1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
|
/* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space
Copyright (C) 2002, 2003, 2004 Free Software Foundation
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.awt.geom;
import java.awt.Rectangle;
import java.awt.Shape;
import java.util.NoSuchElementException;
/**
* A two-dimensional curve that is parameterized with a cubic
* function.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @author Eric Blake (ebb9@email.byu.edu)
* @author Graydon Hoare (graydon@redhat.com)
* @author Sascha Brawer (brawer@dandelis.ch)
* @author Sven de Marothy (sven@physto.se)
*
* @since 1.2
*/
public abstract class CubicCurve2D implements Shape, Cloneable
{
private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
private static final double EPSILON = 1E-10;
/**
* Constructs a new CubicCurve2D. Typical users will want to
* construct instances of a subclass, such as {@link
* CubicCurve2D.Float} or {@link CubicCurve2D.Double}.
*/
protected CubicCurve2D()
{
}
/**
* Returns the <i>x</i> coordinate of the curve’s start
* point.
*/
public abstract double getX1();
/**
* Returns the <i>y</i> coordinate of the curve’s start
* point.
*/
public abstract double getY1();
/**
* Returns the curve’s start point.
*/
public abstract Point2D getP1();
/**
* Returns the <i>x</i> coordinate of the curve’s first
* control point.
*/
public abstract double getCtrlX1();
/**
* Returns the <i>y</i> coordinate of the curve’s first
* control point.
*/
public abstract double getCtrlY1();
/**
* Returns the curve’s first control point.
*/
public abstract Point2D getCtrlP1();
/**
* Returns the <i>x</i> coordinate of the curve’s second
* control point.
*/
public abstract double getCtrlX2();
/**
* Returns the <i>y</i> coordinate of the curve’s second
* control point.
*/
public abstract double getCtrlY2();
/**
* Returns the curve’s second control point.
*/
public abstract Point2D getCtrlP2();
/**
* Returns the <i>x</i> coordinate of the curve’s end
* point.
*/
public abstract double getX2();
/**
* Returns the <i>y</i> coordinate of the curve’s end
* point.
*/
public abstract double getY2();
/**
* Returns the curve’s end point.
*/
public abstract Point2D getP2();
/**
* Changes the curve geometry, separately specifying each coordinate
* value.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve’s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve’s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve’s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve’s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve’s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve’s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve’s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve’s new end
* point.
*/
public abstract void setCurve(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2);
/**
* Changes the curve geometry, specifying coordinate values in an
* array.
*
* @param coords an array containing the new coordinate values. The
* <i>x</i> coordinate of the new start point is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* new first control point is located at <code>coords[offset +
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 3]</code>. The <i>x</i> coordinate of the new second control
* point is located at <code>coords[offset + 4]</code>, its <i>y</i>
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
* coordinate of the new end point is located at <code>coords[offset
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 7]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public void setCurve(double[] coords, int offset)
{
setCurve(coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++]);
}
/**
* Changes the curve geometry, specifying coordinate values in
* separate Point objects.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* <p>The curve does not keep any reference to the passed point
* objects. Therefore, a later change to <code>p1</code>,
* <code>c1</code>, <code>c2</code> or <code>p2</code> will not
* affect the curve geometry.
*
* @param p1 the new start point.
* @param c1 the new first control point.
* @param c2 the new second control point.
* @param p2 the new end point.
*/
public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2)
{
setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(), c2.getX(), c2.getY(),
p2.getX(), p2.getY());
}
/**
* Changes the curve geometry, specifying coordinate values in an
* array of Point objects.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* <p>The curve does not keep references to the passed point
* objects. Therefore, a later change to the <code>pts</code> array
* or any of its elements will not affect the curve geometry.
*
* @param pts an array containing the points. The new start point
* is located at <code>pts[offset]</code>, the new first control
* point at <code>pts[offset + 1]</code>, the new second control
* point at <code>pts[offset + 2]</code>, and the new end point
* at <code>pts[offset + 3]</code>.
*
* @param offset the offset of the start point in <code>pts</code>.
*/
public void setCurve(Point2D[] pts, int offset)
{
setCurve(pts[offset].getX(), pts[offset++].getY(), pts[offset].getX(),
pts[offset++].getY(), pts[offset].getX(), pts[offset++].getY(),
pts[offset].getX(), pts[offset++].getY());
}
/**
* Changes the curve geometry to that of another curve.
*
* @param c the curve whose coordinates will be copied.
*/
public void setCurve(CubicCurve2D c)
{
setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
}
/**
* Calculates the squared flatness of a cubic curve, directly
* specifying each coordinate value. The flatness is the maximal
* distance of a control point to the line between start and end
* point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the square of the distance between C2 and the
* gray line, i.e. the squared length of the red line.
*
* @param x1 the <i>x</i> coordinate of the start point P1.
* @param y1 the <i>y</i> coordinate of the start point P1.
* @param cx1 the <i>x</i> coordinate of the first control point C1.
* @param cy1 the <i>y</i> coordinate of the first control point C1.
* @param cx2 the <i>x</i> coordinate of the second control point C2.
* @param cy2 the <i>y</i> coordinate of the second control point C2.
* @param x2 the <i>x</i> coordinate of the end point P2.
* @param y2 the <i>y</i> coordinate of the end point P2.
*/
public static double getFlatnessSq(double x1, double y1, double cx1,
double cy1, double cx2, double cy2,
double x2, double y2)
{
return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, cx1, cy1),
Line2D.ptSegDistSq(x1, y1, x2, y2, cx2, cy2));
}
/**
* Calculates the flatness of a cubic curve, directly specifying
* each coordinate value. The flatness is the maximal distance of a
* control point to the line between start and end point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the distance between C2 and the gray line,
* i.e. the length of the red line.
*
* @param x1 the <i>x</i> coordinate of the start point P1.
* @param y1 the <i>y</i> coordinate of the start point P1.
* @param cx1 the <i>x</i> coordinate of the first control point C1.
* @param cy1 the <i>y</i> coordinate of the first control point C1.
* @param cx2 the <i>x</i> coordinate of the second control point C2.
* @param cy2 the <i>y</i> coordinate of the second control point C2.
* @param x2 the <i>x</i> coordinate of the end point P2.
* @param y2 the <i>y</i> coordinate of the end point P2.
*/
public static double getFlatness(double x1, double y1, double cx1,
double cy1, double cx2, double cy2,
double x2, double y2)
{
return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2));
}
/**
* Calculates the squared flatness of a cubic curve, specifying the
* coordinate values in an array. The flatness is the maximal
* distance of a control point to the line between start and end
* point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the square of the distance between C2 and the
* gray line, i.e. the squared length of the red line.
*
* @param coords an array containing the coordinate values. The
* <i>x</i> coordinate of the start point P1 is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* first control point C1 is located at <code>coords[offset +
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 3]</code>. The <i>x</i> coordinate of the second control point C2
* is located at <code>coords[offset + 4]</code>, its <i>y</i>
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
* coordinate of the end point P2 is located at <code>coords[offset
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 7]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public static double getFlatnessSq(double[] coords, int offset)
{
return getFlatnessSq(coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++]);
}
/**
* Calculates the flatness of a cubic curve, specifying the
* coordinate values in an array. The flatness is the maximal
* distance of a control point to the line between start and end
* point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the distance between C2 and the gray line,
* i.e. the length of the red line.
*
* @param coords an array containing the coordinate values. The
* <i>x</i> coordinate of the start point P1 is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* first control point C1 is located at <code>coords[offset +
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 3]</code>. The <i>x</i> coordinate of the second control point C2
* is located at <code>coords[offset + 4]</code>, its <i>y</i>
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
* coordinate of the end point P2 is located at <code>coords[offset
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 7]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public static double getFlatness(double[] coords, int offset)
{
return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++],
coords[offset++], coords[offset++],
coords[offset++], coords[offset++],
coords[offset++], coords[offset++]));
}
/**
* Calculates the squared flatness of this curve. The flatness is
* the maximal distance of a control point to the line between start
* and end point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the square of the distance between C2 and the
* gray line, i.e. the squared length of the red line.
*/
public double getFlatnessSq()
{
return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
getCtrlX2(), getCtrlY2(), getX2(), getY2());
}
/**
* Calculates the flatness of this curve. The flatness is the
* maximal distance of a control point to the line between start and
* end point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the distance between C2 and the gray line,
* i.e. the length of the red line.
*/
public double getFlatness()
{
return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
getCtrlX2(), getCtrlY2(), getX2(), getY2()));
}
/**
* Subdivides this curve into two halves.
*
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
* height="180" alt="A drawing that illustrates the effects of
* subdividing a CubicCurve2D" />
*
* @param left a curve whose geometry will be set to the left half
* of this curve, or <code>null</code> if the caller is not
* interested in the left half.
*
* @param right a curve whose geometry will be set to the right half
* of this curve, or <code>null</code> if the caller is not
* interested in the right half.
*/
public void subdivide(CubicCurve2D left, CubicCurve2D right)
{
// Use empty slots at end to share single array.
double[] d = new double[]
{
getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(),
getCtrlY2(), getX2(), getY2(), 0, 0, 0, 0, 0, 0
};
subdivide(d, 0, d, 0, d, 6);
if (left != null)
left.setCurve(d, 0);
if (right != null)
right.setCurve(d, 6);
}
/**
* Subdivides a cubic curve into two halves.
*
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
* height="180" alt="A drawing that illustrates the effects of
* subdividing a CubicCurve2D" />
*
* @param src the curve to be subdivided.
*
* @param left a curve whose geometry will be set to the left half
* of <code>src</code>, or <code>null</code> if the caller is not
* interested in the left half.
*
* @param right a curve whose geometry will be set to the right half
* of <code>src</code>, or <code>null</code> if the caller is not
* interested in the right half.
*/
public static void subdivide(CubicCurve2D src, CubicCurve2D left,
CubicCurve2D right)
{
src.subdivide(left, right);
}
/**
* Subdivides a cubic curve into two halves, passing all coordinates
* in an array.
*
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
* height="180" alt="A drawing that illustrates the effects of
* subdividing a CubicCurve2D" />
*
* <p>The left end point and the right start point will always be
* identical. Memory-concious programmers thus may want to pass the
* same array for both <code>left</code> and <code>right</code>, and
* set <code>rightOff</code> to <code>leftOff + 6</code>.
*
* @param src an array containing the coordinates of the curve to be
* subdivided. The <i>x</i> coordinate of the start point P1 is
* located at <code>src[srcOff]</code>, its <i>y</i> at
* <code>src[srcOff + 1]</code>. The <i>x</i> coordinate of the
* first control point C1 is located at <code>src[srcOff +
* 2]</code>, its <i>y</i> at <code>src[srcOff + 3]</code>. The
* <i>x</i> coordinate of the second control point C2 is located at
* <code>src[srcOff + 4]</code>, its <i>y</i> at <code>src[srcOff +
* 5]</code>. The <i>x</i> coordinate of the end point is located at
* <code>src[srcOff + 6]</code>, its <i>y</i> at <code>src[srcOff +
* 7]</code>.
*
* @param srcOff an offset into <code>src</code>, specifying
* the index of the start point’s <i>x</i> coordinate.
*
* @param left an array that will receive the coordinates of the
* left half of <code>src</code>. It is acceptable to pass
* <code>src</code>. A caller who is not interested in the left half
* can pass <code>null</code>.
*
* @param leftOff an offset into <code>left</code>, specifying the
* index where the start point’s <i>x</i> coordinate will be
* stored.
*
* @param right an array that will receive the coordinates of the
* right half of <code>src</code>. It is acceptable to pass
* <code>src</code> or <code>left</code>. A caller who is not
* interested in the right half can pass <code>null</code>.
*
* @param rightOff an offset into <code>right</code>, specifying the
* index where the start point’s <i>x</i> coordinate will be
* stored.
*/
public static void subdivide(double[] src, int srcOff, double[] left,
int leftOff, double[] right, int rightOff)
{
// To understand this code, please have a look at the image
// "CubicCurve2D-3.png" in the sub-directory "doc-files".
double src_C1_x;
double src_C1_y;
double src_C2_x;
double src_C2_y;
double left_P1_x;
double left_P1_y;
double left_C1_x;
double left_C1_y;
double left_C2_x;
double left_C2_y;
double right_C1_x;
double right_C1_y;
double right_C2_x;
double right_C2_y;
double right_P2_x;
double right_P2_y;
double Mid_x; // Mid = left.P2 = right.P1
double Mid_y; // Mid = left.P2 = right.P1
left_P1_x = src[srcOff];
left_P1_y = src[srcOff + 1];
src_C1_x = src[srcOff + 2];
src_C1_y = src[srcOff + 3];
src_C2_x = src[srcOff + 4];
src_C2_y = src[srcOff + 5];
right_P2_x = src[srcOff + 6];
right_P2_y = src[srcOff + 7];
left_C1_x = (left_P1_x + src_C1_x) / 2;
left_C1_y = (left_P1_y + src_C1_y) / 2;
right_C2_x = (right_P2_x + src_C2_x) / 2;
right_C2_y = (right_P2_y + src_C2_y) / 2;
Mid_x = (src_C1_x + src_C2_x) / 2;
Mid_y = (src_C1_y + src_C2_y) / 2;
left_C2_x = (left_C1_x + Mid_x) / 2;
left_C2_y = (left_C1_y + Mid_y) / 2;
right_C1_x = (Mid_x + right_C2_x) / 2;
right_C1_y = (Mid_y + right_C2_y) / 2;
Mid_x = (left_C2_x + right_C1_x) / 2;
Mid_y = (left_C2_y + right_C1_y) / 2;
if (left != null)
{
left[leftOff] = left_P1_x;
left[leftOff + 1] = left_P1_y;
left[leftOff + 2] = left_C1_x;
left[leftOff + 3] = left_C1_y;
left[leftOff + 4] = left_C2_x;
left[leftOff + 5] = left_C2_y;
left[leftOff + 6] = Mid_x;
left[leftOff + 7] = Mid_y;
}
if (right != null)
{
right[rightOff] = Mid_x;
right[rightOff + 1] = Mid_y;
right[rightOff + 2] = right_C1_x;
right[rightOff + 3] = right_C1_y;
right[rightOff + 4] = right_C2_x;
right[rightOff + 5] = right_C2_y;
right[rightOff + 6] = right_P2_x;
right[rightOff + 7] = right_P2_y;
}
}
/**
* Finds the non-complex roots of a cubic equation, placing the
* results into the same array as the equation coefficients. The
* following equation is being solved:
*
* <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
* + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
* + <code>eqn[1]</code> · <i>x</i>
* + <code>eqn[0]</code>
* = 0
* </blockquote>
*
* <p>For some background about solving cubic equations, see the
* article <a
* href="http://planetmath.org/encyclopedia/CubicFormula.html"
* >“Cubic Formula”</a> in <a
* href="http://planetmath.org/" >PlanetMath</a>. For an extensive
* library of numerical algorithms written in the C programming
* language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
* Scientific Library</a>, from which this implementation was
* adapted.
*
* @param eqn an array with the coefficients of the equation. When
* this procedure has returned, <code>eqn</code> will contain the
* non-complex solutions of the equation, in no particular order.
*
* @return the number of non-complex solutions. A result of 0
* indicates that the equation has no non-complex solutions. A
* result of -1 indicates that the equation is constant (i.e.,
* always or never zero).
*
* @see #solveCubic(double[], double[])
* @see QuadCurve2D#solveQuadratic(double[],double[])
*
* @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
* (original C implementation in the <a href=
* "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
*
* @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
* (adaptation to Java)
*/
public static int solveCubic(double[] eqn)
{
return solveCubic(eqn, eqn);
}
/**
* Finds the non-complex roots of a cubic equation. The following
* equation is being solved:
*
* <blockquote><code>eqn[3]</code> · <i>x</i><sup>3</sup>
* + <code>eqn[2]</code> · <i>x</i><sup>2</sup>
* + <code>eqn[1]</code> · <i>x</i>
* + <code>eqn[0]</code>
* = 0
* </blockquote>
*
* <p>For some background about solving cubic equations, see the
* article <a
* href="http://planetmath.org/encyclopedia/CubicFormula.html"
* >“Cubic Formula”</a> in <a
* href="http://planetmath.org/" >PlanetMath</a>. For an extensive
* library of numerical algorithms written in the C programming
* language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
* Scientific Library</a>, from which this implementation was
* adapted.
*
* @see QuadCurve2D#solveQuadratic(double[],double[])
*
* @param eqn an array with the coefficients of the equation.
*
* @param res an array into which the non-complex roots will be
* stored. The results may be in an arbitrary order. It is safe to
* pass the same array object reference for both <code>eqn</code>
* and <code>res</code>.
*
* @return the number of non-complex solutions. A result of 0
* indicates that the equation has no non-complex solutions. A
* result of -1 indicates that the equation is constant (i.e.,
* always or never zero).
*
* @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
* (original C implementation in the <a href=
* "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
*
* @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
* (adaptation to Java)
*/
public static int solveCubic(double[] eqn, double[] res)
{
// Adapted from poly/solve_cubic.c in the GNU Scientific Library
// (GSL), revision 1.7 of 2003-07-26. For the original source, see
// http://www.gnu.org/software/gsl/
//
// Brian Gough, the author of that code, has granted the
// permission to use it in GNU Classpath under the GNU Classpath
// license, and has assigned the copyright to the Free Software
// Foundation.
//
// The Java implementation is very similar to the GSL code, but
// not a strict one-to-one copy. For example, GSL would sort the
// result.
double a;
double b;
double c;
double q;
double r;
double Q;
double R;
double c3;
double Q3;
double R2;
double CR2;
double CQ3;
// If the cubic coefficient is zero, we have a quadratic equation.
c3 = eqn[3];
if (c3 == 0)
return QuadCurve2D.solveQuadratic(eqn, res);
// Divide the equation by the cubic coefficient.
c = eqn[0] / c3;
b = eqn[1] / c3;
a = eqn[2] / c3;
// We now need to solve x^3 + ax^2 + bx + c = 0.
q = a * a - 3 * b;
r = 2 * a * a * a - 9 * a * b + 27 * c;
Q = q / 9;
R = r / 54;
Q3 = Q * Q * Q;
R2 = R * R;
CR2 = 729 * r * r;
CQ3 = 2916 * q * q * q;
if (R == 0 && Q == 0)
{
// The GNU Scientific Library would return three identical
// solutions in this case.
res[0] = -a / 3;
return 1;
}
if (CR2 == CQ3)
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some double roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
double sqrtQ = Math.sqrt(Q);
if (R > 0)
{
res[0] = -2 * sqrtQ - a / 3;
res[1] = sqrtQ - a / 3;
}
else
{
res[0] = -sqrtQ - a / 3;
res[1] = 2 * sqrtQ - a / 3;
}
return 2;
}
if (CR2 < CQ3) /* equivalent to R2 < Q3 */
{
double sqrtQ = Math.sqrt(Q);
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
double theta = Math.acos(R / sqrtQ3);
double norm = -2 * sqrtQ;
res[0] = norm * Math.cos(theta / 3) - a / 3;
res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a / 3;
res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a / 3;
// The GNU Scientific Library sorts the results. We don't.
return 3;
}
double sgnR = (R >= 0 ? 1 : -1);
double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0);
double B = Q / A;
res[0] = A + B - a / 3;
return 1;
}
/**
* Determines whether a position lies inside the area bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered “inside” a CubicCurve2D.
*/
public boolean contains(double x, double y)
{
if (! getBounds2D().contains(x, y))
return false;
return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
}
/**
* Determines whether a point lies inside the area bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered “inside” a CubicCurve2D.
*/
public boolean contains(Point2D p)
{
return contains(p.getX(), p.getY());
}
/**
* Determines whether any part of a rectangle is inside the area bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered “inside” in a CubicCurve2D.
* @see #contains(double, double)
*/
public boolean intersects(double x, double y, double w, double h)
{
if (! getBounds2D().contains(x, y, w, h))
return false;
/* Does any edge intersect? */
if (getAxisIntersections(x, y, true, w) != 0 /* top */
|| getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
|| getAxisIntersections(x + w, y, false, h) != 0 /* right */
|| getAxisIntersections(x, y, false, h) != 0) /* left */
return true;
/* No intersections, is any point inside? */
if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
return true;
return false;
}
/**
* Determines whether any part of a Rectangle2D is inside the area bounded
* by the curve and the straight line connecting its end points.
* @see #intersects(double, double, double, double)
*/
public boolean intersects(Rectangle2D r)
{
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* Determine whether a rectangle is entirely inside the area that is bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered “inside” a CubicCurve2D.
* @see #contains(double, double)
*/
public boolean contains(double x, double y, double w, double h)
{
if (! getBounds2D().intersects(x, y, w, h))
return false;
/* Does any edge intersect? */
if (getAxisIntersections(x, y, true, w) != 0 /* top */
|| getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
|| getAxisIntersections(x + w, y, false, h) != 0 /* right */
|| getAxisIntersections(x, y, false, h) != 0) /* left */
return false;
/* No intersections, is any point inside? */
if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
return true;
return false;
}
/**
* Determine whether a Rectangle2D is entirely inside the area that is
* bounded by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered “inside” a CubicCurve2D.
* @see #contains(double, double)
*/
public boolean contains(Rectangle2D r)
{
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* Determines the smallest rectangle that encloses the
* curve’s start, end and control points.
*/
public Rectangle getBounds()
{
return getBounds2D().getBounds();
}
public PathIterator getPathIterator(final AffineTransform at)
{
return new PathIterator()
{
/** Current coordinate. */
private int current = 0;
public int getWindingRule()
{
return WIND_NON_ZERO;
}
public boolean isDone()
{
return current >= 2;
}
public void next()
{
current++;
}
public int currentSegment(float[] coords)
{
int result;
switch (current)
{
case 0:
coords[0] = (float) getX1();
coords[1] = (float) getY1();
result = SEG_MOVETO;
break;
case 1:
coords[0] = (float) getCtrlX1();
coords[1] = (float) getCtrlY1();
coords[2] = (float) getCtrlX2();
coords[3] = (float) getCtrlY2();
coords[4] = (float) getX2();
coords[5] = (float) getY2();
result = SEG_CUBICTO;
break;
default:
throw new NoSuchElementException("cubic iterator out of bounds");
}
if (at != null)
at.transform(coords, 0, coords, 0, 3);
return result;
}
public int currentSegment(double[] coords)
{
int result;
switch (current)
{
case 0:
coords[0] = getX1();
coords[1] = getY1();
result = SEG_MOVETO;
break;
case 1:
coords[0] = getCtrlX1();
coords[1] = getCtrlY1();
coords[2] = getCtrlX2();
coords[3] = getCtrlY2();
coords[4] = getX2();
coords[5] = getY2();
result = SEG_CUBICTO;
break;
default:
throw new NoSuchElementException("cubic iterator out of bounds");
}
if (at != null)
at.transform(coords, 0, coords, 0, 3);
return result;
}
};
}
public PathIterator getPathIterator(AffineTransform at, double flatness)
{
return new FlatteningPathIterator(getPathIterator(at), flatness);
}
/**
* Create a new curve with the same contents as this one.
*
* @return the clone.
*/
public Object clone()
{
try
{
return super.clone();
}
catch (CloneNotSupportedException e)
{
throw (Error) new InternalError().initCause(e); // Impossible
}
}
/**
* Helper method used by contains() and intersects() methods, that
* returns the number of curve/line intersections on a given axis
* extending from a certain point.
*
* @param x x coordinate of the origin point
* @param y y coordinate of the origin point
* @param useYaxis axis used, if true the positive Y axis is used,
* false uses the positive X axis.
*
* This is an implementation of the line-crossings algorithm,
* Detailed in an article on Eric Haines' page:
* http://www.acm.org/tog/editors/erich/ptinpoly/
*
* A special-case not adressed in this code is self-intersections
* of the curve, e.g. if the axis intersects the self-itersection,
* the degenerate roots of the polynomial will erroneously count as
* a single intersection of the curve, and not two.
*/
private int getAxisIntersections(double x, double y, boolean useYaxis,
double distance)
{
int nCrossings = 0;
double a0;
double a1;
double a2;
double a3;
double b0;
double b1;
double b2;
double b3;
double[] r = new double[4];
int nRoots;
a0 = a3 = 0.0;
if (useYaxis)
{
a0 = getY1() - y;
a1 = getCtrlY1() - y;
a2 = getCtrlY2() - y;
a3 = getY2() - y;
b0 = getX1() - x;
b1 = getCtrlX1() - x;
b2 = getCtrlX2() - x;
b3 = getX2() - x;
}
else
{
a0 = getX1() - x;
a1 = getCtrlX1() - x;
a2 = getCtrlX2() - x;
a3 = getX2() - x;
b0 = getY1() - y;
b1 = getCtrlY1() - y;
b2 = getCtrlY2() - y;
b3 = getY2() - y;
}
/* If the axis intersects a start/endpoint, shift it up by some small
amount to guarantee the line is 'inside'
If this is not done, bad behaviour may result for points on that axis.*/
if (a0 == 0.0 || a3 == 0.0)
{
double small = getFlatness() * EPSILON;
if (a0 == 0.0)
a0 -= small;
if (a3 == 0.0)
a3 -= small;
}
if (useYaxis)
{
if (Line2D.linesIntersect(b0, a0, b3, a3, EPSILON, 0.0, distance, 0.0))
nCrossings++;
}
else
{
if (Line2D.linesIntersect(a0, b0, a3, b3, 0.0, EPSILON, 0.0, distance))
nCrossings++;
}
r[0] = a0;
r[1] = 3 * (a1 - a0);
r[2] = 3 * (a2 + a0 - 2 * a1);
r[3] = a3 - 3 * a2 + 3 * a1 - a0;
if ((nRoots = solveCubic(r)) != 0)
for (int i = 0; i < nRoots; i++)
{
double t = r[i];
if (t >= 0.0 && t <= 1.0)
{
double crossing = -(t * t * t) * (b0 - 3 * b1 + 3 * b2 - b3)
+ 3 * t * t * (b0 - 2 * b1 + b2)
+ 3 * t * (b1 - b0) + b0;
if (crossing > 0.0 && crossing <= distance)
nCrossings++;
}
}
return (nCrossings);
}
/**
* A two-dimensional curve that is parameterized with a cubic
* function and stores coordinate values in double-precision
* floating-point format.
*
* @see CubicCurve2D.Float
*
* @author Eric Blake (ebb9@email.byu.edu)
* @author Sascha Brawer (brawer@dandelis.ch)
*/
public static class Double extends CubicCurve2D
{
/**
* The <i>x</i> coordinate of the curve’s start point.
*/
public double x1;
/**
* The <i>y</i> coordinate of the curve’s start point.
*/
public double y1;
/**
* The <i>x</i> coordinate of the curve’s first control point.
*/
public double ctrlx1;
/**
* The <i>y</i> coordinate of the curve’s first control point.
*/
public double ctrly1;
/**
* The <i>x</i> coordinate of the curve’s second control point.
*/
public double ctrlx2;
/**
* The <i>y</i> coordinate of the curve’s second control point.
*/
public double ctrly2;
/**
* The <i>x</i> coordinate of the curve’s end point.
*/
public double x2;
/**
* The <i>y</i> coordinate of the curve’s end point.
*/
public double y2;
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in double-precision floating-point format. All points are
* initially at position (0, 0).
*/
public Double()
{
}
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in double-precision floating-point format, specifying the
* initial position of each point.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve’s start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve’s start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve’s first
* control point.
*
* @param cy1 the <i>y</i> coordinate of the curve’s first
* control point.
*
* @param cx2 the <i>x</i> coordinate of the curve’s second
* control point.
*
* @param cy2 the <i>y</i> coordinate of the curve’s second
* control point.
*
* @param x2 the <i>x</i> coordinate of the curve’s end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve’s end
* point.
*/
public Double(double x1, double y1, double cx1, double cy1, double cx2,
double cy2, double x2, double y2)
{
this.x1 = x1;
this.y1 = y1;
ctrlx1 = cx1;
ctrly1 = cy1;
ctrlx2 = cx2;
ctrly2 = cy2;
this.x2 = x2;
this.y2 = y2;
}
/**
* Returns the <i>x</i> coordinate of the curve’s start
* point.
*/
public double getX1()
{
return x1;
}
/**
* Returns the <i>y</i> coordinate of the curve’s start
* point.
*/
public double getY1()
{
return y1;
}
/**
* Returns the curve’s start point.
*/
public Point2D getP1()
{
return new Point2D.Double(x1, y1);
}
/**
* Returns the <i>x</i> coordinate of the curve’s first
* control point.
*/
public double getCtrlX1()
{
return ctrlx1;
}
/**
* Returns the <i>y</i> coordinate of the curve’s first
* control point.
*/
public double getCtrlY1()
{
return ctrly1;
}
/**
* Returns the curve’s first control point.
*/
public Point2D getCtrlP1()
{
return new Point2D.Double(ctrlx1, ctrly1);
}
/**
* Returns the <i>x</i> coordinate of the curve’s second
* control point.
*/
public double getCtrlX2()
{
return ctrlx2;
}
/**
* Returns the <i>y</i> coordinate of the curve’s second
* control point.
*/
public double getCtrlY2()
{
return ctrly2;
}
/**
* Returns the curve’s second control point.
*/
public Point2D getCtrlP2()
{
return new Point2D.Double(ctrlx2, ctrly2);
}
/**
* Returns the <i>x</i> coordinate of the curve’s end
* point.
*/
public double getX2()
{
return x2;
}
/**
* Returns the <i>y</i> coordinate of the curve’s end
* point.
*/
public double getY2()
{
return y2;
}
/**
* Returns the curve’s end point.
*/
public Point2D getP2()
{
return new Point2D.Double(x2, y2);
}
/**
* Changes the curve geometry, separately specifying each coordinate
* value.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve’s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve’s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve’s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve’s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve’s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve’s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve’s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve’s new end
* point.
*/
public void setCurve(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2)
{
this.x1 = x1;
this.y1 = y1;
ctrlx1 = cx1;
ctrly1 = cy1;
ctrlx2 = cx2;
ctrly2 = cy2;
this.x2 = x2;
this.y2 = y2;
}
/**
* Determines the smallest rectangle that encloses the
* curve’s start, end and control points. As the
* illustration below shows, the invisible control points may cause
* the bounds to be much larger than the area that is actually
* covered by the curve.
*
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
* alt="An illustration of the bounds of a CubicCurve2D" />
*/
public Rectangle2D getBounds2D()
{
double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
double ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
double nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
}
}
/**
* A two-dimensional curve that is parameterized with a cubic
* function and stores coordinate values in single-precision
* floating-point format.
*
* @see CubicCurve2D.Float
*
* @author Eric Blake (ebb9@email.byu.edu)
* @author Sascha Brawer (brawer@dandelis.ch)
*/
public static class Float extends CubicCurve2D
{
/**
* The <i>x</i> coordinate of the curve’s start point.
*/
public float x1;
/**
* The <i>y</i> coordinate of the curve’s start point.
*/
public float y1;
/**
* The <i>x</i> coordinate of the curve’s first control point.
*/
public float ctrlx1;
/**
* The <i>y</i> coordinate of the curve’s first control point.
*/
public float ctrly1;
/**
* The <i>x</i> coordinate of the curve’s second control point.
*/
public float ctrlx2;
/**
* The <i>y</i> coordinate of the curve’s second control point.
*/
public float ctrly2;
/**
* The <i>x</i> coordinate of the curve’s end point.
*/
public float x2;
/**
* The <i>y</i> coordinate of the curve’s end point.
*/
public float y2;
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in single-precision floating-point format. All points are
* initially at position (0, 0).
*/
public Float()
{
}
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in single-precision floating-point format, specifying the
* initial position of each point.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve’s start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve’s start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve’s first
* control point.
*
* @param cy1 the <i>y</i> coordinate of the curve’s first
* control point.
*
* @param cx2 the <i>x</i> coordinate of the curve’s second
* control point.
*
* @param cy2 the <i>y</i> coordinate of the curve’s second
* control point.
*
* @param x2 the <i>x</i> coordinate of the curve’s end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve’s end
* point.
*/
public Float(float x1, float y1, float cx1, float cy1, float cx2,
float cy2, float x2, float y2)
{
this.x1 = x1;
this.y1 = y1;
ctrlx1 = cx1;
ctrly1 = cy1;
ctrlx2 = cx2;
ctrly2 = cy2;
this.x2 = x2;
this.y2 = y2;
}
/**
* Returns the <i>x</i> coordinate of the curve’s start
* point.
*/
public double getX1()
{
return x1;
}
/**
* Returns the <i>y</i> coordinate of the curve’s start
* point.
*/
public double getY1()
{
return y1;
}
/**
* Returns the curve’s start point.
*/
public Point2D getP1()
{
return new Point2D.Float(x1, y1);
}
/**
* Returns the <i>x</i> coordinate of the curve’s first
* control point.
*/
public double getCtrlX1()
{
return ctrlx1;
}
/**
* Returns the <i>y</i> coordinate of the curve’s first
* control point.
*/
public double getCtrlY1()
{
return ctrly1;
}
/**
* Returns the curve’s first control point.
*/
public Point2D getCtrlP1()
{
return new Point2D.Float(ctrlx1, ctrly1);
}
/**
* Returns the <i>s</i> coordinate of the curve’s second
* control point.
*/
public double getCtrlX2()
{
return ctrlx2;
}
/**
* Returns the <i>y</i> coordinate of the curve’s second
* control point.
*/
public double getCtrlY2()
{
return ctrly2;
}
/**
* Returns the curve’s second control point.
*/
public Point2D getCtrlP2()
{
return new Point2D.Float(ctrlx2, ctrly2);
}
/**
* Returns the <i>x</i> coordinate of the curve’s end
* point.
*/
public double getX2()
{
return x2;
}
/**
* Returns the <i>y</i> coordinate of the curve’s end
* point.
*/
public double getY2()
{
return y2;
}
/**
* Returns the curve’s end point.
*/
public Point2D getP2()
{
return new Point2D.Float(x2, y2);
}
/**
* Changes the curve geometry, separately specifying each coordinate
* value as a double-precision floating-point number.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve’s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve’s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve’s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve’s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve’s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve’s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve’s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve’s new end
* point.
*/
public void setCurve(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2)
{
this.x1 = (float) x1;
this.y1 = (float) y1;
ctrlx1 = (float) cx1;
ctrly1 = (float) cy1;
ctrlx2 = (float) cx2;
ctrly2 = (float) cy2;
this.x2 = (float) x2;
this.y2 = (float) y2;
}
/**
* Changes the curve geometry, separately specifying each coordinate
* value as a single-precision floating-point number.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve’s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve’s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve’s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve’s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve’s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve’s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve’s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve’s new end
* point.
*/
public void setCurve(float x1, float y1, float cx1, float cy1, float cx2,
float cy2, float x2, float y2)
{
this.x1 = x1;
this.y1 = y1;
ctrlx1 = cx1;
ctrly1 = cy1;
ctrlx2 = cx2;
ctrly2 = cy2;
this.x2 = x2;
this.y2 = y2;
}
/**
* Determines the smallest rectangle that encloses the
* curve’s start, end and control points. As the
* illustration below shows, the invisible control points may cause
* the bounds to be much larger than the area that is actually
* covered by the curve.
*
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
* alt="An illustration of the bounds of a CubicCurve2D" />
*/
public Rectangle2D getBounds2D()
{
float nx1 = (float) Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
float ny1 = (float) Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
float nx2 = (float) Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
float ny2 = (float) Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
}
}
}
|