1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
//
// Copyright (c) 2006-2017 Benjamin Kaufmann
//
// This file is part of Clasp. See http://www.cs.uni-potsdam.de/clasp/
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
#include <clasp/model_enumerators.h>
#include <clasp/solver.h>
#include <clasp/minimize_constraint.h>
#include <potassco/basic_types.h>
#include <clasp/dependency_graph.h>
#include <algorithm>
#include <cstdlib>
namespace Clasp {
class ModelEnumerator::ModelFinder : public EnumerationConstraint {
protected:
explicit ModelFinder() : EnumerationConstraint() {}
bool hasModel() const { return !solution.empty(); }
LitVec solution;
};
/////////////////////////////////////////////////////////////////////////////////////////
// strategy_record
/////////////////////////////////////////////////////////////////////////////////////////
class ModelEnumerator::RecordFinder : public ModelFinder {
public:
RecordFinder() : ModelFinder() { }
ConPtr clone() { return new RecordFinder(); }
void doCommitModel(Enumerator& ctx, Solver& s);
bool doUpdate(Solver& s);
void addDecisionNogood(const Solver& s);
void addProjectNogood(const ModelEnumerator& ctx, const Solver& s, bool domain);
};
bool ModelEnumerator::RecordFinder::doUpdate(Solver& s) {
if (hasModel()) {
ConstraintInfo e(Constraint_t::Other);
ClauseCreator::Result ret = ClauseCreator::create(s, solution, ClauseCreator::clause_no_add, e);
solution.clear();
if (ret.local) { add(ret.local);}
if (!ret.ok()) { return false; }
}
return true;
}
void ModelEnumerator::RecordFinder::addDecisionNogood(const Solver& s) {
for (uint32 x = s.decisionLevel(); x != 0; --x) {
Literal d = s.decision(x);
if (!s.auxVar(d.var())) { solution.push_back(~d); }
else if (d != s.tagLiteral()) {
// Todo: set of vars could be reduced to those having the aux var in their reason set.
const LitVec& tr = s.trail();
const uint32 end = x != s.decisionLevel() ? s.levelStart(x+1) : (uint32)tr.size();
for (uint32 n = s.levelStart(x)+1; n != end; ++n) {
if (!s.auxVar(tr[n].var())) { solution.push_back(~tr[n]); }
}
}
}
}
void ModelEnumerator::RecordFinder::addProjectNogood(const ModelEnumerator& ctx, const Solver& s, bool domain) {
for (Var i = 1, end = s.numProblemVars(); i <= end; ++i) {
if (ctx.project(i)) {
Literal p = Literal(i, s.pref(i).sign());
if (!domain || !s.pref(i).has(ValueSet::user_value)) { solution.push_back(~s.trueLit(i)); }
else if (p != s.trueLit(i)) { solution.push_back(p); }
}
}
solution.push_back(~s.sharedContext()->stepLiteral());
}
void ModelEnumerator::RecordFinder::doCommitModel(Enumerator& en, Solver& s) {
ModelEnumerator& ctx = static_cast<ModelEnumerator&>(en);
assert(solution.empty() && "Update not called!");
solution.clear();
if (ctx.trivial()) {
return;
}
else if (!ctx.projectionEnabled()) {
addDecisionNogood(s);
}
else {
addProjectNogood(ctx, s, ctx.domRec());
}
if (solution.empty()) { solution.push_back(lit_false()); }
if (s.sharedContext()->concurrency() > 1) {
// parallel solving active - share solution nogood with other solvers
en.commitClause(solution);
solution.clear();
}
}
/////////////////////////////////////////////////////////////////////////////////////////
// strategy_backtrack
/////////////////////////////////////////////////////////////////////////////////////////
class ModelEnumerator::BacktrackFinder : public ModelFinder {
public:
explicit BacktrackFinder(uint32 projOpts) : ModelFinder(), opts(projOpts) {}
// EnumerationConstraint interface
ConPtr clone() { return new BacktrackFinder(opts); }
void doCommitModel(Enumerator& ctx, Solver& s);
bool doUpdate(Solver& s);
// Constraint interface
PropResult propagate(Solver&, Literal, uint32&);
void reason(Solver& s, Literal p, LitVec& x){
for (uint32 i = 1, end = s.level(p.var()); i <= end; ++i) {
x.push_back(s.decision(i));
}
}
bool simplify(Solver& s, bool reinit) {
for (ProjectDB::iterator it = projNogoods.begin(), end = projNogoods.end(); it != end; ++it) {
if (it->second && it->second->simplify(s, false)) {
s.removeWatch(it->first, this);
it->second->destroy(&s, false);
it->second = 0;
}
}
while (!projNogoods.empty() && projNogoods.back().second == 0) { projNogoods.pop_back(); }
return ModelFinder::simplify(s, reinit);
}
void destroy(Solver* s, bool detach) {
while (!projNogoods.empty()) {
NogoodPair x = projNogoods.back();
if (x.second) {
if (s) { s->removeWatch(x.first, this); }
x.second->destroy(s, detach);
}
projNogoods.pop_back();
}
ModelFinder::destroy(s, detach);
}
typedef std::pair<Literal, Constraint*> NogoodPair;
typedef PodVector<NogoodPair>::type ProjectDB;
ProjectDB projNogoods;
uint32 opts;
};
Constraint::PropResult ModelEnumerator::BacktrackFinder::propagate(Solver& s, Literal, uint32& pos) {
assert(pos < projNogoods.size() && projNogoods[pos].second != 0);
ClauseHead* c = static_cast<ClauseHead*>(projNogoods[pos].second);
if (!c->locked(s)) {
c->destroy(&s, true);
projNogoods[pos].second = (c = 0);
while (!projNogoods.empty() && !projNogoods.back().second) {
projNogoods.pop_back();
}
}
return PropResult(true, c != 0);
}
bool ModelEnumerator::BacktrackFinder::doUpdate(Solver& s) {
if (hasModel()) {
bool ok = true;
uint32 sp = (opts & ModelEnumerator::project_save_progress) != 0 ? Solver::undo_save_phases : 0;
s.undoUntil(s.backtrackLevel(), sp|Solver::undo_pop_bt_level);
ClauseRep rep = ClauseCreator::prepare(s, solution, 0, Constraint_t::Conflict);
if (rep.size == 0 || s.isFalse(rep.lits[0])) { // The decision stack is already ordered.
ok = s.backtrack();
}
else if (rep.size == 1 || s.isFalse(rep.lits[1])) { // The projection nogood is unit. Force the single remaining literal from the current DL.
ok = s.force(rep.lits[0], this);
}
else if (!s.isTrue(rep.lits[0])) { // Shorten the projection nogood by assuming one of its literals to false.
uint32 f = static_cast<uint32>(std::stable_partition(rep.lits+2, rep.lits+rep.size, std::not1(std::bind1st(std::mem_fun(&Solver::isFalse), &s))) - rep.lits);
Literal x = (opts & ModelEnumerator::project_use_heuristic) != 0 ? s.heuristic()->selectRange(s, rep.lits, rep.lits+f) : rep.lits[0];
Constraint* c = Clause::newContractedClause(s, rep, f, true);
POTASSCO_REQUIRE(c, "Invalid constraint!");
s.assume(~x);
// Remember that we must backtrack the current decision
// level in order to guarantee a different projected solution.
s.setBacktrackLevel(s.decisionLevel(), Solver::undo_pop_proj_level);
// Attach nogood to the current decision literal.
// Once we backtrack to x, the then obsolete nogood is destroyed
// keeping the number of projection nogoods linear in the number of (projection) atoms.
s.addWatch(x, this, (uint32)projNogoods.size());
projNogoods.push_back(NogoodPair(x, c));
ok = true;
}
solution.clear();
return ok;
}
if (optimize() || s.sharedContext()->concurrency() == 1 || disjointPath()) {
return true;
}
s.setStopConflict();
return false;
}
void ModelEnumerator::BacktrackFinder::doCommitModel(Enumerator& ctx, Solver& s) {
ModelEnumerator& en = static_cast<ModelEnumerator&>(ctx);
uint32 dl = s.decisionLevel();
solution.assign(1, dl ? ~s.decision(dl) : lit_false());
if (en.projectionEnabled()) {
// Remember the current projected assignment as a nogood.
solution.clear();
for (Var i = 1, end = s.numProblemVars(); i <= end; ++i) {
if (en.project(i)) {
solution.push_back(~s.trueLit(i));
}
}
// Tag solution
solution.push_back(~s.sharedContext()->stepLiteral());
// Remember initial decisions that are projection vars.
for (dl = s.rootLevel(); dl < s.decisionLevel(); ++dl) {
if (!en.project(s.decision(dl+1).var())) { break; }
}
s.setBacktrackLevel(dl, Solver::undo_pop_proj_level);
}
else {
s.setBacktrackLevel(dl);
}
}
/////////////////////////////////////////////////////////////////////////////////////////
// class ModelEnumerator
/////////////////////////////////////////////////////////////////////////////////////////
ModelEnumerator::ModelEnumerator(Strategy st)
: Enumerator() {
std::memset(&opts_, 0, sizeof(Options));
setStrategy(st);
trivial_ = false;
}
Enumerator* EnumOptions::createModelEnumerator(const EnumOptions& opts) {
ModelEnumerator* e = new ModelEnumerator();
ModelEnumerator::Strategy s = ModelEnumerator::strategy_auto;
if (opts.enumMode && opts.models()) {
s = opts.enumMode == enum_bt ? ModelEnumerator::strategy_backtrack : ModelEnumerator::strategy_record;
}
e->setStrategy(s, opts.project | (opts.enumMode == enum_dom_record ? ModelEnumerator::project_dom_lits : 0));
return e;
}
ModelEnumerator::~ModelEnumerator() {}
void ModelEnumerator::setStrategy(Strategy st, uint32 projection, char f) {
opts_.algo = st;
opts_.proj = projection;
filter_ = f;
if ((projection & 7u) != 0) {
opts_.proj |= uint32(project_enable_simple);
}
saved_ = opts_;
}
EnumerationConstraint* ModelEnumerator::doInit(SharedContext& ctx, SharedMinimizeData* opt, int numModels) {
opts_ = saved_;
initProjection(ctx);
if (ctx.concurrency() > 1 && !ModelEnumerator::supportsParallel()) {
opts_.algo = strategy_auto;
}
bool optOne = opt && opt->mode() == MinimizeMode_t::optimize;
bool trivial = (optOne && !domRec()) || std::abs(numModels) == 1;
if (optOne && projectionEnabled()) {
for (const WeightLiteral* it = minimizer()->lits; !isSentinel(it->first) && trivial; ++it) {
trivial = project(it->first.var());
}
if (!trivial) { ctx.warn("Projection: Optimization may depend on enumeration order."); }
}
if (opts_.algo == strategy_auto) { opts_.algo = trivial || (projectionEnabled() && ctx.concurrency() > 1) ? strategy_record : strategy_backtrack; }
trivial_ = trivial;
EnumerationConstraint* c = opts_.algo == strategy_backtrack
? static_cast<ConPtr>(new BacktrackFinder(projectOpts()))
: static_cast<ConPtr>(new RecordFinder());
if (projectionEnabled()) { setIgnoreSymmetric(true); }
return c;
}
void ModelEnumerator::initProjection(SharedContext& ctx) {
project_.clear();
if (!projectionEnabled()) { return; }
const OutputTable& out = ctx.output;
if (domRec()) {
const SolverParams& p = ctx.configuration()->solver(0);
const DomainTable& dom = ctx.heuristic;
const Solver& s = *ctx.master();
if (p.heuId == Heuristic_t::Domain) {
for (uint32 i = 0, end = dom.assume ? sizeVec(*dom.assume) : 0; i != end; ++i) {
ctx.mark((*dom.assume)[i]);
}
DomainTable pref;
for (DomainTable::iterator it = dom.begin(), end = dom.end(); it != end; ++it) {
if ((it->comp() || it->type() == DomModType::Level) && (s.isTrue(it->cond()) || ctx.marked(it->cond()))) {
pref.add(it->var(), it->type(), it->bias(), it->prio(), lit_true());
}
}
pref.simplify();
for (DomainTable::iterator it = pref.begin(), end = pref.end(); it != end; ++it) {
if (it->bias() > 0) { addProject(ctx, it->var()); }
}
for (uint32 i = 0, end = dom.assume ? sizeVec(*dom.assume) : 0; i != end; ++i) {
ctx.unmark((*dom.assume)[i].var());
}
if ((p.heuristic.domMod & HeuParams::mod_level) != 0u) {
struct AddProject : DomainTable::DefaultAction {
AddProject(ModelEnumerator& e, SharedContext& c) : en(&e), ctx(&c) {}
void atom(Literal p, HeuParams::DomPref, uint32) { en->addProject(*ctx, p.var()); }
ModelEnumerator* en; SharedContext* ctx;
} act(*this, ctx);
DomainTable::applyDefault(ctx, act, p.heuristic.domPref);
}
}
if (project_.empty()) {
ctx.warn("domRec ignored: No domain atoms found.");
opts_.proj -= project_dom_lits;
initProjection(ctx);
return;
}
else if (ctx.concurrency() > 1) {
for (uint32 i = 1, end = ctx.concurrency(); i != end; ++i) {
const SolverParams pi = ctx.configuration()->solver(i);
if (pi.heuId != p.heuId || pi.heuristic.domMod != p.heuristic.domMod || (pi.heuristic.domPref && pi.heuristic.domPref != p.heuristic.domPref)) {
ctx.warn("domRec: Inconsistent domain heuristics, results undefined.");
break;
}
}
}
}
else if (out.projectMode() == ProjectMode_t::Output) {
// Mark all relevant output variables.
for (OutputTable::pred_iterator it = out.pred_begin(), end = out.pred_end(); it != end; ++it) {
if (*it->name != filter_) { addProject(ctx, it->cond.var()); }
}
for (OutputTable::range_iterator it = out.vars_begin(), end = out.vars_end(); it != end; ++it) {
addProject(ctx, *it);
}
}
else {
// Mark explicitly requested variables only.
for (OutputTable::lit_iterator it = out.proj_begin(), end = out.proj_end(); it != end; ++it) {
addProject(ctx, it->var());
}
}
}
void ModelEnumerator::addProject(SharedContext& ctx, Var v) {
const uint32 wIdx = v / 32;
const uint32 bIdx = v & 31;
if (wIdx >= project_.size()) { project_.resize(wIdx + 1, 0); }
store_set_bit(project_[wIdx], bIdx);
ctx.setFrozen(v, true);
}
bool ModelEnumerator::project(Var v) const {
const uint32 wIdx = v / 32;
const uint32 bIdx = v & 31;
return wIdx < project_.size() && test_bit(project_[wIdx], bIdx);
}
}
|