arrange for
// the incoming value use corresponding to that predecessor to be
// rewritten in terms of a different LCSSA PHI.
if (!inLoop(*PI))
UsesToRewrite.push_back(
&PN->getOperandUse(
PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
}
// Remember that this phi makes the value alive in this block.
SSAUpdate.AddAvailableValue(ExitBB, PN);
}
// Rewrite all uses outside the loop in terms of the new PHIs we just
// inserted.
for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
// If this use is in an exit block, rewrite to use the newly inserted PHI.
// This is required for correctness because SSAUpdate doesn't handle uses in
// the same block. It assumes the PHI we inserted is at the end of the
// block.
Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
BasicBlock *UserBB = User->getParent();
if (PHINode *PN = dyn_cast<PHINode>(User))
UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
if (isa<PHINode>(UserBB->begin()) &&
isExitBlock(UserBB, ExitBlocks)) {
UsesToRewrite[i]->set(UserBB->begin());
continue;
}
// Otherwise, do full PHI insertion.
SSAUpdate.RewriteUse(*UsesToRewrite[i]);
}
return true;
}
|