File: collision_outline_generic.cpp

package info (click to toggle)
clanlib 1.0~svn3827-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 24,696 kB
  • sloc: cpp: 101,591; xml: 6,410; makefile: 1,742; ansic: 463; perl: 424; php: 247; sh: 53
file content (885 lines) | stat: -rw-r--r-- 26,495 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/*
**  ClanLib SDK
**  Copyright (c) 1997-2005 The ClanLib Team
**
**  This software is provided 'as-is', without any express or implied
**  warranty.  In no event will the authors be held liable for any damages
**  arising from the use of this software.
**
**  Permission is granted to anyone to use this software for any purpose,
**  including commercial applications, and to alter it and redistribute it
**  freely, subject to the following restrictions:
**
**  1. The origin of this software must not be misrepresented; you must not
**     claim that you wrote the original software. If you use this software
**     in a product, an acknowledgment in the product documentation would be
**     appreciated but is not required.
**  2. Altered source versions must be plainly marked as such, and must not be
**     misrepresented as being the original software.
**  3. This notice may not be removed or altered from any source distribution.
**
**  Note: Some of the libraries ClanLib may link to may have additional
**  requirements or restrictions.
**
**  File Author(s):
**
**    Harry Storbacka
**    Magnus Norddahl
**    James Wynn
**    Emanuel Greisen
**    (if your name is missing here, please add it)
*/

#include "Display/display_precomp.h"
#include "API/Core/IOData/outputsource.h"
#include "API/Core/IOData/outputsource_provider.h"
#include "collision_outline_generic.h"
#include "API/Display/Collision/collision_outline.h"
#include "API/Display/Collision/outline_provider.h"
#include "API/Display/Collision/outline_accuracy.h"
#include "API/Display/Collision/outline_math.h"
#include "API/Core/Math/line_math.h"
#include "API/Core/Math/circle.h"
#include "API/Core/Math/pointset_math.h"
#include "API/Core/Math/cl_vector.h"
#include "API/Core/Math/vector2.h"
#include "API/Core/IOData/outputsource_file.h"
#include "API/Core/System/log.h"
#include <float.h>

template<typename T> inline T cl_min(T a, T b) { if(a < b) return a; return b; }
template<typename T> inline T cl_max(T a, T b) { if(a > b) return a; return b; }
template<typename T> inline T pow2(T a) { return a*a; }

/////////////////////////////////////////////////////////////////////////////
// Construction:

CL_CollisionOutline_Generic::CL_CollisionOutline_Generic()
:
	do_inside_test(false),
	width(0), height(0),
	angle(0),
//	radius(0),
	minimum_enclosing_disc(0.0f,0.0f,0.0f),
	position(0,0),
	scale_factor(1,1),
	translation_offset(0,0),
	translation_origin(origin_top_left),
	rotation_hotspot(0,0),
	rotation_origin(origin_center),
	collision_info_points(false),
	collision_info_normals(false),
	collision_info_meta(false),
	collision_info_pen_depth(false),
	collision_info_collect(false)
{
	return;
}

CL_CollisionOutline_Generic::CL_CollisionOutline_Generic(
	CL_OutlineProvider *provider,
	CL_OutlineAccuracy accuracy )
:
	do_inside_test(false),
	width(0), height(0),
	angle(0),
//	radius(0),
	minimum_enclosing_disc(0.0f,0.0f,0.0f),
	position(0,0),
	scale_factor(1,1),
	translation_offset(0,0),
	translation_origin(origin_top_left),
	rotation_hotspot(0,0),
	rotation_origin(origin_center),
	collision_info_points(false),
	collision_info_normals(false),
	collision_info_meta(false),
	collision_info_pen_depth(false),
	collision_info_collect(false)
{
	contours = provider->get_contours();
	width = provider->get_width();
	height = provider->get_height();
	//TODO: minimum_enclosing_disc = provider->get_minimum_enclosing_disc();

	delete provider;

	int check_distance = 3;

	switch( accuracy )
	{
	 case accuracy_high:
		optimize(check_distance, float(M_PI/7.0f));
		break;
	 case accuracy_medium:
		optimize(check_distance, float(M_PI/6.0f));
		break;
	 case accuracy_low:
		optimize(check_distance, float(M_PI/5.0f));
		break;
	 case accuracy_poor:
		optimize(check_distance, float(M_PI/4.0f));
		break;
	 case accuracy_raw:
		break;
	default:
		break;
	}
	
	calculate_radius();
	calculate_sub_circles();
}


CL_CollisionOutline_Generic::~CL_CollisionOutline_Generic()
{
}

/////////////////////////////////////////////////////////////////////////////
// Operations:

void CL_CollisionOutline_Generic::set_translation(float x, float y, bool offset_points)
{
	CL_Pointf old_position = position;

	if( !offset_points )
	{
		position.x = x;
		position.y = y;
	}

	CL_Pointf translation;

	if( offset_points )
	{
		translation.x = x;
		translation.y = y;
	}
	else
		translation = (position - old_position);

	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_Pointf>::iterator ita;
		for( ita = (*it).points.begin(); ita != (*it).points.end(); ++ita )
			(*ita) += translation;
	}

	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_OutlineCircle>::iterator ita;
		for( ita = (*it).sub_circles.begin(); ita != (*it).sub_circles.end(); ++ita )
		{
			(*ita).position += translation;
		}
	}

	minimum_enclosing_disc.position += translation;
}

void CL_CollisionOutline_Generic::rotate(float add_angle)
{
	angle += add_angle;

	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_Pointf>::iterator ita;
		for( ita = (*it).points.begin(); ita != (*it).points.end(); ++ita )
		{
			(*ita) = (*ita).rotate(position+rotation_hotspot, add_angle);
		}
	}

	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_OutlineCircle>::iterator ita;
		for( ita = (*it).sub_circles.begin(); ita != (*it).sub_circles.end(); ++ita )
		{
			(*ita).position = (*ita).position.rotate(position+rotation_hotspot, add_angle);
		}
	}

	// Rotate our "radius" too
	minimum_enclosing_disc.position = minimum_enclosing_disc.position.rotate(position+rotation_hotspot, add_angle);
}

void CL_CollisionOutline_Generic::set_angle(float angle)
{
	float rotate_angle = angle - this->angle;
	this->angle = angle;

	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_Pointf>::iterator ita;
		for( ita = (*it).points.begin(); ita != (*it).points.end(); ++ita )
		{
			(*ita) = (*ita).rotate(position+rotation_hotspot, rotate_angle);
		}
	}

	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_OutlineCircle>::iterator ita;
		for( ita = (*it).sub_circles.begin(); ita != (*it).sub_circles.end(); ++ita )
		{	
			(*ita).position = (*ita).position.rotate(position+rotation_hotspot, rotate_angle);
		}
	}

	// Rotate our "radius" too
	minimum_enclosing_disc.position = minimum_enclosing_disc.position.rotate(position+rotation_hotspot, rotate_angle);
	
}

void CL_CollisionOutline_Generic::set_scale(float new_scale_x, float new_scale_y)
{
	if( scale_factor.x == new_scale_x && scale_factor.y == new_scale_y )
		return;

	if (new_scale_x == 0 || new_scale_y == 0)
		return;

	float scale_x = new_scale_x / scale_factor.x;
	float scale_y = new_scale_y / scale_factor.y;
	
	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_Pointf>::iterator ita;
		for( ita = (*it).points.begin(); ita != (*it).points.end(); ++ita )
		{
			(*ita).x = position.x + (((*ita).x-position.x)*scale_x);
			(*ita).y = position.y + (((*ita).y-position.y)*scale_y);
		}
	}
	
	// we can skip this recalculation (if its a unit-scale)
	if(new_scale_x == new_scale_y)
	{
		minimum_enclosing_disc.position.x = position.x + ((minimum_enclosing_disc.position.x-position.x)*scale_x);
		minimum_enclosing_disc.position.y = position.y + ((minimum_enclosing_disc.position.y-position.y)*scale_y);
		minimum_enclosing_disc.radius *= (new_scale_x/scale_factor.x);

		// TODO: we should be able to scale these too (if 
		calculate_sub_circles();
	}
	else
	{
		calculate_sub_circles();
		calculate_radius();
	}

	scale_factor.x = new_scale_x;
	scale_factor.y = new_scale_y;
}


void CL_CollisionOutline_Generic::calculate_radius()
{
	std::vector<CL_Pointf> allpoints;
	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		for(std::vector<CL_Pointf>::const_iterator pit = (*it).points.begin(); pit != (*it).points.end(); pit++)
		{
			allpoints.push_back(*pit);
		}
	}
	minimum_enclosing_disc = CL_PointSetMath::minimum_enclosing_disc(allpoints);
	minimum_enclosing_disc.radius += 0.01f; // Just to make sure.
}

void CL_CollisionOutline_Generic::calculate_sub_circles(float radius_multiplier)
{
	/*
	 * The new way of doing it, is as follows:
	 * [Outer loop: for all contours]
	 *    - Estimate a subcircle-radius: Average of line-segment-lengths * 3.5 (maybe this should be a parameter ?)
	 *   [Loop: for all points]
	 *    - Create a subcircle for the next two points (this gives a center and a radius)
	 *      [Inner loop: as long as we have more points]
	 *        - Add the next point: maybe expand the radius, and change the center
	 *        - [if: (radius > avg-radius && more than two more points exist)]
	 *          - Break inner loop !
	 *    - Add the subcircle to the list
	**/
	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		(*it).sub_circles.clear();

		const std::vector<CL_Pointf> &points = (*it).points;
		// Test that we have at least 2 points
		if(points.size() < 2)
		{
			CL_Log::log("ClanCollision", "Error: contour has less than 2 points");
			continue;
		}

		// sub_radius = average of line lenghts in the contour * 3.5
		float sub_radius = 0.0f;
		for( unsigned int j=0; j < points.size(); ++j )
		{
			int j2 = (j+1) % points.size();
			sub_radius += (points[j].distance(points[j2]));
		}
		sub_radius /= points.size();
		sub_radius *= radius_multiplier;

		unsigned int i=0;
		while(i < points.size())
		{
			// Create a circle from the first two points
			CL_OutlineCircle circle;
			circle.start = i;    // i denotes the index of the beginning
			circle.end   = i+1;  // (i+1) denotes the index of the end: and it loops
			CL_OutlineMath::minimum_enclosing_sub_circle(circle,points,sub_radius);
			circle.radius += 0.01f; // Just to make sure.
			
			// Add the circle
			(*it).sub_circles.push_back(circle);

			// update i for next circle
			i = circle.end;
		}
	}
}

void CL_CollisionOutline_Generic::calculate_smallest_enclosing_discs()
{	
	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		(*it).sub_circles.clear();
		CL_Circlef tmpdisc = CL_PointSetMath::minimum_enclosing_disc((*it).points);
		CL_OutlineCircle mindisc;
		mindisc.position = tmpdisc.position;
		mindisc.radius = (float)tmpdisc.radius;
		mindisc.radius += 0.01f; // Just to make sure.
		mindisc.start = 0;
		mindisc.end   = (*it).points.size(); // This is actualy the first point, but this is how to start and end the same place
		(*it).sub_circles.push_back(mindisc);
	}
}

void CL_CollisionOutline_Generic::calculate_convex_hulls()
{
	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		(*it).points = CL_PointSetMath::convex_hull_from_polygon((*it).points);
	}
	// We use smallest enclosing discs,
	// since that gives great results with a convex shapes.
	calculate_smallest_enclosing_discs();
}

void CL_CollisionOutline_Generic::optimize(unsigned char check_distance, float corner_angle)
{
	unsigned char orig_check_distance = check_distance;

	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		check_distance = orig_check_distance;

		std::vector<CL_Pointf> &points = (*it).points;

		if( points.empty() ) continue;

		std::vector<CL_Pointf> optimized;

		optimized.push_back(points.front());

		if( static_cast<int>(points.size()) < check_distance )
			check_distance = 1;

		for( unsigned int i=0; i < points.size()-check_distance; ++i )
		{
			int A_index = i-check_distance;
			int B_index = i+check_distance;

			if( A_index < 0 )
			{
				if( points.front() == points.back() )
					A_index += points.size();
				else
					A_index = 0;
			}
			if( B_index > (int)points.size() )
			{
				if( points.front() == points.back() )
					B_index -= points.size();
				else
					B_index = (int)points.size();
			}

			CL_Pointf &A = optimized.back();
			CL_Pointf &B = points[i];
			CL_Pointf &C = points[B_index];

			CL_Vector AB(B.x-A.x, B.y-A.y);
			CL_Vector BC(C.x-B.x, C.y-B.y);

			if( check_distance != 1 && AB.norm() < 2 )
				continue;

			float angle = AB.angle(BC);
			
			if( angle > corner_angle )
			{
				optimized.push_back(points[i]);
			}
		}

		points = optimized;
	}
}

void CL_CollisionOutline_Generic::save(const std::string &filename, CL_OutputSourceProvider *provider) const
{
/*	fileformat:

	uint32  type        // file type identifier	
	uint8   version     // file version	
	uint32  width       // width of the outline
	uint32  height      // height of the outline
	float32 x-pos       // of enclosing disc
	float32 y-pos       // of enclosing disc
	float32 radius      // of enclosing disc

	uint32 num_contours
		uint32 num_points contour 1
			float32 px1
			float32 py1
			float32 px2
			float32 py2
			... contour 1 data ...
		uint32 num_points contour 2
			... contour 2 data ...
		uint32 num_points contour N
			... contour N data ...
*/

/*	if( provider == 0 )
		provider = new CL_OutputSourceProvider::open_source(".");
	else
		provider = _provider->clone();
*/

	CL_OutputSource *output_source = new CL_OutputSource_File(filename); // provider->open_source(filename);

	// file type identifyer
	output_source->write_uint32( 0x16082004 );

	// fileformat version
	output_source->write_uint8(1);

	// width
	output_source->write_int32(width);

	// height
	output_source->write_int32(height);

	// x-pos of enclosing disc
	output_source->write_float32(minimum_enclosing_disc.position.x);
	// y-pos of enclosing disc
	output_source->write_float32(minimum_enclosing_disc.position.y);
	// radius of enclosing disc
	output_source->write_float32(float(minimum_enclosing_disc.radius));
	
	// number of contours
	output_source->write_uint32(contours.size());
	
	std::vector<CL_Contour>::const_iterator it_cont;
	for( it_cont = contours.begin(); it_cont != contours.end(); ++it_cont )
	{
		// number of points in contours
		output_source->write_uint32((*it_cont).points.size());
		
		std::vector<CL_Pointf>::const_iterator it;
		for( it = (*it_cont).points.begin(); it != (*it_cont).points.end(); ++it )
		{
			// x,y of points
			output_source->write_float32((*it).x);
			output_source->write_float32((*it).y);
		}
	}

	output_source->close();

	delete output_source;
}


bool CL_CollisionOutline_Generic::collide( const CL_CollisionOutline &outline, bool remove_old_collision_info)
{
	if( collision_info_collect && remove_old_collision_info )
	{
		collision_info.clear();
	}

	// bounding circle test.
	float dist = minimum_enclosing_disc.position.distance(outline.get_minimum_enclosing_disc().position);
	
	if( dist > (minimum_enclosing_disc.radius + outline.get_minimum_enclosing_disc().radius ))
		return false;


	bool any_collisions = false;
	// collision sub circle test
	std::vector<CL_Contour>::const_iterator it_contours, it_contours2;
	for( it_contours = contours.begin(); it_contours != contours.end(); ++it_contours )
	{
		for( it_contours2 = outline.get_contours().begin();
			 it_contours2 != outline.get_contours().end();
			 ++it_contours2 )
		{
			if( contours_collide( (*it_contours), (*it_contours2) ) )
			{
				if( collision_info_collect == false ) 
					return true; // don't return info about all line intersections
				any_collisions = true;
			}
			else if( do_inside_test || outline.get_inside_test() )
			{
				if( point_inside_contour((*it_contours).points[0], (*it_contours2)))
				{
					if( collision_info_collect )
					{
						// Add this info to the
						collision_info.push_back(CL_CollidingContours(&(*it_contours), &(*it_contours2), true));
					}
					else
					{
						return true; // don't return info about the collision
					}
					any_collisions = true;
				}
				if(point_inside_contour((*it_contours2).points[0], (*it_contours)) )
				{
					if( collision_info_collect )
					{
						// Add this info to the
						collision_info.push_back(CL_CollidingContours(&(*it_contours2), &(*it_contours), true));
					}
					else
					{
						return true; // don't return info about the collision
					}
					any_collisions = true;
				}
			}
		}
	}

	// Should we calculate the penetration depth
	if( !collision_info.empty() && collision_info_pen_depth && remove_old_collision_info)
	{
		// We only do this, if we have any info and if is new collision-info.
		calculate_penetration_depth(collision_info);
	}
	
	return any_collisions;
}


bool CL_CollisionOutline_Generic::point_inside( const CL_Pointf &point ) const
{
	float dist = minimum_enclosing_disc.position.distance(point);
	
	if( dist > minimum_enclosing_disc.radius)
		return false;

	std::vector<CL_Contour>::const_iterator it;	
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		if( point_inside_contour(point, (*it)) )
		{
			return true;
		}
	}
	
	return false;
}

/////////////////////////////////////////////////////////////////////////////
// CL_CollisionOutline_Generic Implementation:

bool CL_CollisionOutline_Generic::point_inside_contour( const CL_Pointf &point, const CL_Contour &contour )
{
	// In case the contour is inside-out (the inside of a hollow polygon) it makes no sense to do this test.
	if(contour.is_inside_contour)
		return false;
	
	float lineX[4];
	lineX[0] = point.x;
	lineX[1] = point.y+0.000f;
	lineX[2] = point.x+99999.0f; // contour.get_radius()*4;
	lineX[3] = point.y+0.000f;

	// collide the line with the outline.
	int num_intersections_x = 0;

	const std::vector<CL_Pointf> &points = contour.points;

	std::vector<CL_OutlineCircle>::const_iterator it;
	for( it = contour.sub_circles.begin();
		 it != contour.sub_circles.end();
		 ++it )
	{
		const CL_OutlineCircle &circle = (*it);

		float dist = fabs(circle.position.y - point.y);

		if( dist <= circle.radius )
		{
			// test each line segment inside the circle
		
			for( unsigned int i=circle.start; i != circle.end; ++i )
			{
				float line2[4];
				line2[0] = points[ i    % points.size()].x;
				line2[1] = points[ i    % points.size()].y;
				line2[2] = points[(i+1) % points.size()].x;
				line2[3] = points[(i+1) % points.size()].y;

				if( CL_LineMath::intersects(lineX, line2, false) )
				{
					num_intersections_x++;
				}
			}
		}
	}

	if( num_intersections_x % 2 )
	{
		return true;
	}
	
	return false;
}

inline bool CL_CollisionOutline_Generic::line_bounding_box_overlap( const std::vector<CL_Pointf> &rect1, const std::vector<CL_Pointf> &rect2, int i, int j, int i2, int j2 ) const
{
	float left   = cl_min(rect1[i].x, rect1[i2].x);
	float right  = cl_max(rect1[i].x, rect1[i2].x);
	float top    = cl_min(rect1[i].y, rect1[i2].y);
	float bottom = cl_max(rect1[i].y, rect1[i2].y);

	float r_left   = cl_min(rect2[j].x, rect2[j2].x);
	float r_right  = cl_max(rect2[j].x, rect2[j2].x);
	float r_top    = cl_min(rect2[j].y, rect2[j2].y);
	float r_bottom = cl_max(rect2[j].y, rect2[j2].y);

	return (r_left <= right && r_right >= left && r_top <= bottom && r_bottom >= top);
}

bool CL_CollisionOutline_Generic::contours_collide(const CL_Contour &contour1, const CL_Contour &contour2, bool do_subcirle_test)
{
	CL_CollidingContours metadata(&contour1, &contour2);
	
	std::vector<CL_OutlineCircle>::const_iterator it_oc1, it_oc2;
	for( it_oc1 = contour1.sub_circles.begin(); it_oc1 != contour1.sub_circles.end(); ++it_oc1 )
	{
		for( it_oc2 = contour2.sub_circles.begin(); it_oc2 != contour2.sub_circles.end(); ++it_oc2 )
		{
			if( do_subcirle_test ? (*it_oc1).collide(*it_oc2) : true ) // outline circles collide
			{
				// test each line segment inside the colliding circles

				const std::vector<CL_Pointf> &points1 = contour1.points;
				const std::vector<CL_Pointf> &points2 = contour2.points;
				
				int num_points1 = points1.size();
				int num_points2 = points2.size();
				
				for( unsigned int counter_i=(*it_oc1).start; counter_i != (*it_oc1).end; ++counter_i )
				{
					int i  = counter_i % num_points1;
					int i2 = (counter_i+1) % num_points1;
					
					for( unsigned int counter_j=(*it_oc2).start; counter_j != (*it_oc2).end; ++counter_j )
					{
						int j  = counter_j % num_points2;
						int j2 = (counter_j+1) % num_points2;
						
						if( line_bounding_box_overlap(points1, points2, i, j, i2, j2) )
						{
							float line1[4];
							line1[0] = points1[i].x;
							line1[1] = points1[i].y;
							line1[2] = points1[i2].x;
							line1[3] = points1[i2].y;
							
							float line2[4];
							line2[0] = points2[j].x;
							line2[1] = points2[j].y;
							line2[2] = points2[j2].x;
							line2[3] = points2[j2].y;

							if( CL_LineMath::intersects( line1, line2 ) )
							{
								if( collision_info_collect )
								{
									CL_CollisionPoint collisionpoint;
									
									if ( collision_info_points )
									{
										collisionpoint.point = CL_LineMath::get_intersection(line1,line2);
									}
									
									if( collision_info_normals )
									{
										collisionpoint.normal = CL_LineMath::normal(line2);
									}
									
									if( collision_info_meta )
									{
										collisionpoint.contour1_line_start = i;
										collisionpoint.contour1_line_end   = i2;
										collisionpoint.contour2_line_start = j;
										collisionpoint.contour2_line_end   = j2;
										// Found by the dot-product of line1 and the perpendicular of line2:
										{
											CL_Pointf line1(points1[i2].x - points1[i].x, points1[i2].y - points1[i].y);
											CL_Pointf line2(-(points2[j2].y - points2[j].y), points2[j2].x - points2[j].x);
											collisionpoint.is_entry = (line1.x * line2.x + line1.y * line2.y) < 0.0;
										}
									}
									metadata.points.push_back(collisionpoint);
								}
								else
									return true;
							}
						}
					}
				}
			}
		}
	}
	if( collision_info_collect && metadata.points.size() > 0)
	{
		// Add this info
		collision_info.push_back(metadata);
		return true;
	}

	return false;
}

void CL_CollisionOutline_Generic::calculate_penetration_depth( std::vector< CL_CollidingContours > & collision_info )
{
	// Figure out the pen-depth
	for(std::vector<CL_CollidingContours>::iterator it = collision_info.begin(); it != collision_info.end(); ++it)
	{
		CL_CollidingContours &cc = (*it);
		if(cc.points.size() % 2 != 0)
		{
			std::cout << "ERROR: we have an uneven number of collisionpoints: " << cc.points.size() << "\n";
			for(std::vector<CL_CollisionPoint>::iterator pit = cc.points.begin(); pit != cc.points.end(); ++pit)
			{
				CL_CollisionPoint &p1 = (*pit);
				std::cout << "\tLineSegment1:"
					<< "(" << cc.contour1->points[p1.contour1_line_start].x
					<< "," << cc.contour1->points[p1.contour1_line_start].y << ") - "
					<< "(" << cc.contour1->points[p1.contour1_line_end].x
					<< "," << cc.contour1->points[p1.contour1_line_end].y << ")\n";
				std::cout << "\tLineSegment2:"
					<< "(" << cc.contour2->points[p1.contour2_line_start].x
					<< "," << cc.contour2->points[p1.contour2_line_start].y << ") - "
					<< "(" << cc.contour2->points[p1.contour2_line_end].x
					<< "," << cc.contour2->points[p1.contour2_line_end].y << ")\n";
				std::cout << "\tColPoint:  ("<<p1.point.x<<","<<p1.point.y<<")\n";
				std::cout << "\tColNormal: ("<<p1.normal.x<<","<<p1.normal.y<<")\n";
				std::cout << "\tis_entry: " << p1.is_entry <<"\n";
				std::cout << "\tcontour1_line_start: "<<p1.contour1_line_start<<", "
					<<"contour1_line_end: "<<p1.contour1_line_end<<",\n"
					<<"\tcontour2_line_start: "<<p1.contour2_line_start<<", "
					<<"contour2_line_end: "<<p1.contour2_line_end <<"\n";
			}
			std::cout << "RORRE\n";
			continue;
		}
		// First calculate one common normal for the whole thing
		// FIXME: oposing normals might generate (0,0) as normal, and that can not be right.
		CL_Vector2 normal(0.0,0.0);
		unsigned int cp;
		for(cp = 0; cp < cc.points.size(); cp+=2)
		{
			std::vector<CL_Pointf> c1points;
			std::vector<CL_Pointf> c2points;
			int firstpoint = cp;
			if(!cc.points[firstpoint].is_entry)
				firstpoint++;
			CL_CollisionPoint p1 = cc.points[firstpoint     % cc.points.size()];
			CL_CollisionPoint p2 = cc.points[(firstpoint+1) % cc.points.size()];

			normal.x += -(p1.point - p2.point).y;
			normal.y += (p1.point - p2.point).x;
		}
		normal.unitize();
		cc.penetration_normal = CL_Pointf(normal.x, normal.y);

		// Now look at each and every overlapping region
		cc.penetration_depth = 0.0;
		for(unsigned int cp2 = 0; cp2 < cc.points.size(); cp2+=2)
		{
			std::vector<CL_Pointf> c1points;
			std::vector<CL_Pointf> c2points;
			int firstpoint = cp2;
			if(!cc.points[firstpoint].is_entry)
				firstpoint++;

			CL_CollisionPoint p1 = cc.points[firstpoint     % cc.points.size()];
			CL_CollisionPoint p2 = cc.points[(firstpoint+1) % cc.points.size()];

			// Get points inside on c1
			c1points.push_back(p2.point - p1.point);
			c1points.push_back(p1.point - p1.point);
			for(int p4 = p1.contour1_line_end; p4 != p2.contour1_line_end; p4 = ((p4+1) % cc.contour1->points.size()))
			{
				c1points.push_back(cc.contour1->points[p4] - p1.point);
				//c1points.push_back(cc.contour1->points[p]);
			}
			// Get points inside on c2
			c2points.push_back(p2.point - p1.point);
			c2points.push_back(p1.point - p1.point);
			for(int p6 = p2.contour2_line_end; p6 != p1.contour2_line_end; p6 = ((p6+1) % cc.contour2->points.size()))
			{
				c2points.push_back(cc.contour2->points[p6] - p1.point);
				//c2points.push_back(cc.contour2->points[p]);
			}
		
			// Calculate the penetration-depth of this overlap
			float c1maxdepth = FLT_MAX;
			float c2maxdepth = FLT_MIN;
			for(unsigned int p5 = 0; p5 < c1points.size(); p5++)
			{
				// The dotproduct is the projection onto an other vector
				float newdepth = c1points[p5].x * normal.x + c1points[p5].y * normal.y;
				if(newdepth < c1maxdepth)
				{
					cc.contour1_deep_point = c1points[p5] + p1.point;
					c1maxdepth = newdepth;
				}
			}
			for(unsigned int p = 0; p < c2points.size(); p++)
			{
				// The dotproduct is the projection onto an other vector
				float newdepth = c2points[p].x * normal.x + c2points[p].y * normal.y;
				if(newdepth > c2maxdepth)
				{
					cc.contour2_deep_point = c2points[p] + p1.point;
					c2maxdepth = newdepth;
				}
			}
			cc.penetration_depth = cl_max(cc.penetration_depth, c2maxdepth - c1maxdepth);
		}
		
		//NONO: maxpendepth = std::min(maxpendepth, 40.0f);
	}
}