1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
/* Bidi.java -- Bidirectional Algorithm implementation
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.text;
import java.awt.font.NumericShaper;
import java.awt.font.TextAttribute;
import java.util.ArrayList;
/**
* Bidirectional Algorithm implementation.
*
* The full algorithm is
* <a href="http://www.unicode.org/unicode/reports/tr9/">Unicode Standard
* Annex #9: The Bidirectional Algorithm</a>.
*
* @since 1.4
*/
public final class Bidi
{
/**
* This indicates that a strongly directional character in the text should
* set the initial direction, but if no such character is found, then the
* initial direction will be left-to-right.
*/
public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT = -2;
/**
* This indicates that a strongly directional character in the text should
* set the initial direction, but if no such character is found, then the
* initial direction will be right-to-left.
*/
public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT = -1;
/**
* This indicates that the initial direction should be left-to-right.
*/
public static final int DIRECTION_LEFT_TO_RIGHT = 0;
/**
* This indicates that the initial direction should be right-to-left.
*/
public static final int DIRECTION_RIGHT_TO_LEFT = 1;
// Flags used when computing the result.
private static final int LTOR = 1 << DIRECTION_LEFT_TO_RIGHT;
private static final int RTOL = 1 << DIRECTION_RIGHT_TO_LEFT;
// The text we are examining, and the starting offset.
// If we had a better way to handle createLineBidi, we wouldn't
// need this at all -- which for the String case would be an
// efficiency win.
private char[] text;
private int textOffset;
// The embeddings corresponding to the text, and the starting offset.
private byte[] embeddings;
private int embeddingOffset;
// The length of the text (and embeddings) to use.
private int length;
// The flags.
private int flags;
// All instance fields following this point are initialized
// during analysis. Fields before this must be set by the constructor.
// The initial embedding level.
private int baseEmbedding;
// The type of each character in the text.
private byte[] types;
// The levels we compute.
private byte[] levels;
// A list of indices where a formatting code was found. These
// are indicies into the original text -- not into the text after
// the codes have been removed.
private ArrayList formatterIndices;
// Indices of the starts of runs in the text.
private int[] runs;
// A convenience field where we keep track of what kinds of runs
// we've seen.
private int resultFlags;
/**
* Create a new Bidi object given an attributed character iterator.
* This constructor will examine various attributes of the text:
* <ul>
* <li> {@link TextAttribute#RUN_DIRECTION} is used to determine the
* paragraph's base embedding level. This constructor will recognize
* either {@link TextAttribute#RUN_DIRECTION_LTR} or
* {@link TextAttribute#RUN_DIRECTION_RTL}. If neither is given,
* {@link #DIRECTION_DEFAULT_LEFT_TO_RIGHT} is assumed.
* </li>
*
* <li> If {@link TextAttribute#NUMERIC_SHAPING} is seen, then numeric
* shaping will be done before the Bidi algorithm is run.
* </li>
*
* <li> If {@link TextAttribute#BIDI_EMBEDDING} is seen on a given
* character, then the value of this attribute will be used as an
* embedding level override.
* </li>
* </ul>
* @param iter the attributed character iterator to use
*/
public Bidi(AttributedCharacterIterator iter)
{
// If set, this attribute should be set on all characters.
// We don't check this (should we?) but we do assume that we
// can simply examine the first character.
Object val = iter.getAttribute(TextAttribute.RUN_DIRECTION);
if (val == TextAttribute.RUN_DIRECTION_LTR)
this.flags = DIRECTION_LEFT_TO_RIGHT;
else if (val == TextAttribute.RUN_DIRECTION_RTL)
this.flags = DIRECTION_RIGHT_TO_LEFT;
else
this.flags = DIRECTION_DEFAULT_LEFT_TO_RIGHT;
// Likewise this attribute should be specified on the whole text.
// We read it here and then, if it is set, we apply the numeric shaper
// to the text before processing it.
NumericShaper shaper = null;
val = iter.getAttribute(TextAttribute.NUMERIC_SHAPING);
if (val instanceof NumericShaper)
shaper = (NumericShaper) val;
char[] text = new char[iter.getEndIndex() - iter.getBeginIndex()];
this.embeddings = new byte[this.text.length];
this.embeddingOffset = 0;
this.length = text.length;
for (int i = 0; i < this.text.length; ++i)
{
this.text[i] = iter.current();
val = iter.getAttribute(TextAttribute.BIDI_EMBEDDING);
if (val instanceof Integer)
{
int ival = ((Integer) val).intValue();
byte bval;
if (ival < -62 || ival > 62)
bval = 0;
else
bval = (byte) ival;
this.embeddings[i] = bval;
}
}
// Invoke the numeric shaper, if specified.
if (shaper != null)
shaper.shape(this.text, 0, this.length);
runBidi();
}
/**
* Create a new Bidi object with the indicated text and, possibly, explicit
* embedding settings.
*
* If the embeddings array is null, it is ignored. Otherwise it is taken to
* be explicit embedding settings corresponding to the text. Positive values
* from 1 to 61 are embedding levels, and negative values from -1 to -61 are
* embedding overrides. (FIXME: not at all clear what this really means.)
*
* @param text the text to use
* @param offset the offset of the first character of the text
* @param embeddings the explicit embeddings, or null if there are none
* @param embedOffset the offset of the first embedding value to use
* @param length the length of both the text and the embeddings
* @param flags a flag indicating the base embedding direction
*/
public Bidi(char[] text, int offset, byte[] embeddings, int embedOffset,
int length, int flags)
{
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
&& flags != DIRECTION_LEFT_TO_RIGHT
&& flags != DIRECTION_RIGHT_TO_LEFT)
throw new IllegalArgumentException("unrecognized 'flags' argument: "
+ flags);
this.text = text;
this.textOffset = offset;
this.embeddings = embeddings;
this.embeddingOffset = embedOffset;
this.length = length;
this.flags = flags;
runBidi();
}
/**
* Create a new Bidi object using the contents of the given String
* as the text.
* @param text the text to use
* @param flags a flag indicating the base embedding direction
*/
public Bidi(String text, int flags)
{
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
&& flags != DIRECTION_LEFT_TO_RIGHT
&& flags != DIRECTION_RIGHT_TO_LEFT)
throw new IllegalArgumentException("unrecognized 'flags' argument: "
+ flags);
// This is inefficient, but it isn't clear whether it matters.
// If it does we can change our implementation a bit to allow either
// a String or a char[].
this.text = text.toCharArray();
this.textOffset = 0;
this.embeddings = null;
this.embeddingOffset = 0;
this.length = text.length();
this.flags = flags;
runBidi();
}
/**
* Implementation function which computes the initial type of
* each character in the input.
*/
private void computeTypes()
{
types = new byte[length];
for (int i = 0; i < length; ++i)
types[i] = Character.getDirectionality(text[textOffset + i]);
}
/**
* An internal function which implements rules P2 and P3.
* This computes the base embedding level.
* @return the paragraph's base embedding level
*/
private int computeParagraphEmbeddingLevel()
{
// First check to see if the user supplied a directionality override.
if (flags == DIRECTION_LEFT_TO_RIGHT
|| flags == DIRECTION_RIGHT_TO_LEFT)
return flags;
// This implements rules P2 and P3.
// (Note that we don't need P1, as the user supplies
// a paragraph.)
for (int i = 0; i < length; ++i)
{
int dir = types[i];
if (dir == Character.DIRECTIONALITY_LEFT_TO_RIGHT)
return DIRECTION_LEFT_TO_RIGHT;
if (dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|| dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
return DIRECTION_RIGHT_TO_LEFT;
}
return (flags == DIRECTION_DEFAULT_LEFT_TO_RIGHT
? DIRECTION_LEFT_TO_RIGHT
: DIRECTION_RIGHT_TO_LEFT);
}
/**
* An internal function which implements rules X1 through X9.
* This computes the initial levels for the text, handling
* explicit overrides and embeddings.
*/
private void computeExplicitLevels()
{
levels = new byte[length];
byte currentEmbedding = (byte) baseEmbedding;
// The directional override is a Character directionality
// constant. -1 means there is no override.
byte directionalOverride = -1;
// The stack of pushed embeddings, and the stack pointer.
// Note that because the direction is inherent in the depth,
// and because we have a bit left over in a byte, we can encode
// the override, if any, directly in this value on the stack.
final int MAX_DEPTH = 62;
byte[] embeddingStack = new byte[MAX_DEPTH];
int sp = 0;
for (int i = 0; i < length; ++i)
{
// If we see an explicit embedding, we use that, even if
// the current character is itself a directional override.
if (embeddings != null && embeddings[embeddingOffset + i] != 0)
{
// It isn't at all clear what we're supposed to do here.
// What does a negative value really mean?
// Should we push on the embedding stack here?
currentEmbedding = embeddings[embeddingOffset + i];
if (currentEmbedding < 0)
{
currentEmbedding = (byte) -currentEmbedding;
directionalOverride
= (((currentEmbedding % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
}
else
directionalOverride = -1;
continue;
}
// No explicit embedding.
boolean isLtoR = false;
boolean isSpecial = true;
switch (types[i])
{
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING:
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE:
isLtoR = true;
// Fall through.
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING:
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE:
{
byte newEmbedding;
if (isLtoR)
{
// Least greater even.
newEmbedding = (byte) ((currentEmbedding & ~1) + 2);
}
else
{
// Least greater odd.
newEmbedding = (byte) ((currentEmbedding + 1) | 1);
}
// FIXME: we don't properly handle invalid pushes.
if (newEmbedding < MAX_DEPTH)
{
// The new level is valid. Push the old value.
// See above for a comment on the encoding here.
if (directionalOverride != -1)
currentEmbedding |= Byte.MIN_VALUE;
embeddingStack[sp++] = currentEmbedding;
currentEmbedding = newEmbedding;
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE)
directionalOverride = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
else if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE)
directionalOverride = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
else
directionalOverride = -1;
}
}
break;
case Character.DIRECTIONALITY_POP_DIRECTIONAL_FORMAT:
{
// FIXME: we don't properly handle a pop with a corresponding
// invalid push.
if (sp == 0)
{
// We saw a pop without a push. Just ignore it.
break;
}
byte newEmbedding = embeddingStack[--sp];
currentEmbedding = (byte) (newEmbedding & 0x7f);
if (newEmbedding < 0)
directionalOverride
= (((newEmbedding & 1) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
else
directionalOverride = -1;
}
break;
default:
isSpecial = false;
break;
}
levels[i] = currentEmbedding;
if (isSpecial)
{
// Mark this character for removal.
if (formatterIndices == null)
formatterIndices = new ArrayList();
formatterIndices.add(Integer.valueOf(i));
}
else if (directionalOverride != -1)
types[i] = directionalOverride;
}
// Remove the formatting codes and update both the arrays
// and 'length'. It would be more efficient not to remove
// these codes, but it is also more complicated. Also, the
// Unicode algorithm reference does not properly describe
// how this is to be done -- from what I can tell, their suggestions
// in this area will not yield the correct results.
if (formatterIndices == null)
return;
int output = 0, input = 0;
final int size = formatterIndices.size();
for (int i = 0; i <= size; ++i)
{
int nextFmt;
if (i == size)
nextFmt = length;
else
nextFmt = ((Integer) formatterIndices.get(i)).intValue();
// Non-formatter codes are from 'input' to 'nextFmt'.
int len = nextFmt - input;
System.arraycopy(levels, input, levels, output, len);
System.arraycopy(types, input, types, output, len);
output += len;
input = nextFmt + 1;
}
length -= formatterIndices.size();
}
/**
* An internal function to compute the boundaries of runs
* in the text. It isn't strictly necessary to do this, but
* it lets us write some following passes in a less complicated
* way. Also it lets us efficiently implement some of the public
* methods. A run is simply a sequence of characters at the
* same level.
*/
private void computeRuns()
{
int runCount = 0;
int currentEmbedding = baseEmbedding;
for (int i = 0; i < length; ++i)
{
if (levels[i] != currentEmbedding)
{
currentEmbedding = levels[i];
++runCount;
}
}
// This may be called multiple times. If so, and if
// the number of runs has not changed, then don't bother
// allocating a new array.
if (runs == null || runs.length != runCount + 1)
runs = new int[runCount + 1];
int where = 0;
int lastRunStart = 0;
currentEmbedding = baseEmbedding;
for (int i = 0; i < length; ++i)
{
if (levels[i] != currentEmbedding)
{
runs[where++] = lastRunStart;
lastRunStart = i;
currentEmbedding = levels[i];
}
}
runs[where++] = lastRunStart;
}
/**
* An internal method to resolve weak types. This implements
* rules W1 through W7.
*/
private void resolveWeakTypes()
{
final int runCount = getRunCount();
int previousLevel = baseEmbedding;
for (int run = 0; run < runCount; ++run)
{
int start = getRunStart(run);
int end = getRunLimit(run);
int level = getRunLevel(run);
// These are the names used in the Bidi algorithm.
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
int nextLevel;
if (run == runCount - 1)
nextLevel = baseEmbedding;
else
nextLevel = getRunLevel(run + 1);
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
byte prevType = sor;
byte prevStrongType = sor;
for (int i = start; i < end; ++i)
{
final byte nextType = (i == end - 1) ? eor : types[i + 1];
// Rule W1: change NSM to the prevailing direction.
if (types[i] == Character.DIRECTIONALITY_NONSPACING_MARK)
types[i] = prevType;
else
prevType = types[i];
// Rule W2: change EN to AN in some cases.
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
{
if (prevStrongType == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
types[i] = Character.DIRECTIONALITY_ARABIC_NUMBER;
}
else if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
prevStrongType = types[i];
// Rule W3: change AL to R.
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
types[i] = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
// Rule W4: handle separators between two numbers.
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER
&& nextType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
{
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
types[i] = nextType;
}
else if (prevType == Character.DIRECTIONALITY_ARABIC_NUMBER
&& nextType == Character.DIRECTIONALITY_ARABIC_NUMBER
&& types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
types[i] = nextType;
// Rule W5: change a sequence of european terminators to
// european numbers, if they are adjacent to european numbers.
// We also include BN characters in this.
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
{
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
types[i] = prevType;
else
{
// Look ahead to see if there is an EN terminating this
// sequence of ETs.
int j = i + 1;
while (j < end
&& (types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[j] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL))
++j;
if (j < end
&& types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
{
// Change them all to EN now.
for (int k = i; k < j; ++k)
types[k] = Character.DIRECTIONALITY_EUROPEAN_NUMBER;
}
}
}
// Rule W6: separators and terminators change to ON.
// Again we include BN.
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
types[i] = Character.DIRECTIONALITY_OTHER_NEUTRALS;
// Rule W7: change european number types.
if (prevStrongType == Character.DIRECTIONALITY_LEFT_TO_RIGHT
&& types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
types[i] = prevStrongType;
}
previousLevel = level;
}
}
/**
* An internal method to resolve neutral types. This implements
* rules N1 and N2.
*/
private void resolveNeutralTypes()
{
// This implements rules N1 and N2.
final int runCount = getRunCount();
int previousLevel = baseEmbedding;
for (int run = 0; run < runCount; ++run)
{
int start = getRunStart(run);
int end = getRunLimit(run);
int level = getRunLevel(run);
byte embeddingDirection
= (((level % 2) == 0) ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
// These are the names used in the Bidi algorithm.
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
int nextLevel;
if (run == runCount - 1)
nextLevel = baseEmbedding;
else
nextLevel = getRunLevel(run + 1);
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
byte prevStrong = sor;
int neutralStart = -1;
for (int i = start; i <= end; ++i)
{
byte newStrong = -1;
byte thisType = i == end ? eor : types[i];
switch (thisType)
{
case Character.DIRECTIONALITY_LEFT_TO_RIGHT:
newStrong = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
break;
case Character.DIRECTIONALITY_RIGHT_TO_LEFT:
case Character.DIRECTIONALITY_ARABIC_NUMBER:
case Character.DIRECTIONALITY_EUROPEAN_NUMBER:
newStrong = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
break;
case Character.DIRECTIONALITY_BOUNDARY_NEUTRAL:
case Character.DIRECTIONALITY_OTHER_NEUTRALS:
case Character.DIRECTIONALITY_SEGMENT_SEPARATOR:
case Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR:
case Character.DIRECTIONALITY_WHITESPACE:
if (neutralStart == -1)
neutralStart = i;
break;
}
// If we see a strong character, update all the neutrals.
if (newStrong != -1)
{
if (neutralStart != -1)
{
byte override = (prevStrong == newStrong
? prevStrong
: embeddingDirection);
for (int j = neutralStart; j < i; ++j)
types[j] = override;
}
prevStrong = newStrong;
neutralStart = -1;
}
}
previousLevel = level;
}
}
/**
* An internal method to resolve implicit levels.
* This implements rules I1 and I2.
*/
private void resolveImplicitLevels()
{
// This implements rules I1 and I2.
for (int i = 0; i < length; ++i)
{
if ((levels[i] & 1) == 0)
{
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
++levels[i];
else if (types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
levels[i] += 2;
}
else
{
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|| types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
++levels[i];
}
// Update the result flags.
resultFlags |= 1 << (levels[i] & 1);
}
// One final update of the result flags, using the base level.
resultFlags |= 1 << baseEmbedding;
}
/**
* This reinserts the formatting codes that we removed early on.
* Actually it does not insert formatting codes per se, but rather
* simply inserts new levels at the appropriate locations in the
* 'levels' array.
*/
private void reinsertFormattingCodes()
{
if (formatterIndices == null)
return;
int input = length;
int output = levels.length;
// Process from the end as we are copying the array over itself here.
for (int index = formatterIndices.size() - 1; index >= 0; --index)
{
int nextFmt = ((Integer) formatterIndices.get(index)).intValue();
// nextFmt points to a location in the original array. So,
// nextFmt+1 is the target of our copying. output is the location
// to which we last copied, thus we can derive the length of the
// copy from it.
int len = output - nextFmt - 1;
output = nextFmt;
input -= len;
// Note that we no longer need 'types' at this point, so we
// only edit 'levels'.
if (nextFmt + 1 < levels.length)
System.arraycopy(levels, input, levels, nextFmt + 1, len);
// Now set the level at the reinsertion point.
int rightLevel;
if (output == levels.length - 1)
rightLevel = baseEmbedding;
else
rightLevel = levels[output + 1];
int leftLevel;
if (input == 0)
leftLevel = baseEmbedding;
else
leftLevel = levels[input];
levels[output] = (byte) Math.max(leftLevel, rightLevel);
}
length = levels.length;
}
/**
* This is the main internal entry point. After a constructor
* has initialized the appropriate local state, it will call
* this method to do all the work.
*/
private void runBidi()
{
computeTypes();
baseEmbedding = computeParagraphEmbeddingLevel();
computeExplicitLevels();
computeRuns();
resolveWeakTypes();
resolveNeutralTypes();
resolveImplicitLevels();
// We're done with the types. Let the GC clean up.
types = null;
reinsertFormattingCodes();
// After resolving the implicit levels, the number
// of runs may have changed.
computeRuns();
}
/**
* Return true if the paragraph base embedding is left-to-right,
* false otherwise.
*/
public boolean baseIsLeftToRight()
{
return baseEmbedding == DIRECTION_LEFT_TO_RIGHT;
}
/**
* Create a new Bidi object for a single line of text, taken
* from the text used when creating the current Bidi object.
* @param start the index of the first character of the line
* @param end the index of the final character of the line
* @return a new Bidi object for the indicated line of text
*/
public Bidi createLineBidi(int start, int end)
{
// This isn't the most efficient implementation possible.
// This probably does not matter, so we choose simplicity instead.
int level = getLevelAt(start);
int flag = (((level % 2) == 0)
? DIRECTION_LEFT_TO_RIGHT
: DIRECTION_RIGHT_TO_LEFT);
return new Bidi(text, textOffset + start,
embeddings, embeddingOffset + start,
end - start, flag);
}
/**
* Return the base embedding level of the paragraph.
*/
public int getBaseLevel()
{
return baseEmbedding;
}
/**
* Return the length of the paragraph, in characters.
*/
public int getLength()
{
return length;
}
/**
* Return the level at the indicated character. If the
* supplied index is less than zero or greater than the length
* of the text, then the paragraph's base embedding level will
* be returned.
* @param offset the character to examine
* @return the level of that character
*/
public int getLevelAt(int offset)
{
if (offset < 0 || offset >= length)
return getBaseLevel();
return levels[offset];
}
/**
* Return the number of runs in the result. A run is
* a sequence of characters at the same embedding level.
*/
public int getRunCount()
{
return runs.length;
}
/**
* Return the level of the indicated run.
* @param which the run to examine
* @return the level of that run
*/
public int getRunLevel(int which)
{
return levels[runs[which]];
}
/**
* Return the index of the character just following the end
* of the indicated run.
* @param which the run to examine
* @return the index of the character after the final character
* of the run
*/
public int getRunLimit(int which)
{
if (which == runs.length - 1)
return length;
return runs[which + 1];
}
/**
* Return the index of the first character in the indicated run.
* @param which the run to examine
* @return the index of the first character of the run
*/
public int getRunStart(int which)
{
return runs[which];
}
/**
* Return true if the text is entirely left-to-right, and the
* base embedding is also left-to-right.
*/
public boolean isLeftToRight()
{
return resultFlags == LTOR;
}
/**
* Return true if the text consists of mixed left-to-right and
* right-to-left runs, or if the text consists of one kind of run
* which differs from the base embedding direction.
*/
public boolean isMixed()
{
return resultFlags == (LTOR | RTOL);
}
/**
* Return true if the text is entirely right-to-left, and the
* base embedding is also right-to-left.
*/
public boolean isRightToLeft()
{
return resultFlags == RTOL;
}
/**
* Return a String describing the internal state of this object.
* This is only useful for debugging.
*/
public String toString()
{
return "Bidi Bidi Bidi I like you, Buck!";
}
/**
* Reorder objects according to the levels passed in. This implements
* reordering as defined by the Unicode bidirectional layout specification.
* The levels are integers from 0 to 62; even numbers represent left-to-right
* runs, and odd numbers represent right-to-left runs.
*
* @param levels the levels associated with each object
* @param levelOffset the index of the first level to use
* @param objs the objects to reorder according to the levels
* @param objOffset the index of the first object to use
* @param count the number of objects (and levels) to manipulate
*/
public static void reorderVisually(byte[] levels, int levelOffset,
Object[] objs, int objOffset, int count)
{
// We need a copy of the 'levels' array, as we are going to modify it.
// This is unfortunate but difficult to avoid.
byte[] levelCopy = new byte[count];
// Do this explicitly so we can also find the maximum depth at the
// same time.
int max = 0;
int lowestOdd = 63;
for (int i = 0; i < count; ++i)
{
levelCopy[i] = levels[levelOffset + i];
max = Math.max(levelCopy[i], max);
if (levelCopy[i] % 2 != 0)
lowestOdd = Math.min(lowestOdd, levelCopy[i]);
}
// Reverse the runs starting with the deepest.
for (int depth = max; depth >= lowestOdd; --depth)
{
int start = 0;
while (start < count)
{
// Find the start of a run >= DEPTH.
while (start < count && levelCopy[start] < depth)
++start;
if (start == count)
break;
// Find the end of the run.
int end = start + 1;
while (end < count && levelCopy[end] >= depth)
++end;
// Reverse this run.
for (int i = 0; i < (end - start) / 2; ++i)
{
byte tmpb = levelCopy[end - i - 1];
levelCopy[end - i - 1] = levelCopy[start + i];
levelCopy[start + i] = tmpb;
Object tmpo = objs[objOffset + end - i - 1];
objs[objOffset + end - i - 1] = objs[objOffset + start + i];
objs[objOffset + start + i] = tmpo;
}
// Handle the next run.
start = end + 1;
}
}
}
/**
* Returns false if all characters in the text between start and end
* are all left-to-right text. This implementation is just calls
* <code>Character.getDirectionality(char)</code> on all characters
* and makes sure all characters are either explicitly left-to-right
* or neutral in directionality (character types L, EN, ES, ET, AN,
* CS, S and WS).
*/
public static boolean requiresBidi(char[] text, int start, int end)
{
for (int i = start; i < end; i++)
{
byte dir = Character.getDirectionality(text[i]);
if (dir != Character.DIRECTIONALITY_LEFT_TO_RIGHT
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
&& dir != Character.DIRECTIONALITY_ARABIC_NUMBER
&& dir != Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
&& dir != Character.DIRECTIONALITY_SEGMENT_SEPARATOR
&& dir != Character.DIRECTIONALITY_WHITESPACE
&& dir != Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR)
return true;
}
return false;
}
}
|