File: outline_provider_bitmap_generic.cpp

package info (click to toggle)
clanlib 1.0~svn3827-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 24,696 kB
  • sloc: cpp: 101,591; xml: 6,410; makefile: 1,742; ansic: 463; perl: 424; php: 247; sh: 53
file content (440 lines) | stat: -rw-r--r-- 12,231 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
**  ClanLib SDK
**  Copyright (c) 1997-2005 The ClanLib Team
**
**  This software is provided 'as-is', without any express or implied
**  warranty.  In no event will the authors be held liable for any damages
**  arising from the use of this software.
**
**  Permission is granted to anyone to use this software for any purpose,
**  including commercial applications, and to alter it and redistribute it
**  freely, subject to the following restrictions:
**
**  1. The origin of this software must not be misrepresented; you must not
**     claim that you wrote the original software. If you use this software
**     in a product, an acknowledgment in the product documentation would be
**     appreciated but is not required.
**  2. Altered source versions must be plainly marked as such, and must not be
**     misrepresented as being the original software.
**  3. This notice may not be removed or altered from any source distribution.
**
**  Note: Some of the libraries ClanLib may link to may have additional
**  requirements or restrictions.
**
**  File Author(s):
**
**    Harry Storbacka
**    Magnus Norddahl
**    (if your name is missing here, please add it)
*/

#include "Display/display_precomp.h"
#include "API/Display/Collision/outline_accuracy.h"
#include "API/Display/Collision/outline_circle.h"
#include "API/Display/pixel_buffer.h"
#include "API/Display/pixel_format.h"
#include "API/Core/IOData/cl_endian.h"
#include "API/Core/System/clanstring.h"
#include "API/Core/System/error.h"
#include "outline_provider_bitmap_generic.h"
#include "collision_outline_generic.h"

CL_OutlineProviderBitmap_Generic::CL_OutlineProviderBitmap_Generic(
	CL_PixelBuffer pbuf,
	int alpha_limit,
	bool get_insides)
:
	data(0),
	get_insides(get_insides),
	alpha_limit(alpha_limit),
	//double_precision(false),
	//consecutive_left_turns(0),
	//consecutive_right_turns(0),
	alpha_pixel(CL_Endian::is_system_big() ? 3 : 0),
	pb(pbuf),
	last_point(0,0),
	last_dir(DIR_LEFT)
{
	if( pbuf.get_format() != CL_PixelFormat::rgba8888 )
	{
		// the image contains no alpha - add only a rectangle
		CL_Contour contour;
		
		contour.points.push_back( CL_Pointf(0.0f,0.0f) );
		contour.points.push_back( CL_Pointf(0.0f,(float)height) );
		contour.points.push_back( CL_Pointf((float)width,(float)height) );
		contour.points.push_back( CL_Pointf((float)width,0.0f) );
		
		contours.push_back(contour);
		
		return;
	}

	height = pbuf.get_height();
	width = pbuf.get_width();
	
	// allocate a grid of unsigned chars, this represents the corners between pixels.
	// We will only use the first 4 bits of each char:
	//  (1 << 0) 0x1 : the pixel to the upper left
	//  (1 << 1) 0x2 : the pixel to the upper right
	//  (1 << 2) 0x4 : the pixel to the lower left
	//  (1 << 3) 0x8 : the pixel to the lower right
	data = new unsigned char[(height+1)*(width+1)];

	// The image part
	pbuf.lock();
	for(int y = 0; y <= height; y++)
	{
		for(int x = 0; x <= width; x++)
		{
			get_corner(x,y) = 0x0;
			if(is_opaque(x-1,y-1))
				get_corner(x,y) |= 0x1;
			if(is_opaque(x,y-1))
				get_corner(x,y) |= 0x2;
			if(is_opaque(x-1,y))
				get_corner(x,y) |= 0x4;
			if(is_opaque(x,y))
				get_corner(x,y) |= 0x8;
		}
	}
	pbuf.unlock();

	find_contours();
}

CL_OutlineProviderBitmap_Generic::~CL_OutlineProviderBitmap_Generic()
{
	delete[] data;
}

void CL_OutlineProviderBitmap_Generic::find_contours()
{
	CL_Pointf start_point(find_next_contour_start(0,0));
		
	while( start_point.x != -1.0f && start_point.y != -1.0f )
	{
		CL_Contour contour;
		
		contour.points.push_back(start_point);

		// initialize outline finder algorithm (get_next_point)
		last_point = CL_Point(start_point);
		last_corner = get_corner(last_point.x,last_point.y); // can be 0x8 or 0xe
		if(last_corner == 0x8)
		{
			// This is the top left corner of an outside contour
			last_dir = DIR_LEFT; // Since we are now going down, last time we was going left.
			contour.is_inside_contour = false;
		}
		else if(last_corner == 0x7)
		{
			// This is the top left corner of an inside contour
			last_dir = DIR_UP; // Since we are now going right, last time was up
			contour.is_inside_contour = true;
		}
		else
			throw CL_Error("Arg, the start corner is not of any of the two known types: 0x8, 0x7\n");
			
		while( true )
		{
			get_next_point(contour.points);
			
			if( contour.points.front().x == contour.points.back().x
				&& contour.points.front().y == contour.points.back().y )
			{
				if( contour.points.size() > 3 )
				{
					// line loop closed, remove last point (its the same as the first)
					contour.points.pop_back();
					break;
				}
				else
					throw CL_Error(CL_String::format("Error: front() == back(), but only %1  points in list", (int)contour.points.size()));
			}

			if( contour.points.size() > 10000 ) break; // Sanity ?
		}
		// Now we have found the points for the contour, but this contour might be an
		// inside of some other contour.
		//   (Image a big 'O' would give two contours one on the outside, one on the inside
		//    but the inside one is inside-out, very bad !)
		// If this is the case we should "connect" it to the outer contour, that way they
		// become one concave contour, and all collision-tests will work.
		if(!contour.is_inside_contour)
		{
			// It's a normal (outside) contour
			contour.sub_circles.clear();
			contours.push_back(contour);
		}
		else
		{
			if(get_insides)
			{
				// Reverse the points (and shift by one, to get the same point as the front)
				std::vector<CL_Pointf> rpoints;
				rpoints.push_back(contour.points.front());
				contour.points.erase(contour.points.begin());
				std::vector<CL_Pointf>::reverse_iterator it = contour.points.rend();
				do
				{
					it--;
					rpoints.push_back(*it);
				}
				while(it != contour.points.rbegin());
				// Since we will be going through our starting point twice, we add it to the end.
				rpoints.push_back(rpoints.front());
				
				CL_Contour *outside_contour = 0;
				CL_Pointf tmp_point = rpoints.front();
				// Look for the outside contour to the left of our starting point (that was the upper left corner, remember)
				while(!outside_contour)
				{
					tmp_point.x--;
					outside_contour = point_in_outline((int)tmp_point.x, (int)tmp_point.y);
				}
				// Now we have the outside contour, and we know at what point we can splice our selves in.
				// then all we need to do is combine the two vectors, into one great list of points.
				std::vector<CL_Pointf> combined_points;
				// First add from the outer contour untill we reach the point where we should splice.
				while(outside_contour->points.size() > 0)
				{
					CL_Pointf outside_point = outside_contour->points.front();
					combined_points.push_back(outside_point);
					outside_contour->points.erase(outside_contour->points.begin());
					if(outside_point.x == tmp_point.x && outside_point.y == tmp_point.y)
					{
						CL_Pointf bridge_point(outside_point);
						// Build the bridge from the outside to the inside
						for(bridge_point.x++; bridge_point.x != rpoints.front().x; bridge_point.x++)
						{
							combined_points.push_back(bridge_point);
						}
							
						// Now its time to add our reversed points
						for(std::vector<CL_Pointf>::iterator it = rpoints.begin(); it != rpoints.end(); ++it)
						{
							combined_points.push_back(*it);
						}

						bridge_point = combined_points.back();
						// Build the bridge back from the inside to the outside
						// Build the bridge from the outside to the inside
						for(bridge_point.x--; bridge_point.x != outside_point.x; bridge_point.x--)
						{
							combined_points.push_back(bridge_point);
						}
						
						// And add the outside point again to complete the link
						combined_points.push_back(outside_point);
					}
				}
				// Now we have combined the points, then we just add them to the other contour.
				outside_contour->points = combined_points;
			}
		}
	
		int next_search_start_x = (int)start_point.x + 1;
		int next_search_start_y = (int)start_point.y;

		if( next_search_start_x >= width+1 )
		{
			next_search_start_x = 0;
			next_search_start_y++;
			if( next_search_start_y >= height+1 )
				break;
		}

		start_point = find_next_contour_start(
			next_search_start_x,
			next_search_start_y);
	}
}


CL_Pointf CL_OutlineProviderBitmap_Generic::find_next_contour_start(unsigned int sx, unsigned int sy)
{
	// we start where we last stopped
	for( int y=sy; y < height+1; y++ )
	{
		// first time we start where we last stopped
		for( int x=sx; x < width+1; x++ )
		{
			// We can only start on a corner facing up and left, unless we also look for insides
			if( get_corner(x,y) == 0x8 || (get_insides && get_corner(x,y) == 0x7) )
			{
				// Lets check that it has not already been used
				if( !point_in_outline(x,y) )
					return CL_Pointf((float)x,(float)y);
			}
		}
		sx = 0;
	}
	
	return CL_Pointf(-1.0f,-1.0f);
}



void CL_OutlineProviderBitmap_Generic::get_next_point(std::vector<CL_Pointf> &points)
{
	/*
	 See what type of corner we are, this gives us our counter-clockwise direction
	  in case of interesting places with connected corners, we use the last direction to figure it out.
	  above all cases in the switch, you can se what pixels are opaque if the corner in question is the middle
	  corner.
	*/
	MoveDir next_dir = DIR_UP;
	switch(last_corner)
	{
	// X0
	// 00
	case 0x1:
		next_dir = DIR_UP;
		break;
	// 0X
	// 00
	case 0x2:
		next_dir = DIR_RIGHT;
		break;
	// XX
	// 00
	case 0x3:
		next_dir = DIR_RIGHT;
		break;
	// 00
	// X0
	case 0x4:
		next_dir = DIR_LEFT;
		break;
	// X0
	// X0
	case 0x5:
		next_dir = DIR_UP;
		break;
	// 0X
	// X0
	case 0x6:
		if(last_dir == DIR_UP)
			next_dir = DIR_RIGHT;
		else if(last_dir == DIR_DOWN)
			next_dir = DIR_LEFT;
		else
			throw CL_Error(CL_String::format("Came to a corner-type: 0x6, but last direction was: %1",last_dir));
		break;
	// XX
	// X0
	case 0x7:
		next_dir = DIR_RIGHT;
		break;
	// 00
	// 0X
	case 0x8:
		next_dir = DIR_DOWN;
		break;
	// X0
	// 0X
	case 0x9:
		if(last_dir == DIR_RIGHT)
			next_dir = DIR_DOWN;
		else if(last_dir == DIR_LEFT)
			next_dir = DIR_UP;
		else
			throw CL_Error(CL_String::format("Came to a corner-type: 0x9, but last direction was: %1", last_dir));
		break;
	// 0X
	// 0X
	case 0xa:
		next_dir = DIR_DOWN;
		break;
	// XX
	// 0X
	case 0xb:
		next_dir = DIR_DOWN;
		break;
	// 00
	// XX
	case 0xc:
		next_dir = DIR_LEFT;
		break;
	// X0
	// XX
	case 0xd:
		next_dir = DIR_UP;
		break;
	// 0X
	// XX
	case 0xe:
		next_dir = DIR_LEFT;
		break;
	
	default:
		throw CL_Error(CL_String::format("Unknown corner-type: %1", last_corner));
		break;
	}
	
	CL_Point next_point(0,0);
	switch (next_dir)
	{
	case DIR_UP:
		//printf("up (%x)\n", last_corner);
		next_point = CL_Point(last_point.x, last_point.y-1);
		break;
	case DIR_DOWN:
		//printf("down (%x)\n", last_corner);
		next_point = CL_Point(last_point.x, last_point.y+1);
		break;
	case DIR_LEFT:
		//printf("left (%x)\n", last_corner);
		next_point = CL_Point(last_point.x-1, last_point.y);
		break;
	case DIR_RIGHT:
		//printf("right (%x)\n", last_corner);
		next_point = CL_Point(last_point.x+1, last_point.y);
		break;
	}
	last_point = next_point;
	last_dir = next_dir;
	last_corner = get_corner(next_point.x, next_point.y);
	points.push_back(next_point);
}

CL_Contour *CL_OutlineProviderBitmap_Generic::point_in_outline(unsigned int x, unsigned int y)
{
	std::vector<CL_Contour>::iterator it;
	for( it = contours.begin(); it != contours.end(); ++it )
	{
		std::vector<CL_Pointf>::iterator ita;
		for( ita = (*it).points.begin(); ita != (*it).points.end(); ++ita )
		{
			if( (*ita).x == x && (*ita).y == y ) 
			{
				return &(*it);
			}
		}
	}

	return 0;
}

bool CL_OutlineProviderBitmap_Generic::is_opaque(int x, int y)
{
	if(x < 0 || y < 0 || x >= width || y >= height)
	{
		return false;
	}
	
	unsigned char *pbdata = static_cast<unsigned char *>(pb.get_data());
	unsigned int pitch = pb.get_pitch();
	unsigned char bpp = pb.get_format().get_depth()/8;

	return pbdata[y*pitch+x*bpp+alpha_pixel] >= alpha_limit;
}

bool CL_OutlineProviderBitmap_Generic::is_edge(int x, int y)
{
	// These are the only (non-edges)
	// 0x0: empty
	// 0xf: full
	return (get_corner(x,y) != 0x0 && get_corner(x,y) != 0xf);
}