1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
//
// Copyright (c) 2009-2017 Benjamin Kaufmann
//
// This file is part of Clasp. See http://www.cs.uni-potsdam.de/clasp/
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
#include <clasp/lookahead.h>
#include <algorithm>
namespace Clasp {
/////////////////////////////////////////////////////////////////////////////////////////
// Lookahead scoring
/////////////////////////////////////////////////////////////////////////////////////////
uint32 ScoreLook::countNant(const Solver& s, const Literal* b, const Literal *e) const {
uint32 sc = 1;
for (; b != e; ++b) { sc += s.varInfo(b->var()).nant(); }
return sc;
}
void ScoreLook::scoreLits(const Solver& s, const Literal* b, const Literal *e) {
assert(b < e);
uint32 sc = !nant ? uint32(e-b) : countNant(s, b, e);
Var v = b->var();
assert(validVar(v));
score[v].setScore(*b, sc);
if (addDeps) {
if ((score[v].testedBoth() || mode == score_max) && greater(v, best)) {
best = v;
}
for (; b != e; ++b) {
v = b->var();
if (validVar(v) && (s.varInfo(v).type() & types) != 0) {
if (!score[v].seen()) { deps.push_back(v); }
score[v].setDepScore(*b, sc);
score[v].setSeen(*b);
}
}
}
}
void ScoreLook::clearDeps() {
for (VarVec::size_type i = 0, end = deps.size(); i != end; ++i) {
score[deps[i]].clear();
}
deps.clear();
best = 0;
}
bool ScoreLook::greater(Var lhs, Var rhs) const {
uint32 rhsMax, rhsMin;
score[rhs].score(rhsMax, rhsMin);
return mode == score_max
? greaterMax(lhs, rhsMax)
: greaterMaxMin(lhs, rhsMax, rhsMin);
}
/////////////////////////////////////////////////////////////////////////////////////////
// Lookahead propagator
/////////////////////////////////////////////////////////////////////////////////////////
Lookahead::Lookahead(const Params& p)
: nodes_(2, LitNode(lit_true()))
, last_(head_id) // circular list
, pos_(head_id) // lookahead start pos
, top_(uint32(-2))
, limit_(p.lim) {
head()->next = head_id;
undo()->next = UINT32_MAX;
if (p.type != Var_t::Hybrid) {
score.mode = ScoreLook::score_max_min;
}
else {
score.mode = ScoreLook::score_max;
}
score.types = p.type;
if (p.topLevelImps) { head()->lit.flag(); }
score.nant = p.restrictNant;
}
Lookahead::~Lookahead() {}
void Lookahead::detach(Solver& s) {
s.removePost(this);
while (saved_.size()>1) {
s.removeUndoWatch(uint32(saved_.size()-1), this);
saved_.pop_back();
}
}
void Lookahead::destroy(Solver* s, bool detach) {
if (s && detach) { Lookahead::detach(*s); }
PostPropagator::destroy(s, detach);
}
uint32 Lookahead::priority() const { return priority_reserved_look; }
void Lookahead::clear() {
score.clearDeps();
while (!saved_.empty()) {
if (saved_.back() != UINT32_MAX) {
splice(saved_.back());
}
saved_.pop_back();
}
LookList(2, *head()).swap(nodes_);
head()->next = head_id;
undo()->next = UINT32_MAX;
last_ = head_id;
top_ = UINT32_MAX;
}
bool Lookahead::init(Solver& s) {
ScoreLook& sc = score;
sc.clearDeps();
Var start = (uint32)sc.score.size();
sc.score.resize(s.numVars()+1);
const VarType types= sc.types;
const bool uniform = types != Var_t::Hybrid;
uint32 add = 0;
uint32 nants = 0;
for (Var v = start; v <= s.numVars(); ++v) {
if (s.value(v) == value_free && (s.varInfo(v).type() & types) != 0 ) {
++add;
nants += s.varInfo(v).nant();
}
}
nodes_.reserve(nodes_.size() + add);
for (Var v = start; v <= s.numVars(); ++v) {
if (s.value(v) == value_free && (s.varInfo(v).type() & types) != 0 ) {
append(Literal(v, s.varInfo(v).preferredSign()), uniform || s.varInfo(v).type() == Var_t::Hybrid);
}
}
if (add && score.nant) {
score.nant = add != nants && nants != 0;
}
return true;
}
void Lookahead::append(Literal p, bool testBoth) {
node(last_)->next = static_cast<NodeId>(nodes_.size());
nodes_.push_back(LitNode(p));
last_ = node(last_)->next;
node(last_)->next = head_id;
// remember to also test ~p by setting watched-flag
if (testBoth) { node(last_)->lit.flag(); }
}
// test p and optionally ~p if necessary
bool Lookahead::test(Solver& s, Literal p) {
return (score.score[p.var()].seen(p) || s.test(p, this))
&& (!p.flagged() || score.score[p.var()].seen(~p) || s.test(~p, this))
&& (imps_.empty() || checkImps(s, p));
}
bool Lookahead::checkImps(Solver& s, Literal p) {
assert(!imps_.empty());
bool ok = true;
if (score.score[p.var()].testedBoth()) {
for (LitVec::const_iterator it = imps_.begin(), end = imps_.end(); it != end && ok; ++it) {
ok = s.force(*it, lit_true());
}
}
imps_.clear();
return ok && (s.queueSize() == 0 || s.propagateUntil(this));
}
// failed-literal detection - stop on failed-literal
bool Lookahead::propagateLevel(Solver& s) {
assert(!s.hasConflict());
saved_.resize(s.decisionLevel()+1, UINT32_MAX);
uint32 undoId = saved_[s.decisionLevel()];
if (undoId == UINT32_MAX) {
undoId = undo_id;
if (s.decisionLevel() != 0) {
s.addUndoWatch(s.decisionLevel(), this);
}
}
score.clearDeps();
score.addDeps = true;
Literal p = node(pos_)->lit;
bool ok = s.value(p.var()) != value_free || test(s, p);
for (LitNode* r = node(pos_); r->next != pos_ && ok; ) {
p = node(r->next)->lit;
if (s.value(p.var()) == value_free) {
if (test(s, p)) { r = node(r->next); }
else { pos_= r->next; ok = false; }
}
else if (r->next != last_ && r->next != head_id) {
// unlink from candidate list
NodeId t = r->next;
r->next = node(t)->next;
// append to undo list
LitNode* u = node(undoId);
node(t)->next = u->next;
u->next = t;
undoId = t;
}
else { r = node(r->next); } // keep iterators valid; never unlink last node and dummy head
}
saved_.back() = undoId;
return ok;
}
bool Lookahead::propagateFixpoint(Solver& s, PostPropagator* ctx) {
if ((empty() || top_ == s.numAssignedVars()) && !score.deps.empty()) {
// nothing to lookahead
return true;
}
bool ok = true;
uint32 dl;
for (dl = s.decisionLevel(); !propagateLevel(s); dl = s.decisionLevel()) {
// some literal failed
// resolve and propagate conflict
assert(s.decisionLevel() >= dl);
if (!s.resolveConflict() || !s.propagateUntil(this)) {
ok = false;
score.clearDeps();
break;
}
}
if (dl == 0 && ok) {
// remember top-level size - no need to redo lookahead
// on level 0 unless we learn a new implication
assert(s.queueSize() == 0);
top_ = s.numAssignedVars();
LitVec().swap(imps_);
}
if (!ctx && limit_ && --limit_ == 0) {
this->destroy(&s, true);
}
return ok;
}
// splice list [undo_.next, ul] back into candidate list
void Lookahead::splice(NodeId ul) {
assert(ul != UINT32_MAX);
if (ul != undo_id) {
assert(undo()->next != UINT32_MAX);
// unlink from undo list
LitNode* ulNode= node(ul);
NodeId first = undo()->next;
undo()->next = ulNode->next;
// splice into look-list
ulNode->next = head()->next;
head()->next = first;
}
}
void Lookahead::undoLevel(Solver& s) {
if (s.decisionLevel() == saved_.size()) {
cancelPropagation();
const LitVec& a = s.trail();
score.scoreLits(s, &a[0]+s.levelStart(s.decisionLevel()), &a[0]+a.size());
if (s.decisionLevel() == static_cast<uint32>(head()->lit.flagged())) {
const Literal* b = &a[0]+s.levelStart(s.decisionLevel());
if (b->flagged()) {
// remember current DL for b
uint32 dist = static_cast<uint32>(((&a[0]+a.size()) - b));
imps_.assign(b+1, b + std::min(dist, uint32(2048)));
}
else if (score.score[b->var()].testedBoth()) {
// all true lits in imps_ follow from both *b and ~*b
// and are therefore implied
LitVec::iterator j = imps_.begin();
for (LitVec::iterator it = imps_.begin(), end = imps_.end(); it != end; ++it) {
if (s.isTrue(*it)) { *j++ = *it; }
}
imps_.erase(j, imps_.end());
}
}
}
else {
assert(saved_.size() >= s.decisionLevel()+1);
saved_.resize(s.decisionLevel()+1);
NodeId n = saved_.back();
saved_.pop_back();
splice(n);
assert(node(last_)->next == head_id);
score.clearDeps();
}
}
Literal Lookahead::heuristic(Solver& s) {
if (s.value(score.best) != value_free) {
// no candidate available
return lit_true();
}
ScoreLook& sc = score;
Literal choice= Literal(sc.best, sc.score[sc.best].prefSign());
if (!sc.deps.empty() && sc.mode == ScoreLook::score_max_min) {
// compute heuristic values for candidates skipped during last lookahead
uint32 min, max;
sc.score[sc.best].score(max, min);
sc.addDeps = false;
bool ok = true;
LitVec::size_type i = 0;
do {
Var v = sc.deps[i];
VarScore& vs = sc.score[v];
if (s.value(v) == value_free) {
uint32 vMin, vMax;
vs.score(vMax, vMin);
if (vMin == 0 || vMin > min || (vMin == min && vMax > max)) {
uint32 neg = vs.score(negLit(v)) > 0 ? vs.score(negLit(v)) : max+1;
uint32 pos = vs.score(posLit(v)) > 0 ? vs.score(posLit(v)) : max+1;
if (!vs.tested(negLit(v))) {
ok = ok && s.test(negLit(v), this);
neg = vs.score(negLit(v));
}
if ((neg > min || (neg == min && pos > max)) && !vs.tested(posLit(v))) {
ok = ok && s.test(posLit(v), this);
}
}
if (vs.testedBoth() && sc.greaterMaxMin(v, max, min)) {
vs.score(max, min);
choice = Literal(v, vs.prefSign());
}
}
} while (++i != sc.deps.size() && ok);
if (!ok) {
// One of the candidates failed. Since none of them failed
// during previous propagation, this indicates that
// either some post propagator has wrong priority or
// parallel solving is active and a stop conflict was set.
// Since we can't resolve the problem here, we simply return the
// literal that caused the conflict
assert(s.hasConflict());
return lit_false();
}
}
return choice;
}
/////////////////////////////////////////////////////////////////////////////////////////
// Lookahead heuristic
/////////////////////////////////////////////////////////////////////////////////////////
UnitHeuristic::UnitHeuristic() { }
void UnitHeuristic::endInit(Solver& s) {
Lookahead* look = static_cast<Lookahead*>(s.getPost(Lookahead::priority_reserved_look));
if (!look) { s.addPost(new Lookahead(Var_t::Atom)); }
}
Literal UnitHeuristic::doSelect(Solver& s) {
Lookahead* look = static_cast<Lookahead*>(s.getPost(Lookahead::priority_reserved_look));
Literal x = look ? look->heuristic(s) : lit_true();
if (x != lit_true()) { return x; }
return SelectFirst::doSelect(s);
}
/////////////////////////////////////////////////////////////////////////////////////////
// Restricted Lookahead heuristic - lookahead and heuristic for a limited number of ops
/////////////////////////////////////////////////////////////////////////////////////////
class Restricted : public UnitHeuristic {
public:
typedef LitVec::size_type size_t;
typedef ConstraintType con_t;
Restricted(DecisionHeuristic* other)
: UnitHeuristic()
, other_(other)
, disabled_(false) {
}
Literal doSelect(Solver& s) {
return !disabled_ ? heuristic(s) : other_->doSelect(s);
}
// heuristic interface - forward to other
void startInit(const Solver& s) { other_->startInit(s); }
void endInit(Solver& s) { other_->endInit(s); }
void setConfig(const HeuParams& p) { other_->setConfig(p); }
void detach(Solver& s) { if (other_.is_owner()) { other_->detach(s); } }
void simplify(const Solver& s, size_t st) { other_->simplify(s, st); }
void undoUntil(const Solver& s, size_t st){ other_->undoUntil(s, st); }
void updateReason(const Solver& s, const LitVec& x, Literal r) { other_->updateReason(s, x, r); }
bool bump(const Solver& s, const WeightLitVec& w, double d) { return other_->bump(s, w, d); }
void newConstraint(const Solver& s, const Literal* p, size_t sz, con_t t) { other_->newConstraint(s, p, sz, t); }
void updateVar(const Solver& s, Var v, uint32 n) { other_->updateVar(s, v, n); }
Literal selectRange(Solver& s, const Literal* f, const Literal* l) { return other_->selectRange(s, f, l); }
private:
void disable(Solver& s) {
disabled_ = true;
if (s.heuristic() == this)
s.setHeuristic(other_.release(), Ownership_t::Acquire);
}
Literal heuristic(Solver& s) {
Literal choice;
Lookahead* look = static_cast<Lookahead*>(s.getPost(Lookahead::priority_reserved_look));
if (!look || !look->hasLimit()) {
choice = other_->doSelect(s);
disable(s);
}
else {
Literal p = look->heuristic(s);
choice = p != lit_true() ? p : other_->doSelect(s);
}
return choice;
}
typedef SingleOwnerPtr<DecisionHeuristic> HeuPtr;
HeuPtr other_;
bool disabled_;
};
UnitHeuristic* UnitHeuristic::restricted(DecisionHeuristic* other) {
return new Restricted(other);
}
}
|