File: pointset_math.cpp

package info (click to toggle)
clanlib 1.0~svn3827-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 24,696 kB
  • sloc: cpp: 101,591; xml: 6,410; makefile: 1,742; ansic: 463; perl: 424; php: 247; sh: 53
file content (254 lines) | stat: -rw-r--r-- 7,459 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
**  ClanLib SDK
**  Copyright (c) 1997-2005 The ClanLib Team
**
**  This software is provided 'as-is', without any express or implied
**  warranty.  In no event will the authors be held liable for any damages
**  arising from the use of this software.
**
**  Permission is granted to anyone to use this software for any purpose,
**  including commercial applications, and to alter it and redistribute it
**  freely, subject to the following restrictions:
**
**  1. The origin of this software must not be misrepresented; you must not
**     claim that you wrote the original software. If you use this software
**     in a product, an acknowledgment in the product documentation would be
**     appreciated but is not required.
**  2. Altered source versions must be plainly marked as such, and must not be
**     misrepresented as being the original software.
**  3. This notice may not be removed or altered from any source distribution.
**
**  Note: Some of the libraries ClanLib may link to may have additional
**  requirements or restrictions.
**
**  File Author(s):
**
**    Emanuel Greisen
**    (if your name is missing here, please add it)
*/

#include "Core/precomp.h"
#include <cmath>

#include "API/Core/Math/pointset_math.h"
#include "API/Core/Math/circle.h"
#include "API/Core/Math/line_math.h"
#include "API/Core/Math/point.h"


CL_Circlef CL_PointSetMath::minimum_enclosing_disc( const std::vector<CL_Pointf> &points )
{
	CL_Circlef smalldisc;

	if(points.size() == 0)
	{
		// ERROR !!!!
		smalldisc.position = CL_Pointf(0.0f, 0.0f);
		smalldisc.radius = 0.0;
	}
	else if(points.size() == 1)
	{
		smalldisc.position = points[0];
		smalldisc.radius = 0.0;
	}
	else
	{
		int start = 0;
		int end = points.size() - 1;
		//TODO: random permutation of the vector...

		// Calculate the disc
		calculate_minimum_enclosing_disc(smalldisc, points, start, end);
	}

	return smalldisc;
}

void CL_PointSetMath::calculate_minimum_enclosing_disc(
	CL_Circlef &smalldisc,
	const std::vector<CL_Pointf> &points,
	int start, int end)
{
	// Get first disc (between the first two points)
	smalldisc.position = CL_LineMath::midpoint(points[start], points[start+1]);
	smalldisc.radius   = points[start].distance(points[start+1]) / 2.0;

	// Now start the loop
	for(int i = start+2; i <= end; i++)
	{
		// only enlargen the circle if points[i] is not already contained
		if(smalldisc.position.distance(points[i]) > smalldisc.radius)
		{
			minimum_disc_with_1point(smalldisc, points, start, i);
		}
	}
}


void CL_PointSetMath::minimum_disc_with_1point(
	CL_Circlef &smalldisc,
	const std::vector<CL_Pointf> &points,
	int start,
	unsigned int i)
{
	// Get first disc (between the first point and `points[i]`)
	smalldisc.position = CL_LineMath::midpoint(points[start], points[i]);
	smalldisc.radius   = points[start].distance(points[i]) / 2.0;
	
	for(unsigned int j = start+1; j < i; j++)
	{
		// only enlargen the circle if points[i] is not already contained
		if(smalldisc.position.distance(points[j]) > smalldisc.radius)
		{
			minimum_disc_with_2points(smalldisc, points, start, i, j);
		}
	}
}


void CL_PointSetMath::minimum_disc_with_2points(
	CL_Circlef &smalldisc,
	const std::vector<CL_Pointf> &points,
	int start,
	unsigned int i,
	unsigned int j)
{
	// Get first disc (between `points[i]` and `points[j]`)
	smalldisc.position = CL_LineMath::midpoint(points[i], points[j]);
	smalldisc.radius   = points[i].distance(points[j]) / 2.0;

	for(unsigned int k = start; k < j; k++)
	{
		if(k == i || k == j)
			continue;
		
		// only enlargen the circle if points[i] is not already contained
		if(smalldisc.position.distance(points[k]) > smalldisc.radius)
		{
			minimum_disc_with_3points(smalldisc, points, i, j, k);
		}
	}
}

void CL_PointSetMath::minimum_disc_with_3points(
	CL_Circlef &smalldisc,
	const std::vector<CL_Pointf> &points,
	unsigned int i,
	unsigned int j,
	unsigned int k)
{
	// There is only one circle with all three points on its boundary.

	// Find center:
	// http://astronomy.swin.edu.au/~pbourke/geometry/circlefrom3/
	// 
	CL_Pointf ji_mid  = CL_LineMath::midpoint(points[i],points[j]);
	CL_Pointf ji_norm = ji_mid + CL_Pointf(points[i].y - ji_mid.y, -(points[i].x - ji_mid.x));
	CL_Pointf ki_mid  = CL_LineMath::midpoint(points[k],points[i]);
	CL_Pointf ki_norm = ki_mid + CL_Pointf(points[k].y - ki_mid.y, -(points[k].x - ki_mid.x));

	float lineA[4] = {ji_mid.x, ji_mid.y, ji_norm.x, ji_norm.y };
	float lineB[4] = {ki_mid.x, ki_mid.y, ki_norm.x, ki_norm.y };

	smalldisc.position = CL_LineMath::get_intersection( lineA, lineB );

	// Since (i,j,k) are all on the circle, just get distance to one of them
	smalldisc.radius = smalldisc.position.distance(points[i]);
}




// Descending date sorting function
struct PointAngleSorter
{
	CL_Pointf basepoint;
	PointAngleSorter(const CL_Pointf &p) : basepoint(p){};
	
	bool operator()(const CL_Pointf &p1, const CL_Pointf &p2)
	{
		return atan2(basepoint.x - p1.x, basepoint.y - p1.y) < atan2(basepoint.x - p2.x, basepoint.y - p2.y);
	}
};


/**
 * OPTIMIZE: we could make it only work in the "points"-vector, instead of returning
 *           the resulting convex hull. That would save memory, and such.
 */
std::vector<CL_Pointf> CL_PointSetMath::convex_hull_from_polygon(std::vector<CL_Pointf> &points)
{
	// First we find the point with the lowest x-value (left most point, must be on the convex hull)
	unsigned int leftpoint = 0;
	unsigned int rightpoint = 0;
	unsigned int i;
	for(i = 1; i < points.size(); i++)
	{
		if((points[leftpoint].x == points[i].x && points[i].y > points[leftpoint].y)
			 || (points[i].x < points[leftpoint].x))
		{
			leftpoint = i;
		}
		if((points[rightpoint].x == points[i].x && points[i].y < points[rightpoint].y)
			 || (points[i].x > points[rightpoint].x))
		{
			rightpoint = i;
		}
	}
	
	// init our convex hull
	std::vector<CL_Pointf> hull;
	hull.clear();
	hull.push_back(points[leftpoint]);

	// Keep track of the right end-point
	CL_Pointf rightp(points[rightpoint]);
	CL_Pointf leftp(points[leftpoint]);
	
	// Now we start at the left point, and walk down to generate
	// the lower half of the convex hull
	i = (leftpoint+1) % points.size();
	for(; i != rightpoint; i = (i+1) % points.size())
	{
		// Only insert the point if it is on the convex hull
		if(CL_LineMath::point_right_of_line(hull.back(), points[i], rightp) < 0.0f)
		{
			hull.push_back(points[i]);
			
			// remove any left-turns behind us
			while(hull.size() > 2 &&
				CL_LineMath::point_right_of_line(hull[hull.size()-3], hull[hull.size()-2], hull[hull.size()-1]) >= 0.0f)
			{
				// Erase the second backmost point
				hull[hull.size()-2] = hull[hull.size()-1];
				hull.pop_back();
			}
		}
	}

	// Add the right-point (it's on the convex hull for sure)
	hull.push_back(points[rightpoint]);

	// Now we start at the right point, and walk up to generate
	// the upper half of the convex hull
	i = (rightpoint+1) % points.size();
	for(; i != leftpoint; i = (i+1) % points.size())
	{
		// Only insert the point if it is on the convex hull
		if(CL_LineMath::point_right_of_line(hull.back(), points[i], leftp) < 0.0f)
		{
			hull.push_back(points[i]);
			
			// remove any left-turns behind us
			while(hull.size() > 2 &&
				CL_LineMath::point_right_of_line(hull[hull.size()-3], hull[hull.size()-2], hull[hull.size()-1]) >= 0.0f)
			{
				// Erase the second backmost point
				hull[hull.size()-2] = hull[hull.size()-1];
				hull.pop_back();
			}
		}
	}

	return hull;
}