File: build.c

package info (click to toggle)
clara 0.9.8-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,684 kB
  • ctags: 1,364
  • sloc: ansic: 19,559; perl: 1,172; makefile: 120; sh: 44
file content (1198 lines) | stat: -rw-r--r-- 30,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
/*
  Copyright (C) 1999-2001 Ricardo Ueda Karpischek

  This is free software; you can redistribute it and/or modify
  it under the terms of the version 2 of the GNU General Public
  License as published by the Free Software Foundation.

  This software is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this software; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,
  USA.
*/

/*

build.c: The function build.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "common.h"

/*

Magic numbers

m_mwd .. Maximum horizontal distance accepted in order to
consider two words aligned, specified as a percentage of
x_height. Values greater than 100 are accepted as well.

m_msd .. Maximum horizontal distance accepted in order to
consider two symbols aligned, specified as a percentage of
x_height. Values greater than 100 are accepted as well.

m_mae .. Acceptable error when testing fitting of one symbol on the
expected limits for the ascent and descent, specified as a
percentage of the dot diameter. Values greater than 100 are
accepted as well.

m_ds .. Descent (relative to baseline) as a percentage of the dot
diameter. Usually greater than 100 (for instance 200).

m_as ..  Ascent (relative to baseline) as a percentage of the dot
diameter. Usually greater than 100 (for instance 800).

m_xh ..  x_height (relative to baseline) as a percentage of the dot
diameter. Usually greater than 100 (for instance 600).

m_fs ..  number of steps to complete one unity on float steppers.

*/

#ifdef CF
/* Candido de Figueiredo */
int m_mwd = 1000;
int m_msd = 40;
int m_mae = 60;
int m_ds = 150;
int m_as = 450;
int m_xh = 300;
int m_fs = 20;
#else
int m_mwd = 1000;
int m_msd = 60;
int m_mae = 50;
int m_ds = 200;
int m_as = 800;
int m_xh = 600;
int m_fs = 20;
#endif

/*

Bold and italic distinguishers.

*/
int bw[256],bh[256],bp[256];
int iw[256],ih[256],ip[256];

/*

Validation of the recognition of the symbol i.

*/
void recog_validation(int i)
{
    int k,b;
    sdesc *m;

    /* the symbol we're validating */
    m = mc + (k=i);

    /*
        Ignore DOTS with invalid alignments. The rationale here
        is that noise is easily classified as dot. So we must ignore all
        dots without a typical dot context, like the top of "i" or
        "j", period, etc. An easy approximation for this criteria is
        considering the alignment. So we remove all SHAPE votes
        from dots with unknown alignment.
    */
    if ((m->tc == DOT) && (m->va < 0)) {
        rmvotes(SHAPE,k,-1,0);
    }

    /*
        Apply add-hoc filtering rules.
    */
    {
        unsigned char *t;

        if ((m->tr != NULL) &&
            (strlen(t = (unsigned char *)((m->tr)->t)) == 1) &&
            (avoid(k,t[0]))) {

            rmvotes(SHAPE,k,-1,0);

            /*
                BUG: We must reset lfa and bm only when the symbol
                is not a pattern. By now we're using a simple but
                broken test. Must change in the future.
            */
            if (m->tr == NULL) {
                m->lfa = -1;
                m->bm = -1;
            }
        }
    }

    /* attach accents to their base letters */
    if (m->tc == ACCENT) {
        int *t;

        /*
           strangely enough, it seems that some untransliterated symbols
           are being classified as accents.
        */
        if (m->tr == NULL) {
            db("oops.. untransliterated symbol classified as accent");
        }

        else if ((b = bsymb(k,0)) >= 0) {
            if (box_dist(ps[i],b,NULL) < ((mc[b].b-mc[b].t)/2)) {
                for (t = &(mc[b].sl); (*t >= 0); t = &(mc[*t].sl));
                *t = i;
            }
        }
    }
}

/*

Returns -1 if the line a precedes the line b,
or +1 if the line b precedes the line a, or
0 if cannot decide.

*/
int cmpln(int a,int b)
{
    sdesc *p,*q;

    p = mc + word[line[a].f].F;
    q = mc + word[line[b].f].F;

    if ((p->b+p->t)/2 + 15 < (q->b+q->t)/2)
        return(-1);
    else if ((q->b+q->t)/2 + 15 < (p->b+p->t)/2)
        return(1);
    else if ((p->l+p->r)/2 < (q->l+q->r)/2)
        return(-1);
    else if ((q->l+q->r)/2 < (p->l+p->r)/2)
        return(1);
    else
        return(0);
}

/*

Account bold and italic distinguisher symbols. This simplistic
code assumes only one bold font size along the book. If more than
one such size exists, detection of bold words will become
compromised (not a big problem, though).

*/
void acc_f(int *fw,int *fh,int *fp,int FF)
{
    int c,i,f[256],o[256];
    int ow[256],oh[256],op[256];
    pdesc *p;

    /* prepare account */
    for (i=0; i<256; ++i) {
        fw[i] = fh[i] = fp[i] = 0;
        ow[i] = oh[i] = op[i] = 0;
        f[i] = o[i] = 0;
    }

    /* account featured symbols */
    for (i=0; i<=topp; ++i) {

        p = pattern + i;
        if ((p->tr != NULL) &&
            (strlen(p->tr) == 1)) {

            c = ((unsigned char *)(p->tr))[0];

            if (p->f & FF) {
                fw[c] += p->bw;
                fh[c] += p->bh;
                fp[c] += p->bp;
                ++(f[c]);
            }
            else {
                ow[c] += p->bw;
                oh[c] += p->bh;
                op[c] += p->bp;
                ++(o[c]);
            }
        }
    }

    /* search bold distinguishers */
    for (c=0; c<256; ++c) {

        if ((f[c] > 0) && (o[c] > 0)) {

            fw[c] /= f[c];
            fh[c] /= f[c];
            fp[c] /= f[c];

            ow[c] /= o[c];
            oh[c] /= o[c];
            op[c] /= o[c];

            if (abs(fp[c]-op[c]) <= (fp[c]/10))
                fp[c] = 0;
            if (abs(fh[c]-oh[c]) <= (fh[c]/10))
                fh[c] = 0;
            if (abs(fw[c]-ow[c]) <= (fw[c]/10))
                fw[c] = 0;
/*
            if ((fp[c] > 0) || (fh[c] > 0) || (fw[c] > 0))
                printf("%d distinguisher: %d %c\n",FF,c,c);
*/
        }
    }
}

/*

Compute word properties.

*/
void wprops(int i)
{
    /* compute baseline (TO BE DONE) */

    /* italic and bold flags, and the word type */
    {
        wdesc *w;
        int j,it,bd;

        w = word + i;
        it = 0;
        bd = 0;
        w->a = UNDEF;
        for (j=word[i].F; j>=0; j=mc[j].E) {
            if (!uncertain(mc[j].tc)) {
                unsigned char *t;
                int c,w,h,p;

                t = ((unsigned char *) (mc[j].tr->t));
                if (strlen(t) == 1) {

                    c = t[0];
                    w = mc[j].r - mc[j].l + 1;
                    h = mc[j].b - mc[j].t + 1;
                    p = mc[j].nbp;

                    if (((mc[j].tr->f & F_ITALIC) != 0) &&
                        (((iw[c] > 0) && (abs(iw[c]-w) < iw[c]/20)) ||
                         ((ih[c] > 0) && (abs(ih[c]-h) < ih[c]/20)) ||
                         ((ip[c] > 0) && (abs(ip[c]-p) < ip[c]/20)))) {

                        it = 1;
                    }

                    if (((mc[j].tr->f & F_BOLD) != 0) &&
                        (((bw[c] > 0) && (abs(bw[c]-w) < bw[c]/20)) ||
                         ((bh[c] > 0) && (abs(bh[c]-h) < bh[c]/20)) ||
                         ((bp[c] > 0) && (abs(bp[c]-p) < bp[c]/20)))) {

                        bd = 1;
                    }
                }
            }
        }

        if (it)
            C_SET(w->f,F_ITALIC);
        else
            C_UNSET(w->f,F_ITALIC);
        if (bd)
            C_SET(w->f,F_BOLD);
        else
            C_UNSET(w->f,F_BOLD);
    }

    /* compute bounding box */
    {
        int l,r,t,b;
        sdesc *s;
    
        s = mc + word[i].F;
        l = s->l;
        r = s->r;
        t = s->t;
        b = s->b;
        while (s->E >= 0) {
            s = mc + s->E;
            if (s->l < l)
                l = s->l;
            if (s->r > r)
                r = s->r;
            if (s->t < t)
                t = s->t;
            if (s->b > b)
                b = s->b;
        }
        word[i].l = l;
        word[i].r = r;
        word[i].t = t;
        word[i].b = b;
    }
}

/*

Word pairing
------------

The word pairing test is used to build the text lines. The function
w_pair tests word pairing, and returns the following diagnostics:

0 .. the words are paired
1 .. insufficient vertical intersection
2 .. incomplete data
3 .. maximum horizontal distance exceeded

*/
int w_pair(int wa,int wb)
{
    int a,b;
    int r,t,d,e;
    int dd,as,bl,xh,ds;
    int pa,pb;

    a = word[wa].L;
    b = word[wb].F;

    /* consist */
    if ((a < 0) || (tops < a) || (b < 0) || (tops < b)) {
        db("inconsistent input at w_pair");
        return(2);
    }

    /* compute horizontal distance */
    if (mc[a].r < mc[b].l)
        d = mc[b].l - mc[a].r;
    else if (mc[a].l+mc[a].r < mc[b].l+mc[b].r)
        d = 1;
    else
        d = 0;

    /* vertical intersection */
    t = intersize(mc[a].t,mc[a].b,mc[b].t,mc[b].b,NULL,NULL);

    /* check if wa or wb are pseudo-words */
    pa = ((mc[a].W < 0) && ((mc[a].tc == DOT) || (mc[a].tc == COMMA)));
    pb = ((mc[b].E < 0) && ((mc[b].tc == DOT) || (mc[b].tc == COMMA)));

    /* try to obtain x_height and baseline */
    dd = complete_align(a,b,&as,&xh,&bl,&ds);

    /* horizontal distance unacceptable (1st test) */
    if ((d <= 0) || (((m_mwd*FS)/100) <= d))
        r = 3;

    /* pseudo-words special case */
    else if (pa || pb) {

        /* non-null intersection is the easy case */
        if (t > 0)
            return(0);

        if (dd < 0) {
            if (mc[a].tc == DOT)
                dd = ((mc[a].r-mc[a].l)+(mc[a].b-mc[a].t)+2) / 2;
            else if (mc[b].tc == DOT)
                dd = ((mc[b].r-mc[b].l)+(mc[b].b-mc[b].t)+2) / 2;
            else if (mc[a].tc == COMMA)
                dd = (mc[a].r-mc[a].l)+2 / 2;
        }

        /* could not estimate the dot diameter */
        if (dd < 0)
            return(2);

        /* vertical distance between a and b */
        e = ldist(mc[a].b,mc[a].t,mc[b].b,mc[b].t);

        /* small vertical distance */
        if (e <= 2*dd)
            r = 0;
 
        /* large vertical distance */
        else
            r = 1;
    }

    /* insufficient data */
    else if ((xh <= 0) || (bl <= 0))
        r = 2;

    /* horizontal distance unacceptable (2nd test) */
    else if ((d <= 0) || (((m_mwd*(bl-xh))/100) <= d))
        r = 3;

    /*
        BUG: hardcoded magic number
    */
    else if (t > 5) {

        r = 0;
    }

    /* no vertical intersection */
    else
        r = 1;

    return(r);
}

/*

Diagnose word pairing.

*/
void diag_wpairing(int t)
{
    int r,w1,w2;

    if ((curr_mc < 0) ||
        (t < 0) ||
        ((w1=mc[curr_mc].sw) < 0) ||
        ((w2=mc[t].sw) < 0)) {

        show_hint(2,"invalid parameters");
        return;
    }

    else if ((mc[curr_mc].l+mc[curr_mc].r) < (mc[t].l+mc[t].r))
        r = w_pair(w1,w2);
    else
        r = w_pair(w2,w1);

    if (r == 0)
        show_hint(2,"pairing successful");
    if (r == 1)
        show_hint(2,"insuficcient vertical intersection");
    if (r == 2)
        show_hint(2,"incomplete data");
    if (r == 3)
        show_hint(2,"maximum horizontal distance exceeded");
}

/*

Diagnose pairing against current symbol.

*/
void diag_pairing(int t)
{
    int r;

    if ((curr_mc < 0) || (t < 0)) {
        show_hint(2,"invalid parameters");
        return;
    }

    else if ((mc[curr_mc].l+mc[curr_mc].r) < (mc[t].l+mc[t].r))
        r = s_pair(curr_mc,t,0,NULL);
    else
        r = s_pair(t,curr_mc,0,NULL);

    if (r == 0)
        show_hint(2,"pairing successful");
    if (r == 1)
        show_hint(2,"insuficcient vertical intersection");
    if (r == 2)
        show_hint(2,"one or both symbols above ascent");
    if (r == 3)
        show_hint(2,"one or both symbols below descent");
    if (r == 4)
        show_hint(2,"maximum horizontal distance exceeded");
    if (r == 5)
        show_hint(2,"incomplete data");
}

/*

Detect the word at the left side of the symbol t.

This routine was part of the "extend left word" feature. That
feature was removed from the OCR. This code is being mantained
here because it may be used again someday.

*/
int left_word(int t)
{
    int i,w,a,d,l,x;

    /*
        To obtain the left word we use a
        straighforward method. Just search all words and, from those
        whose last symbol has vertical intersection with t, choose
        the one horizontally nearest to t.
    */
    w = -1;
    l = (mc[t].l + mc[t].r) / 2;
    for (i=0, d=-1; i<=topw; ++i) {

        /* new best candidate */
        if ((word[i].F >= 0) &&
            ((a=word[i].L) >= 0) &&
            (intersize(mc[a].t,mc[a].b,mc[t].t,mc[t].b,NULL,NULL) > 0) &&
            ((x = (mc[a].r+mc[a].l) / 2) < l) &&
            ((w < 0) || (l-x < d))) {

            w = i;
            d = l-x;
        }
    }

    /* return the left word (or -1) */
    return(w);
}

/*

Create and return an unitary word for symbol k.

*/
int new_word(int k) {
    int cw;

    /* enlarge buffer */
    if (++topw >= wsz) {
        wsz = topw + 512;
        word = c_realloc(word,sizeof(wdesc)*wsz,NULL);
    }
    word[topw--].F = -1;

    /* find and use the next free entry */
    for (cw=0; word[cw].F >= 0; ++cw);
    word[cw].F = word[cw].L = k;
    word[cw].bl = -1;
    word[cw].E = -1;
    word[cw].W = -1;
    word[cw].f = 0;
    if (cw > topw)
        topw = cw;
    mc[k].sw = cw;
    return(cw);
}

/*

The build function
------------------

*/
int build(int reset)
{
    static int m,k,st;
    static int i;
    int j;

    /* reset state */
    if (reset) {
        st = 0;
        topw = -1;
        topln = -1;
        show_hint(0,"preparing");
        return(1);
    }

    /*
        ** STATE 0 **
        Preparation
    */
    if (st == 0) {

        /* (devel)

            The build step
            --------------

            The "build" OCR step, implemented by the "build"
            function, distributes the symbols on words
            (analysing the distance, heights and relative
            position for each pair of symbols), and the words
            on lines (analysing the distance, heights and
            relative position for each pair of words). Various
            important heuristics take effect here.

            0. Preparation

            The first step of build is to distribute the symbols
            on words. This is achieved by:

            a. Undefining the next-symbol ("E" field) and previous-symbol
            ("W" field) links for each symbol, the surrounding word ("sw"
            field) of each symbol, and the next signal ("sl" field) for
            each symbol.

            Obs. The next-symbol and previous symbol links are used
            to build the list of symbols of each word. For instance,
            on the word "goal", "o" is the next for "g" and
            the previous for "a", "g" has no previous and "l"
            has no next).

        */
        for (m=0; m<=tops; ++m) {
            mc[m].E = mc[m].W = mc[m].sw = mc[m].sl = -1;
        }

        /* (devel)

            b. Undefining the transliteration class of SCHARs and
            the uncertain alignment information.

        */
        for (m=0; m<=tops; ++m) {
            if (mc[m].sw < 0) {
                if (mc[m].tc == SCHAR)
                    mc[m].tc = UNDEF;
                if (uncertain(mc[m].tc))
                    mc[m].va = -1;
            }
        }

        /* prepare next state */
        show_hint(0,"detecting words");
        m = 0;
        st = 1;
    }

    /*
        ** STATE 1 **
        distributing symbols on words
    */
    else if (st == 1) {

        /* (devel)

            2. Distributing symbols on words

            The second step is, for each CHAR not in any word, define
            a unitary word around it and extend it to right
            and left applying the symbol pairing test. When
            extending, merge words when necessary.

        */
        if (m <= topps) {
            k = ps[m];
            if ((mc[k].tc == CHAR) && (mc[k].sw < 0)) {
                int a,b,cw,ow,f,t;

                /* create unitary word */
                cw = new_word(k);

                /* extend to right */
                for (a=k; ((b=rsymb(a,0)) >= 0); a=b) {

                    /* classify as SCHAR */
                    if (mc[b].tc==UNDEF)
                        mc[b].tc = SCHAR;

                    /* extend word or... */
                    if ((ow=mc[b].sw) < 0) {
                        mc[a].E = b;
                        mc[b].W = a;
                        mc[b].sw = cw;
                        word[cw].L = b;
                    }

                    /*
                        ... merge words

                        WARNING: this code creates unused entries on the
                                 array word below topw. Some of them will be
                                 reused by the word creation code, though.

                    */
                    else {

                        /* medium vertical line */
                        t = mc[a].l + mc[a].r;

                        /* consist and merge */
                        if (((f=word[ow].F) == b) &&
                            (t < mc[f].l+mc[f].r)) {

                            for (f=word[ow].F; f>=0; f=mc[f].E)
                                mc[f].sw = cw;
                            mc[a].E = b;
                            mc[b].W = a;
                            mc[b].sw = cw;
                            word[cw].L = word[ow].L;
                            word[ow].F = -1;
                        }
                    }
                }

                /* extend to left */
                for (a=k; (b=lsymb(a,0)) >= 0; a=b) {

                    /* classify as SCHAR */
                    if (mc[b].tc==UNDEF)
                        mc[b].tc = SCHAR;

                    /* extend word or... */
                    if ((ow=mc[b].sw) < 0) {
                        mc[b].E = a;
                        mc[a].W = b;
                        mc[b].sw = cw;
                        word[cw].F = b;
                    }

                    /*
                        ... merge words

                        WARNING: this code creates unused entries on the
                                 array word below topw. Some of them will be
                                 reused by the word creation code, though.

                    */
                    else {

                        /* medium vertical line */
                        t = mc[a].l + mc[a].r;

                        /* consist and merge */
                        if (((f=word[ow].L) == b) &&
                            (mc[f].l+mc[f].r < t)) {

                            for (f=word[ow].F; f>=0; f=mc[f].E)
                                mc[f].sw = cw;
                            mc[b].E = a;
                            mc[a].W = b;
                            mc[b].sw = cw;
                            word[cw].F = word[ow].F;
                            word[ow].F = -1;
                        }
                    }
		}
            }

            /* prepare next symbol */
            if ((++m % DPROG) == 0)
                show_hint(0,"detecting words %d/%d",m,topps);
        }

        /* prepare next state */
        else {
            show_hint(0,"merging");
            st = 2;
            i = 0;
        }
    }

    /*
        ** STATE 2 **
        Currently empty
    */
    else if (st == 2) {

        /*

            (Currently empty)

        */

        /* prepare next state */
        show_hint(0,"computing alignment");
        i = 0;
        st = 3;
    }

    /*
        ** STATE 3 **
        Computing the alignment using the words
    */
    else if (st == 3) {
        int k,l,dd,as,xh,bl,ds;
        sdesc *m,*t;

        /* (devel)

            3. Computing the alignment using the words

            Some symbols do not have a well-defined alignment by
            themselves. For instance, a dot may be baseline-aligned
            (a final dot) or 0-aligned (the "i" dot). So when
            computing their alignments, we need to analyse their
            neighborhoods. This is performed in this step.

        */

        /* compute the alignment of dots and accents */
        if (i <= topps) {

            m = mc + (k = ps[i]);

#ifdef MEMCHECK
            checkidx(i,topps+1,"build state 3.1");
#endif

            /*
                Alignment for dots may be 0 ("i", "j"),
                11 (the top one in ":") or 22 (period).

                Alignment for commas may be 22 (comma)
                or 0 (apostrophe).

                We expect alignment 0 for latin accents.
            */
            if ((m->tc == DOT) || (m->tc == COMMA) || (m->tc == ACCENT)) {
                int x,y,w,h;

                /* reset alignment */
                m->va = -1;

                /* compute neighbours */
                x = (m->l+m->r)/2 - FS;
                y = (m->t+m->b)/2 - FS;
                w = h = 2*FS;

                list_s(x,y,w,h);

#ifdef MEMCHECK
                checkidx(list_s_sz,tops+1,"build state 3.2");
#endif

                /*
                    Try to compute the alignment using
                    some known neighbour.
                */
                for (l=0; (l<list_s_sz) && (m->va < 0); ++l) {

#ifdef MEMCHECK
                    checkidx(list_s_r[l],tops+1,"build state 3.3");
#endif

                    t = mc + list_s_r[l];

                    if ((intersize(m->t,m->b,t->t,t->b,NULL,NULL) > 0) &&
                        ((t->tc == CHAR) || (t->tc == SCHAR))) {

                        /* obtain complete alignment data */
                        dd = complete_align(k,list_s_r[l],&as,&xh,&bl,&ds);

                        /* infer the alignment for k */
                        if (dd > 0)
                            m->va = geo_align(k,dd,as,xh,bl,ds);
                    }
                }
            }

            /* prepare next symbol */ 
            if ((++i % DPROG) == 0)
                show_hint(0,"computing alignment %d/%d",i,topps);
        }

        /* prepare next state */
        else {
            show_hint(0,"validating");
            st = 4;
        }
    }

    /*
        ** STATE 4 **
        Validating the recognition
    */
    else if (st == 4) {

        /* (devel)

            4. Validating the recognition

            Shape-based recognitions must be validated by special
            heuristics. For instance, the left column of a broken 
            "u" may be recognized as the body of an "i" letter. A
            validation heuristic may refuse this recognition for
            instance because the dot was not found. These heuristics
            are per-alphabet.

        */
        for (i=0; i<=topps; ++i) {
            recog_validation(ps[i]);
        }

        /* prepare next state */
        show_hint(0,"handling punctuation signs");
        st = 5;
    }

    /*
        ** STATE 5 **
        Creating fake words for punctuation signs
    */
    else if (st == 5) {
        sdesc *m;

        /* (devel)

            5. Creating fake words for punctuation signs

            To produce a clean output, symbols that do not belong to
            any word are not included on the OCR output. So we need
            to create fake words for punctuation signs like commas
            of final dots.

        */

        /*
            Build unitary words for baseline-aligned dots and commas
        */
        for (i=0; i<=topps; ++i) {

            m = mc + (k = ps[i]);

            if ((m->sw < 0) &&
                ((m->tc == DOT) || (m->tc == COMMA))) {

                if ((m->va == 22) || (m->va == 23)) {
                    new_word(k);
                }
            }
        }

        /* prepare next state */
        show_hint(0,"aligning words");
        st = 6;
    }

    /*
        ** STATE 6 **
        Aligning words
    */
    else if (st == 6) {
        int a,b,d1,d2,k,l;

        /* (devel)

            6. Aligning words

            Words need to be aligned in order to detect the
            page text lines. This is perfomed as follows:

        */

        /* Mark the start of words */
        for (i=0; i<=tops; ++i)
            C_UNSET(mc[i].f,F_ISW);
        for (i=0; i<=topw; ++i)
            C_SET(mc[word[i].F].f,F_ISW);

        /* (devel)

            a. Undefine the next-word and previous-word
            links for each word. These are links for the
            previous and next word within lines. For instance,
            on the line "our goal is", "goal" is the next
            for "our" and the previous for "is", "our" has
            no previous and "is" has no next.
        */
        for (i=0; i<=topw; ++i) {
            word[i].E = -1;
            word[i].W = -1;
        }

        /* (devel)

            b. Distribution of the words on lines. This is just
            a matter of computing, for each word, its "next" word.
            So for each pair of words, we test if they're "paired"
            in the sense of the function w_pair. In affirmative
            case, we make the left word point to the right word
            as its "next" and the rigth point to the left as its
            "previous".

            The function w_pair does not test the existence of
            intermediary words. So on the line "our goal is" that
            function will report pairing between "our" and "is".
            So after detecting pairing, our loop also checks if the
            detected pairing is eventually "better" than those
            already detected.

        */
        for (i=0; i<=topw; ++i) {
            for (j=i+1; j<=topw; ++j) {

                /* ignore empty words */
                if ((word[i].F < 0) || (word[j].F < 0))
                    a = b = -1;

                /* i-j or j-i pairing detected */
                else if (w_pair(i,j) == 0) {
                    a = i;
                    b = j;
                }
                else if (w_pair(j,i) == 0) {
                    a = j;
                    b = i;
                }
                else
                    a = b = -1;

                /*
                    Compare the pairings a-b and a-k where k=word[a].E,
                    that is, a-k is a perhaps non-optimal previously
                    detected pairing.
                */
                if ((a >= 0) && (word[a].E >= 0)) {
                    k = word[a].E;
                    d1 = mc[word[b].F].l - mc[word[a].L].r;
                    d2 = mc[word[k].F].l - mc[word[a].L].r;

                    /* a-k is preferred */
                    if (d1 >= d2) {
                        a = -1;
                    }
                }
                else
                    k = -1;

                /*
                    Compare the pairings a-b and l-b where l=word[b].W,
                    that is, l-b is a perhaps non-optimal previously
                    detected pairing.
                */
                if ((a >= 0) && (word[b].W >= 0)) {

                    l = word[b].W;
                    d1 = mc[word[b].F].l - mc[word[a].L].r;
                    d2 = mc[word[b].F].l - mc[word[l].L].r;

                    /* l-b is preferred */
                    if (d1 >= d2) {
                        a = -1;
                    }
                }
                else
                    l = -1;

                /* pairing a-b is preferred */
                if (a >= 0) {

                    /* break link a-k */
                    if (k >= 0) {
                        word[k].W = -1;
                    }

                    /* break link l-b */
                    if (l >= 0) {
                        word[l].E = -1;
                    }

                    /* create link a-b */
                    word[a].E = b;
                    word[b].W = a;
                }
            }
        }

        /* count lines */
        for (topln=-1, k=0; k <= topw; ++k) {
            if ((word[k].W < 0) && (word[k].F >=0))
                ++topln;
        }

        /* enlarge memory area for lines */
        if (lnsz <= topln) {
            lnsz = topln + 512;
            line = c_realloc(line,sizeof(lndesc)*lnsz,NULL);
        }

        /* line heads */
        for (topln=-1, k=0; k <= topw; ++k) {
            if ((word[k].W < 0) && (word[k].F >= 0)) {
                line[++topln].f = k;
                line[topln].hw = 0;
            }
        }

        /* (devel)

            c. Sort the lines. The lines are sorted based on the
            comparison performed by the function "cmpln".

        */
        {
            int *a;
            lndesc *l;

            a = alloca(sizeof(int)*(topln+1));
            l = alloca(sizeof(lndesc)*(topln+1));
            for (i=0; i<=topln; ++i)
                a[i] = i;
            qsf(a,0,topln,0,cmpln);
            for (i=0; i<=topln; ++i) {
               memcpy(l+i,line+a[i],sizeof(lndesc));
            }
            memcpy(line,l,(topln+1)*sizeof(lndesc));
        }

        /* word[i].tl must be the line where the word i was placed */
        for (i=0; i<=topw; ++i)
            word[i].tl = -1;
        for (i=0; i<=topln; ++i)
            for (j=line[i].f; j>=0; j=word[j].E)
                word[j].tl = i;

        /* prepare next state */
        show_hint(0,"computing word properties");
        st = 7;
    }

    /*
        ** STATE 7 **
        Computing word properties
    */
    else if (st == 7) {
        int i;

        /* account featured symbols */
        acc_f(bw,bh,bp,F_BOLD);
        acc_f(iw,ih,ip,F_ITALIC);

        /* (devel)

            7. Computing word properties

            Finally, word properties can be computed once we
            have detected the words. Some of these properties are
            applied to untransliterated symbols. The properties are:

            1. The baseline left and right ordinates.

            2. The italic and bold flags.

            3. The alphabet.

            4. The word bounding box.

            All these properties are computed by the
            function wprops.
        */
        for (i=0; i<=topw; ++i) {
            if (word[i].F >= 0)
                wprops(i);
        }

        /* finished */
        st = 0;
        return(0);
    }

    /* invalid state */
    else {
        st = 0;
        return(0);
    }

    /* did not complete */
    return(1);
}