File: vector2.cpp

package info (click to toggle)
clanlib 1.0~svn3827-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 24,312 kB
  • ctags: 16,513
  • sloc: cpp: 101,606; xml: 6,410; makefile: 1,747; ansic: 463; perl: 424; php: 247; sh: 53
file content (325 lines) | stat: -rw-r--r-- 7,536 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
**  ClanLib SDK
**  Copyright (c) 1997-2005 The ClanLib Team
**
**  This software is provided 'as-is', without any express or implied
**  warranty.  In no event will the authors be held liable for any damages
**  arising from the use of this software.
**
**  Permission is granted to anyone to use this software for any purpose,
**  including commercial applications, and to alter it and redistribute it
**  freely, subject to the following restrictions:
**
**  1. The origin of this software must not be misrepresented; you must not
**     claim that you wrote the original software. If you use this software
**     in a product, an acknowledgment in the product documentation would be
**     appreciated but is not required.
**  2. Altered source versions must be plainly marked as such, and must not be
**     misrepresented as being the original software.
**  3. This notice may not be removed or altered from any source distribution.
**
**  Note: Some of the libraries ClanLib may link to may have additional
**  requirements or restrictions.
**
**  File Author(s):
**
**    Magic Software - www.magic-software.com
*/

#include "Core/precomp.h"
#include "API/Core/Math/vector2.h"
#include <math.h>
#include <float.h>

const CL_Vector2 CL_Vector2::ZERO(0.0f,0.0f);
const CL_Vector2 CL_Vector2::UNIT_X(1.0f,0.0f);
const CL_Vector2 CL_Vector2::UNIT_Y(0.0f,1.0f);
float CL_Vector2::FUZZ = 0.0f;

CL_Vector2::CL_Vector2(float fX, float fY)
{
    x = fX;
    y = fY;
}

CL_Vector2::CL_Vector2(float afCoordinate[2])
{
    x = afCoordinate[0];
    y = afCoordinate[1];
}

CL_Vector2::CL_Vector2(const CL_Vector2& rkVector)
{
    x = rkVector.x;
    y = rkVector.y;
}

CL_Vector2& CL_Vector2::operator=(const CL_Vector2& rkVector)
{
    x = rkVector.x;
    y = rkVector.y;
    return *this;
}

bool CL_Vector2::operator==(const CL_Vector2& rkVector) const
{
    if ( FUZZ == 0.0f )
        return x == rkVector.x && y == rkVector.y;
    else
        return fabs(x-rkVector.x) <= FUZZ && fabs(y-rkVector.y) <= FUZZ;
}

bool CL_Vector2::operator!=(const CL_Vector2& rkVector) const
{
    if ( FUZZ == 0.0f )
        return x != rkVector.x || y != rkVector.y;
    else
        return fabs(x-rkVector.x) > FUZZ || fabs(y-rkVector.y) > FUZZ;
}

bool CL_Vector2::operator<(const CL_Vector2& rkVector) const
{
    float fXTmp = rkVector.x, fYTmp = rkVector.y;
    if ( FUZZ > 0.0f )
    {
        if ( fabs(x - fXTmp) <= FUZZ )
            fXTmp = x;
        if ( fabs(y - fYTmp) <= FUZZ )
            fYTmp = y;
    }

    // compare y values
    unsigned int uiTest0 = *(unsigned int*)&y;
    unsigned int uiTest1 = *(unsigned int*)&fYTmp;
    if ( uiTest0 < uiTest1 )
        return true;
    if ( uiTest0 > uiTest1 )
        return false;

    // compare x values
    uiTest0 = *(unsigned int*)&x;
    uiTest1 = *(unsigned int*)&fXTmp;
    return uiTest0 < uiTest1;
}

bool CL_Vector2::operator<=(const CL_Vector2& rkVector) const
{
    float fXTmp = rkVector.x, fYTmp = rkVector.y;
    if ( FUZZ > 0.0f )
    {
        if ( fabs(x - fXTmp) <= FUZZ )
            fXTmp = x;
        if ( fabs(y - fYTmp) <= FUZZ )
            fYTmp = y;
    }

    // compare y values
    unsigned int uiTest0 = *(unsigned int*)&y;
    unsigned int uiTest1 = *(unsigned int*)&fYTmp;
    if ( uiTest0 < uiTest1 )
        return true;
    if ( uiTest0 > uiTest1 )
        return false;

    // compare x values
    uiTest0 = *(unsigned int*)&x;
    uiTest1 = *(unsigned int*)&fXTmp;
    return uiTest0 <= uiTest1;
}

bool CL_Vector2::operator>(const CL_Vector2& rkVector) const
{
    float fXTmp = rkVector.x, fYTmp = rkVector.y;
    if ( FUZZ > 0.0f )
    {
        if ( fabs(x - fXTmp) <= FUZZ )
            fXTmp = x;
        if ( fabs(y - fYTmp) <= FUZZ )
            fYTmp = y;
    }

    // compare y values
    unsigned int uiTest0 = *(unsigned int*)&y;
    unsigned int uiTest1 = *(unsigned int*)&fYTmp;
    if ( uiTest0 > uiTest1 )
        return true;
    if ( uiTest0 < uiTest1 )
        return false;

    // compare x values
    uiTest0 = *(unsigned int*)&x;
    uiTest1 = *(unsigned int*)&fXTmp;
    return uiTest0 > uiTest1;
}

bool CL_Vector2::operator>=(const CL_Vector2& rkVector) const
{
    float fXTmp = rkVector.x, fYTmp = rkVector.y;
    if ( FUZZ > 0.0f )
    {
        if ( fabs(x - fXTmp) <= FUZZ )
            fXTmp = x;
        if ( fabs(y - fYTmp) <= FUZZ )
            fYTmp = y;
    }

    // compare y values
    unsigned int uiTest0 = *(unsigned int*)&y;
    unsigned int uiTest1 = *(unsigned int*)&fYTmp;
    if ( uiTest0 > uiTest1 )
        return true;
    if ( uiTest0 < uiTest1 )
        return false;

    // compare x values
    uiTest0 = *(unsigned int*)&x;
    uiTest1 = *(unsigned int*)&fXTmp;
    return uiTest0 >= uiTest1;
}

CL_Vector2 CL_Vector2::operator+(const CL_Vector2& rkVector) const
{
    return CL_Vector2(x+rkVector.x,y+rkVector.y);
}

CL_Vector2 CL_Vector2::operator-(const CL_Vector2& rkVector) const
{
    return CL_Vector2(x-rkVector.x,y-rkVector.y);
}

CL_Vector2 CL_Vector2::operator*(float fScalar) const
{
    return CL_Vector2(fScalar*x,fScalar*y);
}

CL_Vector2 CL_Vector2::operator-() const
{
    return CL_Vector2(-x,-y);
}

/*
CL_Vector2 Mgc::operator* (float fScalar, const CL_Vector2& rkVector)
{
    return CL_Vector2(fScalar*rkVector.x,fScalar*rkVector.y);
}
*/
CL_Vector2 CL_Vector2::operator/(float fScalar) const
{
    CL_Vector2 kQuot;

    if ( fScalar != 0.0f )
    {
        float fInvScalar = 1.0f/fScalar;
        kQuot.x = fInvScalar*x;
        kQuot.y = fInvScalar*y;
        return kQuot;
    }
    else
    {
        return CL_Vector2(FLT_MAX,FLT_MAX);
    }
}

CL_Vector2& CL_Vector2::operator+=(const CL_Vector2& rkVector)
{
    x += rkVector.x;
    y += rkVector.y;
    return *this;
}

CL_Vector2& CL_Vector2::operator-=(const CL_Vector2& rkVector)
{
    x -= rkVector.x;
    y -= rkVector.y;
    return *this;
}

CL_Vector2& CL_Vector2::operator*=(float fScalar)
{
    x *= fScalar;
    y *= fScalar;
    return *this;
}

CL_Vector2& CL_Vector2::operator/=(float fScalar)
{
    if ( fScalar != 0.0f )
    {
        float fInvScalar = 1.0f/fScalar;
        x *= fInvScalar;
        y *= fInvScalar;
    }
    else
    {
        x = FLT_MAX;
        y = FLT_MAX;
    }

    return *this;
}

float CL_Vector2::dot(const CL_Vector2& rkVector) const
{
    return x*rkVector.x + y*rkVector.y;
}

float CL_Vector2::length() const
{
#ifdef __APPLE__
    return sqrt(x*x +y*y);
#else
    return sqrtf(x*x +y*y);
#endif
}

CL_Vector2 CL_Vector2::cross() const
{
    return CL_Vector2(y,-x);
}

CL_Vector2 CL_Vector2::unit_cross() const
{
    CL_Vector2 kCross(y,-x);
    kCross.unitize();
    return kCross;
}

float CL_Vector2::unitize(float fTolerance)
{
    float fLength = length();

    if ( fLength > fTolerance )
    {
        float fInvLength = 1.0f/fLength;
        x *= fInvLength;
        y *= fInvLength;
    }
    else
    {
        fLength = 0.0f;
    }

    return fLength;
}

/*
void CL_Vector2::Orthonormalize (CL_Vector2 akVector[2])	// CL_Vector2 akVector[2]
{
    // If the input vectors are v0 and v1, then the Gram-Schmidt
    // orthonormalization produces vectors u0 and u1 as follows,
    //
    //   u0 = v0/|v0|
    //   u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
    //
    // where |A| indicates length of vector A and A*B indicates dot
    // product of vectors A and B.

    // compute u0
    akVector[0].Unitize();

    // compute u1
    float fDot0 = akVector[0].Dot(akVector[1]); 
    akVector[1] -= fDot0*akVector[0];
    akVector[1].Unitize();
}
*/