1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
// Always verify dominfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyDomInfo = true;
#else
static bool VerifyDomInfo = false;
#endif
static cl::opt<bool,true>
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
cl::desc("Verify dominator info (time consuming)"));
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information. Implementation details
// can be found in DominatorCalculation.h.
//
//===----------------------------------------------------------------------===//
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
char DominatorTree::ID = 0;
INITIALIZE_PASS(DominatorTree, "domtree",
"Dominator Tree Construction", true, true);
bool DominatorTree::runOnFunction(Function &F) {
DT->recalculate(F);
return false;
}
void DominatorTree::verifyAnalysis() const {
if (!VerifyDomInfo) return;
Function &F = *getRoot()->getParent();
DominatorTree OtherDT;
OtherDT.getBase().recalculate(F);
assert(!compare(OtherDT) && "Invalid DominatorTree info!");
}
void DominatorTree::print(raw_ostream &OS, const Module *) const {
DT->print(OS);
}
// dominates - Return true if A dominates a use in B. This performs the
// special checks necessary if A and B are in the same basic block.
bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
// If A is an invoke instruction, its value is only available in this normal
// successor block.
if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
BBA = II->getNormalDest();
if (BBA != BBB) return dominates(BBA, BBB);
// It is not possible to determine dominance between two PHI nodes
// based on their ordering.
if (isa<PHINode>(A) && isa<PHINode>(B))
return false;
// Loop through the basic block until we find A or B.
BasicBlock::const_iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I)
/*empty*/;
return &*I == A;
}
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
char DominanceFrontier::ID = 0;
INITIALIZE_PASS(DominanceFrontier, "domfrontier",
"Dominance Frontier Construction", true, true);
void DominanceFrontier::verifyAnalysis() const {
if (!VerifyDomInfo) return;
DominatorTree &DT = getAnalysis<DominatorTree>();
DominanceFrontier OtherDF;
const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
}
// NewBB is split and now it has one successor. Update dominance frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
"NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
// NewBBSucc inherits original NewBB frontier.
DominanceFrontier::iterator NewBBI = find(NewBB);
if (NewBBI != end())
addBasicBlock(NewBBSucc, NewBBI->second);
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
// DF(NewBBSucc) without the stuff that the new block does not dominate
// a predecessor of.
DominatorTree &DT = getAnalysis<DominatorTree>();
DomTreeNode *NewBBNode = DT.getNode(NewBB);
DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
if (DT.dominates(NewBBNode, NewBBSuccNode)) {
DominanceFrontier::iterator DFI = find(NewBBSucc);
if (DFI != end()) {
DominanceFrontier::DomSetType Set = DFI->second;
// Filter out stuff in Set that we do not dominate a predecessor of.
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E;) {
bool DominatesPred = false;
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
PI != E; ++PI)
if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
DominatesPred = true;
break;
}
if (!DominatesPred)
Set.erase(SetI++);
else
++SetI;
}
if (NewBBI != end()) {
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E; ++SetI) {
BasicBlock *SB = *SetI;
addToFrontier(NewBBI, SB);
}
} else
addBasicBlock(NewBB, Set);
}
} else {
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(NewBBSucc);
addBasicBlock(NewBB, NewDFSet);
}
// Now update dominance frontiers which either used to contain NewBBSucc
// or which now need to include NewBB.
// Collect the set of blocks which dominate a predecessor of NewBB or
// NewSuccBB and which don't dominate both. This is an initial
// approximation of the blocks whose dominance frontiers will need updates.
SmallVector<DomTreeNode *, 16> AllPredDoms;
// Compute the block which dominates both NewBBSucc and NewBB. This is
// the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
// The code below which climbs dominator trees will stop at this point,
// because from this point up, dominance frontiers are unaffected.
DomTreeNode *DominatesBoth = 0;
if (NewBBSuccNode) {
DominatesBoth = NewBBSuccNode->getIDom();
if (DominatesBoth == NewBBNode)
DominatesBoth = NewBBNode->getIDom();
}
// Collect the set of all blocks which dominate a predecessor of NewBB.
SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
if (DTN == DominatesBoth)
break;
if (!NewBBPredDoms.insert(DTN))
break;
AllPredDoms.push_back(DTN);
}
// Collect the set of all blocks which dominate a predecessor of NewSuccBB.
SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
for (pred_iterator PI = pred_begin(NewBBSucc),
E = pred_end(NewBBSucc); PI != E; ++PI)
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
if (DTN == DominatesBoth)
break;
if (!NewBBSuccPredDoms.insert(DTN))
break;
if (!NewBBPredDoms.count(DTN))
AllPredDoms.push_back(DTN);
}
// Visit all relevant dominance frontiers and make any needed updates.
for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
E = AllPredDoms.end(); I != E; ++I) {
DomTreeNode *DTN = *I;
iterator DFI = find((*I)->getBlock());
// Only consider nodes that have NewBBSucc in their dominator frontier.
if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
// If the block dominates a predecessor of NewBB but does not properly
// dominate NewBB itself, add NewBB to its dominance frontier.
if (NewBBPredDoms.count(DTN) &&
!DT.properlyDominates(DTN, NewBBNode))
addToFrontier(DFI, NewBB);
// If the block does not dominate a predecessor of NewBBSucc or
// properly dominates NewBBSucc itself, remove NewBBSucc from its
// dominance frontier.
if (!NewBBSuccPredDoms.count(DTN) ||
DT.properlyDominates(DTN, NewBBSuccNode))
removeFromFrontier(DFI, NewBBSucc);
}
}
namespace {
class DFCalculateWorkObject {
public:
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
const DomTreeNode *N,
const DomTreeNode *PN)
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
BasicBlock *currentBB;
BasicBlock *parentBB;
const DomTreeNode *Node;
const DomTreeNode *parentNode;
};
}
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
DomSetType *Result = NULL;
std::vector<DFCalculateWorkObject> workList;
SmallPtrSet<BasicBlock *, 32> visited;
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
do {
DFCalculateWorkObject *currentW = &workList.back();
assert (currentW && "Missing work object.");
BasicBlock *currentBB = currentW->currentBB;
BasicBlock *parentBB = currentW->parentBB;
const DomTreeNode *currentNode = currentW->Node;
const DomTreeNode *parentNode = currentW->parentNode;
assert (currentBB && "Invalid work object. Missing current Basic Block");
assert (currentNode && "Invalid work object. Missing current Node");
DomSetType &S = Frontiers[currentBB];
// Visit each block only once.
if (visited.count(currentBB) == 0) {
visited.insert(currentBB);
// Loop over CFG successors to calculate DFlocal[currentNode]
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
}
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
bool visitChild = false;
for (DomTreeNode::const_iterator NI = currentNode->begin(),
NE = currentNode->end(); NI != NE; ++NI) {
DomTreeNode *IDominee = *NI;
BasicBlock *childBB = IDominee->getBlock();
if (visited.count(childBB) == 0) {
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
IDominee, currentNode));
visitChild = true;
}
}
// If all children are visited or there is any child then pop this block
// from the workList.
if (!visitChild) {
if (!parentBB) {
Result = &S;
break;
}
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
DomSetType &parentSet = Frontiers[parentBB];
for (; CDFI != CDFE; ++CDFI) {
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
parentSet.insert(*CDFI);
}
workList.pop_back();
}
} while (!workList.empty());
return *Result;
}
void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << " DomFrontier for BB ";
if (I->first)
WriteAsOperand(OS, I->first, false);
else
OS << " <<exit node>>";
OS << " is:\t";
const std::set<BasicBlock*> &BBs = I->second;
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I) {
OS << ' ';
if (*I)
WriteAsOperand(OS, *I, false);
else
OS << "<<exit node>>";
}
OS << "\n";
}
}
void DominanceFrontierBase::dump() const {
print(dbgs());
}
|