1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
|
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "LLVMContextImpl.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <map>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
// Constructor to create a '0' constant of arbitrary type...
static const uint64_t zero[2] = {0, 0};
Constant *Constant::getNullValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::FloatTyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
case Type::DoubleTyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
case Type::X86_FP80TyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
case Type::FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat(APInt(128, 2, zero), true));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
return ConstantAggregateZero::get(Ty);
default:
// Function, Label, or Opaque type?
assert(!"Cannot create a null constant of that type!");
return 0;
}
}
Constant* Constant::getIntegerValue(const Type *Ty, const APInt &V) {
const Type *ScalarTy = Ty->getScalarType();
// Create the base integer constant.
Constant *C = ConstantInt::get(Ty->getContext(), V);
// Convert an integer to a pointer, if necessary.
if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
C = ConstantExpr::getIntToPtr(C, PTy);
// Broadcast a scalar to a vector, if necessary.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
Constant* Constant::getAllOnesValue(const Type *Ty) {
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(Ty->getContext(),
APInt::getAllOnesValue(ITy->getBitWidth()));
std::vector<Constant*> Elts;
const VectorType *VTy = cast<VectorType>(Ty);
Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
assert(Elts[0] && "Not a vector integer type!");
return cast<ConstantVector>(ConstantVector::get(Elts));
}
void Constant::destroyConstantImpl() {
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
dbgs() << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
}
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
Constant *CV = cast<Constant>(V);
CV->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || use_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
/// canTrap - Return true if evaluation of this constant could trap. This is
/// true for things like constant expressions that could divide by zero.
bool Constant::canTrap() const {
assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
if (!CE) return false;
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (CE->getOperand(i)->canTrap())
return true;
// Otherwise, only specific operations can trap.
switch (CE->getOpcode()) {
default:
return false;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
// Div and rem can trap if the RHS is not known to be non-zero.
if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
return true;
return false;
}
}
/// isConstantUsed - Return true if the constant has users other than constant
/// exprs and other dangling things.
bool Constant::isConstantUsed() const {
for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
const Constant *UC = dyn_cast<Constant>(*UI);
if (UC == 0 || isa<GlobalValue>(UC))
return true;
if (UC->isConstantUsed())
return true;
}
return false;
}
/// getRelocationInfo - This method classifies the entry according to
/// whether or not it may generate a relocation entry. This must be
/// conservative, so if it might codegen to a relocatable entry, it should say
/// so. The return values are:
///
/// NoRelocation: This constant pool entry is guaranteed to never have a
/// relocation applied to it (because it holds a simple constant like
/// '4').
/// LocalRelocation: This entry has relocations, but the entries are
/// guaranteed to be resolvable by the static linker, so the dynamic
/// linker will never see them.
/// GlobalRelocations: This entry may have arbitrary relocations.
///
/// FIXME: This really should not be in VMCore.
Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return LocalRelocation; // Local to this file/library.
return GlobalRelocations; // Global reference.
}
if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
return BA->getFunction()->getRelocationInfo();
// While raw uses of blockaddress need to be relocated, differences between
// two of them don't when they are for labels in the same function. This is a
// common idiom when creating a table for the indirect goto extension, so we
// handle it efficiently here.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
if (CE->getOpcode() == Instruction::Sub) {
ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
if (LHS && RHS &&
LHS->getOpcode() == Instruction::PtrToInt &&
RHS->getOpcode() == Instruction::PtrToInt &&
isa<BlockAddress>(LHS->getOperand(0)) &&
isa<BlockAddress>(RHS->getOperand(0)) &&
cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
cast<BlockAddress>(RHS->getOperand(0))->getFunction())
return NoRelocation;
}
PossibleRelocationsTy Result = NoRelocation;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result = std::max(Result,
cast<Constant>(getOperand(i))->getRelocationInfo());
return Result;
}
/// getVectorElements - This method, which is only valid on constant of vector
/// type, returns the elements of the vector in the specified smallvector.
/// This handles breaking down a vector undef into undef elements, etc. For
/// constant exprs and other cases we can't handle, we return an empty vector.
void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
assert(getType()->isVectorTy() && "Not a vector constant!");
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
Elts.push_back(CV->getOperand(i));
return;
}
const VectorType *VT = cast<VectorType>(getType());
if (isa<ConstantAggregateZero>(this)) {
Elts.assign(VT->getNumElements(),
Constant::getNullValue(VT->getElementType()));
return;
}
if (isa<UndefValue>(this)) {
Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
return;
}
// Unknown type, must be constant expr etc.
}
//===----------------------------------------------------------------------===//
// ConstantInt
//===----------------------------------------------------------------------===//
ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
: Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (pImpl->TheTrueVal)
return pImpl->TheTrueVal;
else
return (pImpl->TheTrueVal =
ConstantInt::get(IntegerType::get(Context, 1), 1));
}
ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (pImpl->TheFalseVal)
return pImpl->TheFalseVal;
else
return (pImpl->TheFalseVal =
ConstantInt::get(IntegerType::get(Context, 1), 0));
}
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
// Get the corresponding integer type for the bit width of the value.
const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
// get an existing value or the insertion position
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
if (!Slot) Slot = new ConstantInt(ITy, V);
return Slot;
}
Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
V, isSigned);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
bool isSigned) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
}
ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
ConstantInt *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str,
uint8_t radix) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
}
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
if (Ty->isFloatTy())
return &APFloat::IEEEsingle;
if (Ty->isDoubleTy())
return &APFloat::IEEEdouble;
if (Ty->isX86_FP80Ty())
return &APFloat::x87DoubleExtended;
else if (Ty->isFP128Ty())
return &APFloat::IEEEquad;
assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
return &APFloat::PPCDoubleDouble;
}
/// get() - This returns a constant fp for the specified value in the
/// specified type. This should only be used for simple constant values like
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
Constant* ConstantFP::get(const Type* Ty, double V) {
LLVMContext &Context = Ty->getContext();
APFloat FV(V);
bool ignored;
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
APFloat::rmNearestTiesToEven, &ignored);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
Constant* ConstantFP::get(const Type* Ty, StringRef Str) {
LLVMContext &Context = Ty->getContext();
APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
LLVMContext &Context = Ty->getContext();
APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
apf.changeSign();
return get(Context, apf);
}
Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
if (PTy->getElementType()->isFloatingPointTy()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
getNegativeZero(PTy->getElementType()));
return ConstantVector::get(PTy, zeros);
}
if (Ty->isFloatingPointTy())
return getNegativeZero(Ty);
return Constant::getNullValue(Ty);
}
// ConstantFP accessors.
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
LLVMContextImpl* pImpl = Context.pImpl;
ConstantFP *&Slot = pImpl->FPConstants[Key];
if (!Slot) {
const Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEsingle)
Ty = Type::getFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEdouble)
Ty = Type::getDoubleTy(Context);
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
Ty = Type::getX86_FP80Ty(Context);
else if (&V.getSemantics() == &APFloat::IEEEquad)
Ty = Type::getFP128Ty(Context);
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
"Unknown FP format");
Ty = Type::getPPC_FP128Ty(Context);
}
Slot = new ConstantFP(Ty, V);
}
return Slot;
}
ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
return ConstantFP::get(Ty->getContext(),
APFloat::getInf(Semantics, Negative));
}
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
: Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
"FP type Mismatch");
}
bool ConstantFP::isNullValue() const {
return Val.isZero() && !Val.isNegative();
}
bool ConstantFP::isExactlyValue(const APFloat& V) const {
return Val.bitwiseIsEqual(V);
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
ConstantArray::ConstantArray(const ArrayType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantArrayVal,
OperandTraits<ConstantArray>::op_end(this) - V.size(),
V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant array");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert(C->getType() == T->getElementType() &&
"Initializer for array element doesn't match array element type!");
*OL = C;
}
}
Constant *ConstantArray::get(const ArrayType *Ty,
const std::vector<Constant*> &V) {
for (unsigned i = 0, e = V.size(); i != e; ++i) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// If this is an all-zero array, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue())
return pImpl->ArrayConstants.getOrCreate(Ty, V);
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C)
return pImpl->ArrayConstants.getOrCreate(Ty, V);
}
return ConstantAggregateZero::get(Ty);
}
Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
unsigned NumVals) {
// FIXME: make this the primary ctor method.
return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
}
/// ConstantArray::get(const string&) - Return an array that is initialized to
/// contain the specified string. If length is zero then a null terminator is
/// added to the specified string so that it may be used in a natural way.
/// Otherwise, the length parameter specifies how much of the string to use
/// and it won't be null terminated.
///
Constant* ConstantArray::get(LLVMContext &Context, StringRef Str,
bool AddNull) {
std::vector<Constant*> ElementVals;
ElementVals.reserve(Str.size() + size_t(AddNull));
for (unsigned i = 0; i < Str.size(); ++i)
ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
// Add a null terminator to the string...
if (AddNull) {
ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
}
ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
return get(ATy, ElementVals);
}
ConstantStruct::ConstantStruct(const StructType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantStructVal,
OperandTraits<ConstantStruct>::op_end(this) - V.size(),
V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant structure");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert(C->getType() == T->getElementType(I-V.begin()) &&
"Initializer for struct element doesn't match struct element type!");
*OL = C;
}
}
// ConstantStruct accessors.
Constant* ConstantStruct::get(const StructType* T,
const std::vector<Constant*>& V) {
LLVMContextImpl* pImpl = T->getContext().pImpl;
// Create a ConstantAggregateZero value if all elements are zeros...
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
return pImpl->StructConstants.getOrCreate(T, V);
return ConstantAggregateZero::get(T);
}
Constant* ConstantStruct::get(LLVMContext &Context,
const std::vector<Constant*>& V, bool packed) {
std::vector<const Type*> StructEls;
StructEls.reserve(V.size());
for (unsigned i = 0, e = V.size(); i != e; ++i)
StructEls.push_back(V[i]->getType());
return get(StructType::get(Context, StructEls, packed), V);
}
Constant* ConstantStruct::get(LLVMContext &Context,
Constant* const *Vals, unsigned NumVals,
bool Packed) {
// FIXME: make this the primary ctor method.
return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
}
ConstantVector::ConstantVector(const VectorType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantVectorVal,
OperandTraits<ConstantVector>::op_end(this) - V.size(),
V.size()) {
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert(C->getType() == T->getElementType() &&
"Initializer for vector element doesn't match vector element type!");
*OL = C;
}
}
// ConstantVector accessors.
Constant* ConstantVector::get(const VectorType* T,
const std::vector<Constant*>& V) {
assert(!V.empty() && "Vectors can't be empty");
LLVMContext &Context = T->getContext();
LLVMContextImpl *pImpl = Context.pImpl;
// If this is an all-undef or alll-zero vector, return a
// ConstantAggregateZero or UndefValue.
Constant *C = V[0];
bool isZero = C->isNullValue();
bool isUndef = isa<UndefValue>(C);
if (isZero || isUndef) {
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
isZero = isUndef = false;
break;
}
}
if (isZero)
return ConstantAggregateZero::get(T);
if (isUndef)
return UndefValue::get(T);
return pImpl->VectorConstants.getOrCreate(T, V);
}
Constant* ConstantVector::get(const std::vector<Constant*>& V) {
assert(!V.empty() && "Cannot infer type if V is empty");
return get(VectorType::get(V.front()->getType(),V.size()), V);
}
Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
// FIXME: make this the primary ctor method.
return get(std::vector<Constant*>(Vals, Vals+NumVals));
}
Constant* ConstantExpr::getNSWNeg(Constant* C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NEG a nonintegral value!");
return getNSWSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
}
Constant* ConstantExpr::getNUWNeg(Constant* C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NEG a nonintegral value!");
return getNUWSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
}
Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Add, C1, C2,
OverflowingBinaryOperator::NoSignedWrap);
}
Constant* ConstantExpr::getNUWAdd(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Add, C1, C2,
OverflowingBinaryOperator::NoUnsignedWrap);
}
Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Sub, C1, C2,
OverflowingBinaryOperator::NoSignedWrap);
}
Constant* ConstantExpr::getNUWSub(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Sub, C1, C2,
OverflowingBinaryOperator::NoUnsignedWrap);
}
Constant* ConstantExpr::getNSWMul(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Mul, C1, C2,
OverflowingBinaryOperator::NoSignedWrap);
}
Constant* ConstantExpr::getNUWMul(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Mul, C1, C2,
OverflowingBinaryOperator::NoUnsignedWrap);
}
Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::SDiv, C1, C2,
SDivOperator::IsExact);
}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
return Instruction::isCast(getOpcode());
}
bool ConstantExpr::isCompare() const {
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
if (getOpcode() != Instruction::GetElementPtr) return false;
gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
User::const_op_iterator OI = llvm::next(this->op_begin());
// Skip the first index, as it has no static limit.
++GEPI;
++OI;
// The remaining indices must be compile-time known integers within the
// bounds of the corresponding notional static array types.
for (; GEPI != E; ++GEPI, ++OI) {
ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
if (!CI) return false;
if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
if (CI->getValue().getActiveBits() > 64 ||
CI->getZExtValue() >= ATy->getNumElements())
return false;
}
// All the indices checked out.
return true;
}
bool ConstantExpr::hasIndices() const {
return getOpcode() == Instruction::ExtractValue ||
getOpcode() == Instruction::InsertValue;
}
const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
if (const ExtractValueConstantExpr *EVCE =
dyn_cast<ExtractValueConstantExpr>(this))
return EVCE->Indices;
return cast<InsertValueConstantExpr>(this)->Indices;
}
unsigned ConstantExpr::getPredicate() const {
assert(getOpcode() == Instruction::FCmp ||
getOpcode() == Instruction::ICmp);
return ((const CompareConstantExpr*)this)->predicate;
}
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(OpNo < getNumOperands() && "Operand num is out of range!");
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
if (getOperand(OpNo) == Op)
return const_cast<ConstantExpr*>(this);
Constant *Op0, *Op1, *Op2;
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Op, getType());
case Instruction::Select:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getSelect(Op0, Op1, Op2);
case Instruction::InsertElement:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getInsertElement(Op0, Op1, Op2);
case Instruction::ExtractElement:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::getExtractElement(Op0, Op1);
case Instruction::ShuffleVector:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
case Instruction::GetElementPtr: {
SmallVector<Constant*, 8> Ops;
Ops.resize(getNumOperands()-1);
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
Ops[i-1] = getOperand(i);
if (OpNo == 0)
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
Ops[OpNo-1] = Op;
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()):
ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
}
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
}
}
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified operands must
/// match count and type with the existing ones.
Constant *ConstantExpr::
getWithOperands(Constant* const *Ops, unsigned NumOps) const {
assert(NumOps == getNumOperands() && "Operand count mismatch!");
bool AnyChange = false;
for (unsigned i = 0; i != NumOps; ++i) {
assert(Ops[i]->getType() == getOperand(i)->getType() &&
"Operand type mismatch!");
AnyChange |= Ops[i] != getOperand(i);
}
if (!AnyChange) // No operands changed, return self.
return const_cast<ConstantExpr*>(this);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
}
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
if (Ty == Type::getInt1Ty(Ty->getContext()))
return Val == 0 || Val == 1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
uint64_t Max = (1ll << NumBits) - 1;
return Val <= Max;
}
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
if (Ty == Type::getInt1Ty(Ty->getContext()))
return Val == 0 || Val == 1 || Val == -1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
int64_t Min = -(1ll << (NumBits-1));
int64_t Max = (1ll << (NumBits-1)) - 1;
return (Val >= Min && Val <= Max);
}
bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// FIXME rounding mode needs to be more flexible
case Type::FloatTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle)
return true;
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::DoubleTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble)
return true;
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::X86_FP80TyID:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::x87DoubleExtended;
case Type::FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::IEEEquad;
case Type::PPC_FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::PPCDoubleDouble;
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
"Cannot create an aggregate zero of non-aggregate type!");
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantAggregateZero::destroyConstant() {
getRawType()->getContext().pImpl->AggZeroConstants.remove(this);
destroyConstantImpl();
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantArray::destroyConstant() {
getRawType()->getContext().pImpl->ArrayConstants.remove(this);
destroyConstantImpl();
}
/// isString - This method returns true if the array is an array of i8, and
/// if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
// Check the element type for i8...
if (!getType()->getElementType()->isIntegerTy(8))
return false;
// Check the elements to make sure they are all integers, not constant
// expressions.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(getOperand(i)))
return false;
return true;
}
/// isCString - This method returns true if the array is a string (see
/// isString) and it ends in a null byte \\0 and does not contains any other
/// null bytes except its terminator.
bool ConstantArray::isCString() const {
// Check the element type for i8...
if (!getType()->getElementType()->isIntegerTy(8))
return false;
// Last element must be a null.
if (!getOperand(getNumOperands()-1)->isNullValue())
return false;
// Other elements must be non-null integers.
for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
if (getOperand(i)->isNullValue())
return false;
}
return true;
}
/// getAsString - If the sub-element type of this array is i8
/// then this method converts the array to an std::string and returns it.
/// Otherwise, it asserts out.
///
std::string ConstantArray::getAsString() const {
assert(isString() && "Not a string!");
std::string Result;
Result.reserve(getNumOperands());
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
return Result;
}
//---- ConstantStruct::get() implementation...
//
namespace llvm {
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
getRawType()->getContext().pImpl->StructConstants.remove(this);
destroyConstantImpl();
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
getRawType()->getContext().pImpl->VectorConstants.remove(this);
destroyConstantImpl();
}
/// This function will return true iff every element in this vector constant
/// is set to all ones.
/// @returns true iff this constant's emements are all set to all ones.
/// @brief Determine if the value is all ones.
bool ConstantVector::isAllOnesValue() const {
// Check out first element.
const Constant *Elt = getOperand(0);
const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI || !CI->isAllOnesValue()) return false;
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
if (getOperand(I) != Elt) return false;
}
return true;
}
/// getSplatValue - If this is a splat constant, where all of the
/// elements have the same value, return that value. Otherwise return null.
Constant *ConstantVector::getSplatValue() {
// Check out first element.
Constant *Elt = getOperand(0);
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
if (getOperand(I) != Elt) return 0;
return Elt;
}
//---- ConstantPointerNull::get() implementation.
//
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
getRawType()->getContext().pImpl->NullPtrConstants.remove(this);
destroyConstantImpl();
}
//---- UndefValue::get() implementation.
//
UndefValue *UndefValue::get(const Type *Ty) {
return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
getRawType()->getContext().pImpl->UndefValueConstants.remove(this);
destroyConstantImpl();
}
//---- BlockAddress::get() implementation.
//
BlockAddress *BlockAddress::get(BasicBlock *BB) {
assert(BB->getParent() != 0 && "Block must have a parent");
return get(BB->getParent(), BB);
}
BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
BlockAddress *&BA =
F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
if (BA == 0)
BA = new BlockAddress(F, BB);
assert(BA->getFunction() == F && "Basic block moved between functions");
return BA;
}
BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
&Op<0>(), 2) {
setOperand(0, F);
setOperand(1, BB);
BB->AdjustBlockAddressRefCount(1);
}
// destroyConstant - Remove the constant from the constant table.
//
void BlockAddress::destroyConstant() {
getFunction()->getRawType()->getContext().pImpl
->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
getBasicBlock()->AdjustBlockAddressRefCount(-1);
destroyConstantImpl();
}
void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
// This could be replacing either the Basic Block or the Function. In either
// case, we have to remove the map entry.
Function *NewF = getFunction();
BasicBlock *NewBB = getBasicBlock();
if (U == &Op<0>())
NewF = cast<Function>(To);
else
NewBB = cast<BasicBlock>(To);
// See if the 'new' entry already exists, if not, just update this in place
// and return early.
BlockAddress *&NewBA =
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
if (NewBA == 0) {
getBasicBlock()->AdjustBlockAddressRefCount(-1);
// Remove the old entry, this can't cause the map to rehash (just a
// tombstone will get added).
getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
getBasicBlock()));
NewBA = this;
setOperand(0, NewF);
setOperand(1, NewBB);
getBasicBlock()->AdjustBlockAddressRefCount(1);
return;
}
// Otherwise, I do need to replace this with an existing value.
assert(NewBA != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(NewBA);
destroyConstant();
}
//---- ConstantExpr::get() implementations.
//
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static inline Constant *getFoldedCast(
Instruction::CastOps opc, Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
return FC;
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key(opc, argVec);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
switch (opc) {
default:
llvm_unreachable("Invalid cast opcode");
break;
case Instruction::Trunc: return getTrunc(C, Ty);
case Instruction::ZExt: return getZExt(C, Ty);
case Instruction::SExt: return getSExt(C, Ty);
case Instruction::FPTrunc: return getFPTrunc(C, Ty);
case Instruction::FPExt: return getFPExtend(C, Ty);
case Instruction::UIToFP: return getUIToFP(C, Ty);
case Instruction::SIToFP: return getSIToFP(C, Ty);
case Instruction::FPToUI: return getFPToUI(C, Ty);
case Instruction::FPToSI: return getFPToSI(C, Ty);
case Instruction::PtrToInt: return getPtrToInt(C, Ty);
case Instruction::IntToPtr: return getIntToPtr(C, Ty);
case Instruction::BitCast: return getBitCast(C, Ty);
}
return 0;
}
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getZExt(C, Ty);
}
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getSExt(C, Ty);
}
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getTrunc(C, Ty);
}
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
assert(S->getType()->isPointerTy() && "Invalid cast");
assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
if (Ty->isIntegerTy())
return getPtrToInt(S, Ty);
return getBitCast(S, Ty);
}
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
bool isSigned) {
assert(C->getType()->isIntOrIntVectorTy() &&
Ty->isIntOrIntVectorTy() && "Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
if (SrcBits == DstBits)
return C; // Avoid a useless cast
Instruction::CastOps opcode =
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
return getFoldedCast(Instruction::Trunc, C, Ty);
}
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
return getFoldedCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
return getFoldedCast(Instruction::ZExt, C, Ty);
}
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"This is an illegal floating point truncation!");
return getFoldedCast(Instruction::FPTrunc, C, Ty);
}
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"This is an illegal floating point extension!");
return getFoldedCast(Instruction::FPExt, C, Ty);
}
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal uint to floating point cast!");
return getFoldedCast(Instruction::UIToFP, C, Ty);
}
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal sint to floating point cast!");
return getFoldedCast(Instruction::SIToFP, C, Ty);
}
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to uint cast!");
return getFoldedCast(Instruction::FPToUI, C, Ty);
}
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to sint cast!");
return getFoldedCast(Instruction::FPToSI, C, Ty);
}
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
return getFoldedCast(Instruction::PtrToInt, C, DstTy);
}
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
return getFoldedCast(Instruction::IntToPtr, C, DstTy);
}
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
"Invalid constantexpr bitcast!");
// It is common to ask for a bitcast of a value to its own type, handle this
// speedily.
if (C->getType() == DstTy) return C;
return getFoldedCast(Instruction::BitCast, C, DstTy);
}
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
Constant *C1, Constant *C2,
unsigned Flags) {
// Check the operands for consistency first
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases...
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key(Opcode, argVec, 0, Flags);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
Constant *C1, Constant *C2) {
switch (predicate) {
default: llvm_unreachable("Invalid CmpInst predicate");
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return getFCmp(predicate, C1, C2);
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return getICmp(predicate, C1, C2);
}
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags) {
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case Instruction::UDiv:
case Instruction::SDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::URem:
case Instruction::SRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
return getTy(C1->getType(), Opcode, C1, C2, Flags);
}
Constant* ConstantExpr::getSizeOf(const Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *GEP = getGetElementPtr(
Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant* ConstantExpr::getAlignOf(const Type* Ty) {
// alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
const Type *AligningTy = StructType::get(Ty->getContext(),
Type::getInt1Ty(Ty->getContext()), Ty, NULL);
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
FieldNo));
}
Constant* ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) {
// offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx[] = {
ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
FieldNo
};
Constant *GEP = getGetElementPtr(
Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getCompare(unsigned short pred,
Constant *C1, Constant *C2) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
return getCompareTy(pred, C1, C2);
}
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
Constant *V1, Constant *V2) {
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (ReqTy == V1->getType())
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
std::vector<Constant*> argVec(3, C);
argVec[1] = V1;
argVec[2] = V2;
ExprMapKeyType Key(Instruction::Select, argVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
Idxs+NumIdx) ==
cast<PointerType>(ReqTy)->getElementType() &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/false,
(Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(C->getType()->isPointerTy() &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(NumIdx+1);
ArgVec.push_back(C);
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
Constant *C,
Value *const *Idxs,
unsigned NumIdx) {
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
Idxs+NumIdx) ==
cast<PointerType>(ReqTy)->getElementType() &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/true,
(Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(C->getType()->isPointerTy() &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(NumIdx+1);
ArgVec.push_back(C);
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
GEPOperator::IsInBounds);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
unsigned NumIdx) {
// Get the result type of the getelementptr!
const Type *Ty =
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
assert(Ty && "GEP indices invalid!");
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
// Get the result type of the getelementptr!
const Type *Ty =
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
assert(Ty && "GEP indices invalid!");
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
unsigned NumIdx) {
return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
Constant* const *Idxs,
unsigned NumIdx) {
return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}
Constant *
ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getNumElements());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *
ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getNumElements());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
Constant *Idx) {
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases.
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(Val->getType()->isVectorTy() &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType()->isIntegerTy(32) &&
"Extractelement index must be i32 type!");
return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
Val, Idx);
}
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
Constant *Elt, Constant *Idx) {
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases.
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Elt);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx) {
assert(Val->getType()->isVectorTy() &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
&& "Insertelement types must match!");
assert(Idx->getType()->isIntegerTy(32) &&
"Insertelement index must be i32 type!");
return getInsertElementTy(Val->getType(), Val, Elt, Idx);
}
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
Constant *V2, Constant *Mask) {
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, V1);
ArgVec.push_back(V2);
ArgVec.push_back(Mask);
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Constant *Mask) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
const Type *ShufTy = VectorType::get(EltTy, NElts);
return getShuffleVectorTy(ShufTy, V1, V2, Mask);
}
Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
Constant *Val,
const unsigned *Idxs, unsigned NumIdx) {
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
Idxs+NumIdx) == Val->getType() &&
"insertvalue indices invalid!");
assert(Agg->getType() == ReqTy &&
"insertvalue type invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant InsertValue expression");
Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
assert(FC && "InsertValue constant expr couldn't be folded!");
return FC;
}
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
const unsigned *IdxList, unsigned NumIdx) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create insertelement operation on non-first-class type!");
const Type *ReqTy = Agg->getType();
#ifndef NDEBUG
const Type *ValTy =
ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
#endif
assert(ValTy == Val->getType() && "insertvalue indices invalid!");
return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
}
Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
const unsigned *Idxs, unsigned NumIdx) {
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
Idxs+NumIdx) == ReqTy &&
"extractvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant extractvalue expression");
Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
assert(FC && "ExtractValue constant expr couldn't be folded!");
return FC;
}
Constant *ConstantExpr::getExtractValue(Constant *Agg,
const unsigned *IdxList, unsigned NumIdx) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create extractelement operation on non-first-class type!");
const Type *ReqTy =
ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
assert(ReqTy && "extractvalue indices invalid!");
return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
}
Constant* ConstantExpr::getNeg(Constant* C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NEG a nonintegral value!");
return get(Instruction::Sub,
ConstantFP::getZeroValueForNegation(C->getType()),
C);
}
Constant* ConstantExpr::getFNeg(Constant* C) {
assert(C->getType()->isFPOrFPVectorTy() &&
"Cannot FNEG a non-floating-point value!");
return get(Instruction::FSub,
ConstantFP::getZeroValueForNegation(C->getType()),
C);
}
Constant* ConstantExpr::getNot(Constant* C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NOT a nonintegral value!");
return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
}
Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
return get(Instruction::Add, C1, C2);
}
Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
return get(Instruction::FAdd, C1, C2);
}
Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
return get(Instruction::Sub, C1, C2);
}
Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
return get(Instruction::FSub, C1, C2);
}
Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
return get(Instruction::Mul, C1, C2);
}
Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
return get(Instruction::FMul, C1, C2);
}
Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
return get(Instruction::UDiv, C1, C2);
}
Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
return get(Instruction::SDiv, C1, C2);
}
Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
return get(Instruction::FDiv, C1, C2);
}
Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
return get(Instruction::URem, C1, C2);
}
Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
return get(Instruction::SRem, C1, C2);
}
Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
return get(Instruction::FRem, C1, C2);
}
Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
return get(Instruction::And, C1, C2);
}
Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
return get(Instruction::Or, C1, C2);
}
Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
return get(Instruction::Xor, C1, C2);
}
Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
return get(Instruction::Shl, C1, C2);
}
Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
return get(Instruction::LShr, C1, C2);
}
Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
return get(Instruction::AShr, C1, C2);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
getRawType()->getContext().pImpl->ExprConstants.remove(this);
destroyConstantImpl();
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
const Type *DestTy)
: ConstantExpr(DestTy, Instruction::GetElementPtr,
OperandTraits<GetElementPtrConstantExpr>::op_end(this)
- (IdxList.size()+1), IdxList.size()+1) {
OperandList[0] = C;
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
OperandList[i+1] = IdxList[i];
}
//===----------------------------------------------------------------------===//
// replaceUsesOfWithOnConstant implementations
/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
/// 'From' to be uses of 'To'. This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here. Consider
/// a large array that uses 'From' 1000 times. By handling this case all here,
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
/// single invocation handles all 1000 uses. Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
LLVMContextImpl *pImpl = getRawType()->getContext().pImpl;
std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
Lookup.first.first = cast<ArrayType>(getRawType());
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
bool isAllZeros = false;
unsigned NumUpdated = 0;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
}
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getRawType());
} else {
// Check to see if we have this array type already.
bool Exists;
LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
if (NumUpdated == 1) {
unsigned OperandToUpdate = U - OperandList;
assert(getOperand(OperandToUpdate) == From &&
"ReplaceAllUsesWith broken!");
setOperand(OperandToUpdate, ToC);
} else {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (getOperand(i) == From)
setOperand(i, ToC);
}
return;
}
}
// Otherwise, I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
Lookup.first.first = cast<StructType>(getRawType());
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
LLVMContextImpl *pImpl = getRawType()->getContext().pImpl;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getRawType());
} else {
// Check to see if we have this struct type already.
bool Exists;
LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
pImpl->StructConstants.MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
return;
}
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
std::vector<Constant*> Values;
Values.reserve(getNumOperands()); // Build replacement array...
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = cast<Constant>(To);
Values.push_back(Val);
}
Constant *Replacement = get(cast<VectorType>(getRawType()), Values);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Use *U) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
Constant *Replacement = 0;
if (getOpcode() == Instruction::GetElementPtr) {
SmallVector<Constant*, 8> Indices;
Constant *Pointer = getOperand(0);
Indices.reserve(getNumOperands()-1);
if (Pointer == From) Pointer = To;
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = To;
Indices.push_back(Val);
}
Replacement = ConstantExpr::getGetElementPtr(Pointer,
&Indices[0], Indices.size());
} else if (getOpcode() == Instruction::ExtractValue) {
Constant *Agg = getOperand(0);
if (Agg == From) Agg = To;
const SmallVector<unsigned, 4> &Indices = getIndices();
Replacement = ConstantExpr::getExtractValue(Agg,
&Indices[0], Indices.size());
} else if (getOpcode() == Instruction::InsertValue) {
Constant *Agg = getOperand(0);
Constant *Val = getOperand(1);
if (Agg == From) Agg = To;
if (Val == From) Val = To;
const SmallVector<unsigned, 4> &Indices = getIndices();
Replacement = ConstantExpr::getInsertValue(Agg, Val,
&Indices[0], Indices.size());
} else if (isCast()) {
assert(getOperand(0) == From && "Cast only has one use!");
Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType());
} else if (getOpcode() == Instruction::Select) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getSelect(C1, C2, C3);
} else if (getOpcode() == Instruction::ExtractElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::getExtractElement(C1, C2);
} else if (getOpcode() == Instruction::InsertElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
} else if (getOpcode() == Instruction::ShuffleVector) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
} else if (isCompare()) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (getOpcode() == Instruction::ICmp)
Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
else {
assert(getOpcode() == Instruction::FCmp);
Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
}
} else if (getNumOperands() == 2) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
} else {
llvm_unreachable("Unknown ConstantExpr type!");
return;
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
|