1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*
** ClanLib SDK
** Copyright (c) 1997-2005 The ClanLib Team
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
** Note: Some of the libraries ClanLib may link to may have additional
** requirements or restrictions.
**
** File Author(s):
**
** Magnus Norddahl
** (if your name is missing here, please add it)
*/
#include "Core/precomp.h"
#include <cmath>
#include "API/Core/Math/line_math.h"
template<typename T> inline T pow2(T value) { return value*value; }
template<typename T> inline T cl_min(T a, T b) { if(a < b) return a; return b; }
template<typename T> inline T cl_max(T a, T b) { if(a > b) return a; return b; }
/* ----- from comp.graphics.algorithms FAQ ------
Distance to line (Ax,Ay->Bx,By) from point x,y
L = sqrt( (Bx-Ax)^2 + (By-Ay)^2 )
(Cx-Ax)(Bx-Ax) + (Cy-Ay)(By-Ay)
r = -------------------------------
L^2
*/
float CL_LineMath::distance_to_line(const CL_Pointf &P, float *line)
{
return distance_to_line( P.x, P.y, line );
}
float CL_LineMath::distance_to_line(float x, float y, float *line)
{
const float &Ax = line[0];
const float &Ay = line[1];
const float &Bx = line[2];
const float &By = line[3];
float L = sqrt( pow2(Bx-Ax) + pow2(By-Ay) );
float r = ((x-Ax)*(Bx-Ax)+(y-Ay)*(By-Ay))/pow2(L);
if( r <= 0 || r >= 1 )
{
CL_Pointf p(x,y);
CL_Pointf A(Ax,Ay);
CL_Pointf B(Bx,By);
return cl_min( p.distance(A), p.distance(B) );
}
float s = ((Ay-y)*(Bx-Ax)-(Ax-x)*(By-Ay)) / pow2(L);
return fabs(s)*L;
}
// Collinear points are points that all lie on the same line.
bool CL_LineMath::collinear( float *lineA, float *lineB )
{
const float &Ax = lineA[0];
const float &Ay = lineA[1];
const float &Bx = lineA[2];
const float &By = lineA[3];
const float &Cx = lineB[0];
const float &Cy = lineB[1];
const float &Dx = lineB[2];
const float &Dy = lineB[3];
float denominator = ((Bx-Ax)*(Dy-Cy)-(By-Ay)*(Dx-Cx));
float numerator = ((Ay-Cy)*(Dx-Cx)-(Ax-Cx)*(Dy-Cy));
if( denominator == 0 && numerator == 0 )
return true;
return false;
}
float CL_LineMath::point_right_of_line( float x, float y, float *line )
{
const float &Ax = line[0];
const float &Ay = line[1];
const float &Bx = line[2];
const float &By = line[3];
return (Bx-Ax) * (y-Ay) - (x-Ax) * (By-Ay);
}
float CL_LineMath::point_right_of_line(float x, float y, float Ax, float Ay, float Bx, float By)
{
return (Bx-Ax) * (y-Ay) - (x-Ax) * (By-Ay);
}
float CL_LineMath::point_right_of_line( const CL_Pointf &A, const CL_Pointf &B, const CL_Pointf &P )
{
return (B.x-A.x) * (P.y-A.y) - (P.x-A.x) * (B.y-A.y);
}
/* From comp.graphics.algorithms FAQ
+---------------------------------------+
Let A,B,C,D be 2-space position vectors. Then the directed line
segments AB & CD are given by:
AB=A+r(B-A), r in [0,1]
CD=C+s(D-C), s in [0,1]
If AB & CD intersect, then
A+r(B-A)=C+s(D-C), or
Ax+r(Bx-Ax)=Cx+s(Dx-Cx)
Ay+r(By-Ay)=Cy+s(Dy-Cy) for some r,s in [0,1]
Solving the above for r and s yields
(Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy)
r = ----------------------------- (eqn 1)
(Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = ----------------------------- (eqn 2)
(Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
Let P be the position vector of the intersection point, then
P=A+r(B-A) or
Px=Ax+r(Bx-Ax)
Py=Ay+r(By-Ay)
*/
CL_Pointf CL_LineMath::get_intersection( float *lineA, float *lineB )
{
const float &Ax = lineA[0];
const float &Ay = lineA[1];
const float &Bx = lineA[2];
const float &By = lineA[3];
const float &Cx = lineB[0];
const float &Cy = lineB[1];
const float &Dx = lineB[2];
const float &Dy = lineB[3];
float denominator = ((Bx-Ax)*(Dy-Cy)-(By-Ay)*(Dx-Cx));
if( denominator == 0 )
return CL_Pointf(Ax,Ay);
float r = ((Ay-Cy)*(Dx-Cx)-(Ax-Cx)*(Dy-Cy)) / denominator;
CL_Pointf P;
P.x=Ax+r*(Bx-Ax);
P.y=Ay+r*(By-Ay);
return P;
}
/*
---- from comp.graphics.algorithms FAQ ----
By examining the values of r & s, you can also determine some
other limiting conditions:
If 0<=r<=1 & 0<=s<=1, intersection exists
r<0 or r>1 or s<0 or s>1 line segments do not intersect
If the denominator in eqn 1 is zero, AB & CD are parallel
If the numerator in eqn 1 is also zero, AB & CD are collinear.
*/
bool CL_LineMath::intersects(
float *lineA,
float *lineB,
bool collinear_intersect )
{
const float &Ax = lineA[0];
const float &Ay = lineA[1];
const float &Bx = lineA[2];
const float &By = lineA[3];
const float &Cx = lineB[0];
const float &Cy = lineB[1];
const float &Dx = lineB[2];
const float &Dy = lineB[3];
float denominator = ((Bx-Ax)*(Dy-Cy)-(By-Ay)*(Dx-Cx));
if( denominator == 0.0f ) // parallell
{
if( (Ay-Cy)*(Dx-Cx)-(Ax-Cx)*(Dy-Cy) == 0.0f ) // collinear
{
if( collinear_intersect )
return true;
else
return false;
}
return false;
}
float r = ((Ay-Cy)*(Dx-Cx)-(Ax-Cx)*(Dy-Cy)) / denominator;
float s = ((Ay-Cy)*(Bx-Ax)-(Ax-Cx)*(By-Ay)) / denominator;
// We use the open interval [0;1) or (0;1] depending on the direction of CD
if(Cy < Dy)
{
if( (s >= 0.0f && s < 1.0f) && (r >= 0.0f && r <= 1.0f) )
return true;
}
else
{
if( (s > 0.0f && s <= 1.0f) && (r >= 0.0f && r <= 1.0f) )
return true;
}
return false;
}
// return the midpoint on the line from A to B
CL_Pointf CL_LineMath::midpoint( const CL_Pointf &A, const CL_Pointf &B )
{
return CL_Pointf( (A.x+B.x)/2.0f, (A.y+B.y)/2.0f );
}
// return the normal vector of the line
CL_Pointf CL_LineMath::normal( const CL_Pointf &A, const CL_Pointf &B )
{
return CL_LineMath::normal(A.x, A.y, B.x, B.y);
}
CL_Pointf CL_LineMath::normal( float x1, float y1, float x2, float y2 )
{
CL_Pointf N;
N.x = -1 * (y2-y1);
N.y = x2-x1;
float len = sqrt(N.x*N.x + N.y*N.y);
N.x /= len;
N.y /= len;
return N;
}
CL_Pointf CL_LineMath::normal( float *line )
{
CL_Pointf N;
N.x = -1 * (line[3]-line[1]);
N.y = line[2]-line[0];
float len = sqrt(N.x*N.x + N.y*N.y);
N.x /= len;
N.y /= len;
return N;
}
|