1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*
$Id: bezier.cpp,v 1.2 2001/09/08 19:12:44 japj Exp $
------------------------------------------------------------------------
ClanLib, the platform independent game SDK.
This library is distributed under the GNU LIBRARY GENERAL PUBLIC LICENSE
version 2. See COPYING for details.
For a total list of contributers see CREDITS.
------------------------------------------------------------------------
*/
#include "Core/precomp.h"
#include "API/Core/Math/bezier.h"
/*
control points = p1,p2,p3,p4 whereof p1,p4 are endpoints and
p1p2,p3p4 are the respective tangent vectors. If more than one
curve is concatenated make sure that p4 - p3 = p5 - p4 if you
want C0 and C1 steadyness (sp?)
for the math freaks: the path is given by
w(t) = (1-t)^3 * P1 + 3*t*(1-t)^2 * P2 + 3*t^2*(1-t)*P3 + t^3*P4; t in [0,1]
and the length is
Lw = /int_{0}^{1} |w'(t)| dt
*/
CL_BezierCurve::CL_BezierCurve(const CL_Vector *cp, int cs, int steps, bool stepping)
{
curve = new CL_Vector[cs*steps];
this->cp = new CL_Vector[cs*4];
this->steps = steps;
this->stepping = stepping;
this->cs = cs;
for (int i=0;i<cs*4;i++)
this->cp[i] = cp[i];
make_curve();
}
CL_BezierCurve::~CL_BezierCurve()
{
delete [] curve;
delete [] cp;
}
// hey it is not the fastest code, but I'll change it to a faster algorithm
// somewhen in the future, though this is not a promise ;-)
// [ actually it is a lie :-) ]
void CL_BezierCurve::make_curve()
{
// TODO: interpret stepping
for (int n=0; n<cs; n++)
{
curve[n*steps] = cp[n*4];
float t, delta;
delta = 1.0/steps;
for (int i=1; i<steps; i++)
{
t = i*delta;
curve[n*steps+i].x =
cp[n*4+0].x * (1.0 - t) * (1.0 - t) * (1.0 - t) +
cp[n*4+1].x * 3.0 * t * (1.0 - t) * (1.0 - t) +
cp[n*4+2].x * 3.0 * t * t * (1.0 - t) +
cp[n*4+3].x * t * t * t;
curve[n*steps+i].y =
cp[n*4+0].y * (1.0 - t) * (1.0 - t) * (1.0 - t) +
cp[n*4+1].y * 3.0 * t * (1.0 - t) * (1.0 - t) +
cp[n*4+2].y * 3.0 * t * t * (1.0 - t) +
cp[n*4+3].y * t * t * t;
curve[n*steps+i].z =
cp[n*4+0].z * (1.0 - t) * (1.0 - t) * (1.0 - t) +
cp[n*4+1].z * 3.0 * t * (1.0 - t) * (1.0 - t) +
cp[n*4+2].z * 3.0 * t * t * (1.0 - t) +
cp[n*4+3].z * t * t * t;
}
}
}
float CL_BezierCurve::get_length(int segment) const
{
if (segment == -1)
{
float length = 0;
for (int i=0;i<cs;i++)
length += get_length(cs);
return length;
}
// TODO: calculate Lw for segment
return 0;
}
void CL_BezierCurve::set_steps(int steps)
{
delete [] curve;
curve = new CL_Vector[cs*steps];
this->steps = steps;
make_curve();
}
void CL_BezierCurve::set_stepping(bool stepping)
{
this->stepping = stepping;
make_curve();
}
// CL_BezierSurface
CL_BezierSurface::CL_BezierSurface(const CL_Vector *cp, int xs, int ys, int xsteps, int ysteps, bool stepping)
{
surface = new CL_Vector[xs*xsteps*ys*ysteps];
this->cp = new CL_Vector[xs*ys*16];
this->xsteps = xsteps;
this->ysteps = ysteps;
this->stepping = stepping;
this->xs = xs;
this->ys = ys;
for (int i=0;i<xs*ys*16;i++)
this->cp[i] = cp[i];
make_surface();
}
CL_BezierSurface::~CL_BezierSurface()
{
delete [] surface;
delete [] cp;
}
CL_Vector CL_BezierSurface::evaluate(float s, float t, int offset)
{
int stride = 4 * xs;
CL_Vector v;
for (int i=0; i<3; i++)
{
v[i] = (1-s)*(1-s)*(1-s)* (
cp[offset+0+0*stride][i] * (1-t)*(1-t)*(1-t) +
cp[offset+0+1*stride][i] * 3*(1-t)*(1-t)*t +
cp[offset+0+2*stride][i] * 3*(1-t)*t*t +
cp[offset+0+3*stride][i] *t*t*t) +
3*(1-s)*(1-s)*s* (
cp[offset+1+0*stride][i] * (1-t)*(1-t)*(1-t) +
cp[offset+1+1*stride][i] * 3*(1-t)*(1-t)*t +
cp[offset+1+2*stride][i] * 3*(1-t)*t*t +
cp[offset+1+3*stride][i] *t*t*t) +
3*(1-s)*s*s* (
cp[offset+2+0*stride][i] * (1-t)*(1-t)*(1-t) +
cp[offset+2+1*stride][i] * 3*(1-t)*(1-t)*t +
cp[offset+2+2*stride][i] * 3*(1-t)*t*t +
cp[offset+2+3*stride][i] *t*t*t) +
s*s*s* (
cp[offset+3+0*stride][i] * (1-t)*(1-t)*(1-t) +
cp[offset+3+1*stride][i] * 3*(1-t)*(1-t)*t +
cp[offset+3+2*stride][i] * 3*(1-t)*t*t +
cp[offset+3+3*stride][i] *t*t*t);
}
return v;
}
void CL_BezierSurface::make_surface()
{
// TODO: interpret stepping
for (int y=0; y<ys; y++)
{
for (int x=0; x<xs; x++)
{
float s,t, deltax, deltay;
deltax = 1.0/xsteps;
deltay = 1.0/ysteps;
for (int ny=0; ny<ysteps; ny++)
{
for (int nx=0; nx<xsteps; nx++)
{
s = nx * deltax;
t = ny * deltay;
surface[y*ysteps*xsteps*xs + x] = evaluate(s,t, y*16*xs + x);
}
}
}
}
}
void CL_BezierSurface::set_xsteps(int xsteps)
{
delete [] surface;
surface = new CL_Vector[xs*xsteps*ys*ysteps];
this->xsteps = xsteps;
make_surface();
}
void CL_BezierSurface::set_ysteps(int ysteps)
{
delete [] surface;
surface = new CL_Vector[xs*xsteps*ys*ysteps];
this->ysteps = ysteps;
make_surface();
}
void CL_BezierSurface::set_stepping(bool stepping)
{
this->stepping = stepping;
make_surface();
}
|