1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
|
/*
* A fast filter for static patterns.
*
* Copyright (C) 2015 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
* Copyright (C) 2008 Sourcefire, Inc.
*
* Authors: Török Edvin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#if HAVE_CONFIG_H
#include "clamav-config.h"
#endif
#include "clamav.h"
#include "filtering.h"
#include "matcher-ac.h"
#include <string.h>
#include <assert.h>
#include "perflogging.h"
/* ----- shift-or filtering -------------- */
/*
* Description of algorithm:
*
* Multiple patterns are added to the filter.
* The filter retains an approximation of these patterns, which can lead to
* false positive matches, but not false negative matches.
*
* For each position in the filter we retain what qgrams can match at that
* position, for example (if we'd use characters as qgrams):
* pattern1: atu
* pattern2: bzf
* pattern3: xat
*
* filter accepts:
* [abx][tza][uft]
*
* But it also accepts (false positives):
* azu, azf, azt, ...
*
* It doesn't however accept:
* aaa, atz, ...
*
* This is implemented by having a bit-level state-machine with MAXSOPATLEN (=32) states,
* each active bit meaning that a state is active.
*
* The states are activated sequentially, eachtransition decision is made
* considering if we can accept the character at position X.
* Since we can start a match at any position, position 0 is
* reactivated each time.
* When the last position is activated, the filter reports a match.
* If we can't accept the character at position X, the state remains inactive,
* and further states aren't activated (unless we activate this state in the
* future).
*
* Essentially this is an automaton like this:
*
* /\ (a|b|x) (t|z|a) (u|f|t)
* [S1] ---------> [S2] -------> [S3] ---------> [S4] -> match
* \_______________/ |
* \_____________________________/
*
*
* But we are tracking multiple active states at each time (or run N automatons
* in parallel if you like, N = number of states).
*
* We can have S3 and S2 active, meaning that if the next character is
* acceptable, it transitions to S1,S3 and S4 being active, otherwise it
* transitions to S1 being active.
*
* Active states can either be represented as a binary 1 or 0, and using
* bit-shifting and masking.
* If we choose 1, we must use &, and after shifting always reactivate bit 0.
* If we choose 0, we must use |, and after shifting we don't need to do
* anything (since by shifting a 0 is implicitly introduced).
*
* This file implements the latter (shift-or) method.
*
* The discussion above considered pattern to be of same length (or truncated to
* be so). In reality patterns are of variable length, and we often have short
* pattern.
*
* Thus another bitmap was introduced, meaning that if (end[Q] == set), then
* a pattern can end at this position.
* Also we would fill the pattern's position filters quite quickly with only 256
* choices for a position, so the algorithm uses overlapping qgrams of length 2:
* 'abcd' is 3 qgrams: 'ab','bc','cd'
*
* The algorithm is very sensitive to the end[Q] filter, since it can have false
* positives due to short patterns!
* For optimal performance we need:
* - patterns as long as possible
* - probability for end[Q] to match low (avoid 0000, and other common case
* - choose the most "diverse" subset from a long pattern
*
* diverse = refering to what we are scanning, so that the filter rarely
* matches, so this actually means that we *want* to avoid adding more
* characters to the filter, if we have 2 patterns:
* abxfg, and dalabxpo, it may be preferable to shift the 2nd one so that we
* don't add new character at the beginning.
*
* With NDB signatures there are more challenges to overcome:
* e8??0000000aa
*
* will make the filter accept:
* e8<all-256-values-here>, <all-256-values>00, ... 000000aa
*
* We should delay the pattern end as long as possible, especially if it is 0000
* The problem is that now the filter accepts 0000 on position 3, regardless
* of what we have on position 1 (even if we have something else than e8), so
* we have to be very careful not to allow 0000 on first position too,
* otherwise the filter will happily accept 000000000000.
*
* To optimize cache usage there are 2 end filters, one character (fits L1), and one qgram
* based (fits L2), both must match for the filter to consider it a match.
*
*
*/
/*#define DETAILED_DEBUG*/
#ifdef DETAILED_DEBUG
#define detailed_dbg cli_dbgmsg
#else
#define detailed_dbg(...)
#endif
#define BITMAP_CONTAINS(bmap, val) ((bmap)[(val) >> 5] & (1 << ((val) & 0x1f)))
#define BITMAP_INSERT(bmap, val) ((bmap)[(val) >> 5] |= (1 << ((val) & 0x1f)))
void filter_init(struct filter *m)
{
memset(m->B, ~0, sizeof(m->B));
memset(m->end, ~0, sizeof(m->end));
}
/* because we use uint32_t */
#define MAXSOPATLEN 8
static inline int filter_isset(const struct filter *m, unsigned pos, uint16_t val)
{
return !(m->B[val] & (1<<pos));
}
static inline void filter_set_atpos(struct filter *m, unsigned pos, uint16_t val)
{
if (!filter_isset(m, pos, val)) {
cli_perf_log_count(FILTER_LOAD, pos);
m->B[val] &= ~(1<<pos);
}
}
static inline int filter_end_isset(const struct filter *m, unsigned pos, uint16_t a)
{
return !(m->end[a] & (1<<pos));
}
static inline void filter_set_end(struct filter *m, unsigned pos, uint16_t a)
{
if (!filter_end_isset(m, pos, a)) {
cli_perf_log_count(FILTER_END_LOAD, pos);
m->end[a] &= ~(1 << pos);
}
}
#define MAX_CHOICES 8
/* just an arbitrary limit, if patterns are longer, we cut
* the filter can only use MAXSOPATLEN (32) characters,
* this longer buffer is needed so that we can choose the "best" subpattern from
* it */
#define MAXPATLEN 255
/* merge another pattern into the filter
* add('abc'); add('bcd'); will match [ab][bc][cd] */
int filter_add_static(struct filter *m, const unsigned char *pattern, unsigned long len, const char *name)
{
uint16_t q = 0;
uint8_t j, maxlen;
uint32_t best = 0xffffffff;
uint8_t best_pos = 0;
UNUSEDPARAM(name);
cli_perf_log_count(TRIE_ORIG_LEN, len > 8 ? 8 : len);
/* TODO: choose best among MAXCHOICES */
/* cut length */
if(len > MAXPATLEN) {
len = MAXPATLEN;
}
if(len < 2)
return -1;
/* we want subsigs to be as long as possible */
if (len > 4) {
maxlen = len - 4;
if (maxlen == 1) maxlen = 2;
} else
maxlen = 2;
for(j=0;(best < 100 && j<MAX_CHOICES) || (j < maxlen) ;j++) {
uint32_t num = MAXSOPATLEN;
uint8_t k;
if (j+2 > len)
break;
for(k=j;k<len-1 && (k-j < MAXSOPATLEN);k++) {
q = cli_readint16( &pattern[k] );
/* we want to favor subsigs that add as little as
* possible to the filter */
num += filter_isset(m, k-j, q) ? 0 : MAXSOPATLEN - (k-j);
if ((k == j || k == j+1) && (q == 0x0000 || q == 0xffff))
num += k==j ? 10000 : 1000;/* bad */
}
/* it is very important to keep the end set small */
num += 10*(filter_end_isset(m, k-j-1, q) ? 0 : 1);
/* it is very important to have signatures as long as possible
* */
num += 5*(MAXSOPATLEN - (k-j));
/* if we are lower length than threshold penalize */
if (k-j+1 < 4)
num += 200;
/* favour longer patterns */
num -= (2*MAXSOPATLEN - (k + 1+j))*(k-j)/2;
if (num < best) {
best = num;
best_pos = j;
}
}
assert(best_pos < len-1);
if (pattern[best_pos] == 0 && pattern[best_pos+1] == 0) {
detailed_dbg("filter (warning): subsignature begins with zero (static): %s\n", name);
}
pattern += best_pos;
len -= best_pos;
/* cut length */
if(len > MAXSOPATLEN) {
len = MAXSOPATLEN;
}
/* Shift-Or like preprocessing */
for(j=0;j < len-1;j++) {
/* use overlapping little-endian 2-grams. We need them overlapping because matching can start at any position */
q = cli_readint16( &pattern[j] );
filter_set_atpos(m, j, q);
}
/* we use variable length patterns, use last character to mark pattern end,
* can lead to false positives.*/
/* mark that at state j, the q-gram q can end the pattern */
if(j) {
j--;
filter_set_end(m, j, q);
}
return j+2;
}
struct char_spec {
/* if non-null i-th character = alt[start + step*i]; start+step*i < end;
*/
struct cli_ac_special *alt;
uint8_t start;
uint8_t end;
uint8_t step;
uint8_t negative;
};
static inline unsigned char spec_ith_char(const struct char_spec *spec, unsigned i)
{
const struct cli_ac_special *alt = spec->alt;
if (alt) {
assert (alt->type == 1);
assert (i < alt->num);
return (alt->alt).byte[i];
}
return i;
}
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
#define SPEC_FOREACH(spec0, k0, spec1, k1) do {\
unsigned char c0 = spec_ith_char(spec0, k0);\
unsigned char c1 = spec_ith_char(spec1, k1);\
unsigned c0end, c1end, cc0,cc1;\
c0end = spec0->negative ? 255 : c0;\
c1end = spec1->negative ? 255 : c1;\
cc0 = spec0->negative ? 0 : c0;\
cc1 = spec1->negative ? 0 : c1;\
for (;cc0 <= c0end;cc0++) {\
for (;cc1 <= c1end; cc1++) {\
uint16_t a = cc0 | (cc1<<8);\
if (spec0->negative && cc0 == c0)\
continue;\
if (spec1->negative && cc1 == c1)\
continue;
#define SPEC_END_FOR }}} while(0)
enum badness {
reject,
/* try to avoid if possible */
avoid_first,
avoid_anywhere, /* includes avoid_first! */
/* not that bad, but still not best */
dontlike,
acceptable,
like
};
static inline void get_score(enum badness badness, unsigned i, const struct filter *m, const struct char_spec *spec0, const struct char_spec *spec1, int32_t *score, int32_t *score_end)
{
int32_t base;
unsigned k0, k1, num_introduced = 0, num_end_introduced = 0;
switch (badness) {
case reject:
/* not reached */
assert(0);
base = -0x7fffff;
break;
case avoid_first:
if (!i)
base = -0x700000;
else
base = 0;
break;
case avoid_anywhere:
if (!i)
base = -0x720000;
else
base = -0x1000;
break;
case dontlike:
base = 0;
break;
case acceptable:
base = 0x200;
break;
case like:
/* a bit better only */
base = 0x201;
break;
}
if (base < 0) {
*score = base;
*score_end = base;
return;
}
/* at most 256 iterations here, otherwise base would be negative */
for(k0=spec0->start;k0 <= spec0->end;k0 += spec0->step) {
for(k1=spec1->start;k1 <= spec1->end;k1 += spec1->step) {
SPEC_FOREACH(spec0, k0, spec1, k1) {
num_introduced += filter_isset(m, i, a);
num_end_introduced += filter_end_isset(m, i, a);
} SPEC_END_FOR;
}
}
*score = base - num_introduced;
*score_end = base - num_end_introduced;
if (badness == avoid_first && i) {
/* what is bad to begin with, is bad at end too */
*score_end -= 0x1000;
}
}
struct choice {
enum badness base;
unsigned begin;
unsigned len;
};
static inline void add_choice(struct choice *choices, unsigned *cnt, unsigned i, unsigned ie, enum badness badness)
{
struct choice *choice;
int i_neg = -1;
assert(ie < MAXPATLEN);
if (ie < i+1)
return;
if (*cnt >= MAX_CHOICES)
return;
if (badness > avoid_first && *cnt >= (MAX_CHOICES >> 1)) {
unsigned j;
/* replace very bad picks if we're full */
for (j=0;j<*cnt;j++) {
if (choices[j].base < badness) {
if (i_neg == -1 || choices[j].base < choices[i_neg].base) {
i_neg = j;
}
}
}
}
if (i_neg != -1) {
choice = &choices[i_neg];
} else {
choice = &choices[(*cnt)++];
}
choice->begin = i;
choice->len = ie - i + 1;
choice->base = badness;
}
static inline int32_t spec_iter(const struct char_spec *spec)
{
unsigned count;
assert(spec->step);
count = (1 + spec->end - spec->start)/spec->step;
if (spec->negative) /* all chars except itself are added */
count *= 254;
return count;
}
int filter_add_acpatt(struct filter *m, const struct cli_ac_patt *pat)
{
unsigned i, j = 0, stop = 0, l=0;
uint16_t k0, k1;
struct char_spec chars[MAXPATLEN];
enum badness char_badness[MAXPATLEN];
unsigned char patc[MAXPATLEN];
unsigned altcnt = 0;
int32_t best_score = -0x7fffffff;
unsigned best_score_i = 0;
unsigned best_score_len = 0;
struct char_spec *spec0 = NULL, *spec1 = NULL;
struct choice choices[MAX_CHOICES];
unsigned choices_cnt = 0;
unsigned prefix_len = pat->prefix_length[0];
unsigned speci;
j = MIN(prefix_len + pat->length[0], MAXPATLEN);
for(i=0;i<j;i++) {
const uint16_t p = i < prefix_len ? pat->prefix[i] : pat->pattern[i - prefix_len];
if ((p&CLI_MATCH_WILDCARD) != CLI_MATCH_CHAR)
break;
patc[i] = (uint8_t)p;
}
if (i == j) {
/* all static, use add_static it has better heuristics for this
* case */
return filter_add_static(m, patc, j, pat->virname);
}
cli_perf_log_count(TRIE_ORIG_LEN, j > 8 ? 8 : j);
i = 0;
if (!prefix_len) {
while ((pat->pattern[i] & CLI_MATCH_WILDCARD) == CLI_MATCH_SPECIAL) {
/* we support only ALT_CHAR, skip the rest */
if (pat->special_table[altcnt]->type == 1)
break;
altcnt++;
i++;
}
}
/* transform AC characters into our representation */
for (speci=0;i<j && !stop; speci++,i++) {
struct char_spec *spec = &chars[speci];
const uint16_t p = i < prefix_len ? pat->prefix[i] : pat->pattern[i - prefix_len];
spec->alt = NULL;
spec->negative = 0;
switch (p & CLI_MATCH_WILDCARD) {
case CLI_MATCH_CHAR:
spec->start = spec->end = (uint8_t)p;
spec->step = 1;
break;
case CLI_MATCH_IGNORE:
spec->start = 0x00;
spec->end = 0xff;
spec->step = 1;
break;
case CLI_MATCH_SPECIAL:
assert(pat->special_table);
/* assert(altcnt < pat->alt); */
assert(pat->special_table[altcnt]);
spec->negative = pat->special_table[altcnt]->negative;
switch (pat->special_table[altcnt++]->type) {
case 1: /* ALT_CHAR */
spec->start = 0;
spec->end = pat->special_table[altcnt-1]->num - 1;
spec->step = 1;
spec->alt = pat->special_table[altcnt-1];
break;
default:
stop = 1;
break; /* TODO: should something be done here?
* */
}
break;
case CLI_MATCH_NIBBLE_HIGH:
spec->start = (p & 0xf0);
spec->end = spec->start | 0x0f;
spec->step = 1;
break;
case CLI_MATCH_NIBBLE_LOW:
spec->start = (p & 0xf);
spec->end = 0xf0 | spec->start;
spec->step = 0x10;
break;
default:
cli_errmsg("filtering: unknown wildcard character: %d\n", p);
return -1;
}
}
if (stop) --speci;
j = speci;
if (j < 2) {
if (stop)
cli_warnmsg("Don't know how to create filter for: %s\n",pat->virname);
else
cli_warnmsg("Subpattern too short: %s\n", pat->virname);
return -1;
}
for(i=0;i<j-1;i++) {
int32_t num_iter;
/* new qgrams added to the filter */
spec0 = &chars[i];
spec1 = &chars[i+1];
num_iter = spec_iter(spec0) * spec_iter(spec1);
if (num_iter >= 0x100) {
if (num_iter == 0x10000)
char_badness[i] = reject;
else
char_badness[i] = avoid_anywhere;
} else {
int8_t binary = 0;
enum badness scor = acceptable;
for(k0=spec0->start;k0 <= spec0->end;k0 += spec0->step) {
for(k1=spec1->start;k1 <= spec1->end;k1 += spec1->step) {
unsigned char c0 = spec_ith_char(spec0, k0);
unsigned char c1 = spec_ith_char(spec1, k1);
if (spec0->negative || spec1->negative) {
scor = avoid_anywhere;
break;
}
if ((!c0 && !c1) || (c0 == 0xff && c1 == 0xff)) {
scor = avoid_first;
break;
}
if (c0 == c1) {
scor = dontlike;
break;
}
if ((c0 < 32 || c0 > 127) && (c1 < 32 || c1 >127))
binary = 1;
}
}
if (scor == acceptable && binary) {
/* slightly favor binary */
scor = like;
}
char_badness[i] = scor;
}
}
/* try to choose best subpattern */
/* calculating the score for all possible i start pos
* and all possible length is too slow, so choose best among N choices
* only */
for (i=0;i<j-1 && choices_cnt < MAX_CHOICES;i++) {
enum badness base0 = like, base1 = like;
unsigned kend = MIN(j-1, (i + MAXSOPATLEN)&~1), k;
int ki = -0xff;
/* add 2 scores: pattern with max length, one where we stop at
* first negative, and one we stop at last positive, but never
* include reject */
assert(kend-1 < j-1);
if (char_badness[i] == reject)
continue;
if ((char_badness[i] == avoid_anywhere || char_badness[i] == avoid_first)
&& choices_cnt > 0)
/* if we have another choice don't choose this */
continue;
while ((kend > i+3) && char_badness[kend-1] == reject) kend--;
for (k=i;k<kend;k++) {
enum badness badness = char_badness[k];
if (badness < acceptable) {
if (badness == reject) {
/* this is a never pick */
kend = k;
break;
}
if (badness == avoid_first && k != i)
badness = dontlike;
if (k == i && badness == avoid_anywhere)
badness = avoid_first;
if (ki == -0xff)
ki = k;
}
base0 = MIN(base0, badness);
if (ki == -0xff)
base1 = MIN(base1, badness);
}
add_choice(choices, &choices_cnt, i, kend, base0);
if (ki > (int)i) {
/* ki|ki+1|??| */
/* try subpattern from after the wildcard */
i = ki;
}
/* if score is positive, it replaces a negative choice */
}
for(l=0;l<choices_cnt;l++) {
int32_t score;
unsigned kend;
unsigned k;
i = choices[l].begin;
kend = i + choices[l].len;
score = 0;
for(k = i; k < kend-1; k++) {
unsigned p = k - i;
int32_t iscore, score_end;
assert(k < j);
get_score(char_badness[k], p, m, &chars[k], &chars[k+1],
&iscore, &score_end);
/* give more importance to the score of the characters
* at the beginning */
/* TODO: tune magic number here */
if (p < 6) {
iscore *= (6-p);
score_end *= (6-p);
}
score += iscore;
if (score + score_end > best_score) {
/* we may have negative scores, so truncating
* the pattern could actually get us a higher
* score */
best_score = score + score_end;
best_score_len = p + 2;
best_score_i = i;
assert(i + best_score_len <= j);
}
}
}
if (best_score <= -0x7fffffff) {
cli_warnmsg("filter rejecting %s due to very bad score: %ld\n", pat->virname, (long)best_score);
return -1;
}
if (choices_cnt == 0) {
cli_warnmsg("filter rejecting %s because there are no viable choices", pat->virname);
return -1;
}
assert(best_score_len >= 2);
detailed_dbg("filter %s score: %ld, %u (+ %u)\n", pat->virname, (long)best_score, best_score_i, best_score_len);
/* Shift-Or like preprocessing */
assert(1 < best_score_len);
for (i=0;i < best_score_len-1;i++) {
spec0 = &chars[best_score_i + i];
spec1 = &chars[best_score_i + i + 1];
/* use overlapping little-endian 2-grams, overlapping because match can start
* at any position (including odd) */
for(k0=spec0->start;k0 <= spec0->end;k0 += spec0->step) {
for(k1=spec1->start;k1 <= spec1->end;k1 += spec1->step) {
SPEC_FOREACH(spec0, k0, spec1, k1) {
if (!cc0 && !cc1 && !i) {
detailed_dbg("filter (warning): subsignature begins with zero: %s\n",pat->virname);
}
filter_set_atpos(m, i, a);
} SPEC_END_FOR;
}
}
}
j = best_score_len - 2;
if (spec0 && spec1) {
for (k0=spec0->start;k0 <= spec0->end;k0 += spec0->step) {
for (k1=spec1->start;k1 <= spec1->end;k1 += spec1->step) {
SPEC_FOREACH(spec0, k0, spec1, k1) {
if (!cc0 && !cc1) {
detailed_dbg("filter (warning): subsignature ends with zero: %s\n",pat->virname);
}
filter_set_end(m, j, a);
} SPEC_END_FOR;
}
}
}
return j+2;
}
/* state 11110011 means that we may have a match of length min 4, max 5 */
__hot__ int filter_search_ext(const struct filter *m, const unsigned char *data, unsigned long len, struct filter_match_info *inf)
{
size_t j;
uint8_t state = ~0;
const uint8_t *B = m->B;
const uint8_t *End = m->end;
if (len < 2) return -1;
/* look for first match */
for (j=0; j < len-1;j++) {
uint8_t match_state_end;
const uint16_t q0 = cli_readint16( &data[j] );
state = (state << 1) | B[q0];
match_state_end = state | End[q0];
if (match_state_end != 0xff) {
inf->first_match = j;
return 0;
}
}
/* no match, inf is invalid */
return -1;
}
/* this is like a FSM, with multiple active states at the same time.
* each bit in "state" means an active state, when a char is encountered
* we determine what states can remain active.
* The FSM transition rules are expressed as bit-masks */
long filter_search(const struct filter *m, const unsigned char *data, unsigned long len)
{
size_t j;
uint8_t state = ~0;
const uint8_t *B = m->B;
const uint8_t *End = m->end;
/* we use 2-grams, must be higher than 1 */
if(len < 2) return -1;
/* Shift-Or like search algorithm */
for(j=0;j < len-1; j++) {
const uint16_t q0 = cli_readint16( &data[j] );
uint8_t match_end;
state = (state << 1) | B[q0];
/* state marks with a 0 bit all active states
* End[q0] marks with a 0 bit all states where the q-gram 'q' can end a pattern
* if we got two 0's at matching positions, it means we encountered a pattern's end */
match_end = state | End[q0];
if(match_end != 0xff) {
/* if state is reachable, and this character can finish a pattern, assume match */
/* to reduce false positives check if qgram can finish the pattern */
/* return position of probable match */
/* find first 0 starting from MSB, the position of that bit as counted from LSB, is the length of the
* longest pattern that could match */
return j >= MAXSOPATLEN ? j - MAXSOPATLEN : 0;
}
}
/* no match */
return -1;
}
|