1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Tester class (see the header for information about the class).
//
// =================================================================================================
#include <string>
#include <vector>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include "test/correctness/tester.hpp"
namespace clblast {
// =================================================================================================
// Relative error margins
template <typename T>
float getRelativeErrorMargin() {
return 0.005f; // 0.5% is considered acceptable for float/double-precision
}
template float getRelativeErrorMargin<float>(); // as the above default
template float getRelativeErrorMargin<double>(); // as the above default
template float getRelativeErrorMargin<float2>(); // as the above default
template float getRelativeErrorMargin<double2>(); // as the above default
template <>
float getRelativeErrorMargin<half>() {
return 0.080f; // 8% (!) error is considered acceptable for half-precision
}
// Absolute error margins
template <typename T>
float getAbsoluteErrorMargin() {
return 0.001f;
}
template float getAbsoluteErrorMargin<float>(); // as the above default
template float getAbsoluteErrorMargin<double>(); // as the above default
template float getAbsoluteErrorMargin<float2>(); // as the above default
template float getAbsoluteErrorMargin<double2>(); // as the above default
template <>
float getAbsoluteErrorMargin<half>() {
return 0.15f; // especially small values are inaccurate for half-precision
}
// L2 error margins
template <typename T>
double getL2ErrorMargin() {
return 0.0f; // zero means don't look at the L2 error margin at all, use the other metrics
}
template double getL2ErrorMargin<float>(); // as the above default
template double getL2ErrorMargin<double>(); // as the above default
template double getL2ErrorMargin<float2>(); // as the above default
template double getL2ErrorMargin<double2>(); // as the above default
template <>
double getL2ErrorMargin<half>() {
return 0.05; // half-precision results are considered OK as long as the L2 error is low enough
}
// Error margin: numbers beyond this value are considered equal to inf or NaN
template <typename T>
T getAlmostInfNumber() {
return static_cast<T>(1e35); // used for correctness testing of TRSV and TRSM routines
}
// =================================================================================================
// General constructor for all CLBlast testers. It prints out the test header to stdout and sets-up
// the clBLAS library for reference.
template <typename T, typename U>
Tester<T,U>::Tester(const std::vector<std::string> &arguments, const bool silent,
const std::string &name, const std::vector<std::string> &options):
help_("Options given/available:\n"),
platform_(Platform(GetArgument(arguments, help_, kArgPlatform, ConvertArgument(std::getenv("CLBLAST_PLATFORM"), size_t{0})))),
device_(Device(platform_, GetArgument(arguments, help_, kArgDevice, ConvertArgument(std::getenv("CLBLAST_DEVICE"), size_t{0})))),
context_(Context(device_)),
queue_(Queue(context_, device_)),
full_test_(CheckArgument(arguments, help_, kArgFullTest)),
verbose_(CheckArgument(arguments, help_, kArgVerbose)),
error_log_{},
num_passed_{0},
num_skipped_{0},
num_failed_{0},
print_count_{0},
tests_passed_{0},
tests_skipped_{0},
tests_failed_{0} {
options_ = options;
// Determines which reference is the default
#if defined(CLBLAST_REF_CBLAS)
auto default_cblas = 0;
#endif
#if defined(CLBLAST_REF_CLBLAS)
auto default_clblas = 0;
#endif
#if defined(CLBLAST_REF_CUBLAS)
auto default_cublas = 0;
#endif
#if defined(CLBLAST_REF_CBLAS)
default_cblas = 1;
#elif defined(CLBLAST_REF_CLBLAS)
default_clblas = 1;
#elif defined(CLBLAST_REF_CUBLAS)
default_cublas = 1;
#endif
// Determines which reference to test against
compare_clblas_ = 0;
compare_cblas_ = 0;
compare_cublas_ = 0;
#if defined(CLBLAST_REF_CBLAS)
compare_cblas_ = GetArgument(arguments, help_, kArgComparecblas, default_cblas);
#endif
#if defined(CLBLAST_REF_CLBLAS)
compare_clblas_ = GetArgument(arguments, help_, kArgCompareclblas, default_clblas);
#endif
#if defined(CLBLAST_REF_CUBLAS)
compare_cublas_ = GetArgument(arguments, help_, kArgComparecublas, default_cublas);
#endif
// Prints the help message (command-line arguments)
if (!silent) { fprintf(stdout, "\n* %s\n", help_.c_str()); }
// Support for cuBLAS not available yet
if (compare_cublas_) { throw std::runtime_error("Cannot test against cuBLAS; not implemented yet"); }
// Can only test against a single reference (not two, not zero)
if (compare_clblas_ && compare_cblas_) {
throw std::runtime_error("Cannot test against both clBLAS and CBLAS references; choose one using the -cblas and -clblas arguments");
}
if (!compare_clblas_ && !compare_cblas_) {
throw std::runtime_error("Choose one reference (clBLAS or CBLAS) to test against using the -cblas and -clblas arguments");
}
// Prints the header
fprintf(stdout, "* Running on OpenCL device '%s'.\n", GetDeviceName(device_).c_str());
fprintf(stdout, "* Starting tests for the %s'%s'%s routine.",
kPrintMessage.c_str(), name.c_str(), kPrintEnd.c_str());
// Checks whether the precision is supported
if (!PrecisionSupported<T>(device_)) {
fprintf(stdout, "\n* All tests skipped: %sUnsupported precision%s\n",
kPrintWarning.c_str(), kPrintEnd.c_str());
return;
}
// Prints the legend
fprintf(stdout, " Legend:\n");
fprintf(stdout, " %s -> Test produced correct results\n", kSuccessData.c_str());
fprintf(stdout, " %s -> Test returned the correct error code\n", kSuccessStatus.c_str());
fprintf(stdout, " %s -> Test produced incorrect results\n", kErrorData.c_str());
fprintf(stdout, " %s -> Test returned an incorrect error code\n", kErrorStatus.c_str());
fprintf(stdout, " %s -> Test not executed: OpenCL-kernel compilation error\n",
kSkippedCompilation.c_str());
fprintf(stdout, " %s -> Test not executed: Unsupported precision\n",
kUnsupportedPrecision.c_str());
fprintf(stdout, " %s -> Test not completed: Reference CBLAS doesn't output error codes\n",
kUnsupportedReference.c_str());
fprintf(stdout, "* Testing with error margins of %.1lf%% (relative) and %.3lf (absolute)\n",
100.0f * getRelativeErrorMargin<T>(), getAbsoluteErrorMargin<T>());
if (getL2ErrorMargin<T>() != 0.0f) {
fprintf(stdout, "* and a combined maximum allowed L2 error of %.2e\n", getL2ErrorMargin<T>());
}
// Initializes clBLAS
#ifdef CLBLAST_REF_CLBLAS
if (compare_clblas_) {
auto status = clblasSetup();
if (status != CL_SUCCESS) {
throw std::runtime_error("clBLAS setup error: "+ToString(static_cast<int>(status)));
}
}
#endif
}
// Destructor prints the summary of the test cases and cleans-up the clBLAS library
template <typename T, typename U>
Tester<T,U>::~Tester() {
if (PrecisionSupported<T>(device_)) {
std::cout << "* Completed all test-cases for this routine. Results:" << std::endl;
std::cout << " " << tests_passed_ << " test(s) passed" << std::endl;
if (tests_skipped_ > 0) { std::cout << kPrintWarning; }
std::cout << " " << tests_skipped_ << " test(s) skipped" << kPrintEnd << std::endl;
if (tests_failed_ > 0) { std::cout << kPrintError; }
std::cout << " " << tests_failed_ << " test(s) failed" << kPrintEnd << std::endl;
}
std::cout << std::endl;
// Cleans-up clBLAS
#ifdef CLBLAST_REF_CLBLAS
if (compare_clblas_) {
clblasTeardown();
}
#endif
}
// =================================================================================================
// Function called at the start of each test. This prints a header with information about the
// test and re-initializes all test data-structures.
template <typename T, typename U>
void Tester<T,U>::TestStart(const std::string &test_name, const std::string &test_configuration) {
// Prints the header
fprintf(stdout, "* Testing %s'%s'%s for %s'%s'%s:\n",
kPrintMessage.c_str(), test_name.c_str(), kPrintEnd.c_str(),
kPrintMessage.c_str(), test_configuration.c_str(), kPrintEnd.c_str());
if (!verbose_) { fprintf(stdout, " "); }
// Empties the error log and the error/pass counters
error_log_.clear();
num_passed_ = 0;
num_skipped_ = 0;
num_failed_ = 0;
print_count_ = 0;
}
// Function called at the end of each test. This prints errors if any occured. It also prints a
// summary of the number of sub-tests passed/failed.
template <typename T, typename U>
void Tester<T,U>::TestEnd() {
if (!verbose_) { fprintf(stdout, "\n"); }
tests_passed_ += num_passed_;
tests_skipped_ += num_skipped_;
tests_failed_ += num_failed_;
// Prints the errors
PrintErrorLog(error_log_);
// Prints a test summary
auto pass_rate = 100*num_passed_ / static_cast<float>(num_passed_ + num_skipped_ + num_failed_);
fprintf(stdout, " Pass rate %s%5.1lf%%%s:", kPrintMessage.c_str(), pass_rate, kPrintEnd.c_str());
std::cout << " " << num_passed_ << " passed /";
if (num_skipped_ != 0) {
std::cout << " " << kPrintWarning << num_skipped_ << " skipped" << kPrintEnd << " /";
}
else {
std::cout << " " << num_skipped_ << " skipped /";
}
if (num_failed_ != 0) {
std::cout << " " << kPrintError << num_failed_ << " failed" << kPrintEnd << std::endl;
}
else {
std::cout << " " << num_failed_ << " failed" << std::endl;
}
}
// =================================================================================================
// Handles a 'pass' or 'error' depending on whether there are any errors
template <typename T, typename U>
void Tester<T,U>::TestErrorCount(const size_t errors, const size_t size, const Arguments<U> &args) {
// Finished successfully
if (errors == 0) {
PrintTestResult(kSuccessData);
ReportPass();
}
// Error(s) occurred
else {
auto percentage = 100*errors / static_cast<float>(size);
PrintTestResult(kErrorData);
ReportError({StatusCode::kSuccess, StatusCode::kSuccess, percentage, args});
}
}
// Compares two status codes for equality. The outcome can be a pass (they are the same), a warning
// (CLBlast reported a compilation error), or an error (they are different).
template <typename T, typename U>
void Tester<T,U>::TestErrorCodes(const StatusCode clblas_status, const StatusCode clblast_status,
const Arguments<U> &args) {
// Either an OpenCL or CLBlast internal error occurred, fail the test immediately
// NOTE: the OpenCL error codes grow downwards without any declared lower bound, hence the magic
// number. The last error code is atm around -70, but -500 is chosen to be on the safe side.
if (clblast_status != StatusCode::kSuccess &&
(clblast_status > static_cast<StatusCode>(-500) /* matches OpenCL errors (see above) */ ||
clblast_status < StatusCode::kNotImplemented) /* matches CLBlast internal errors */) {
PrintTestResult(kErrorStatus);
ReportError({StatusCode::kSuccess, clblast_status, kStatusError, args});
if (verbose_) {
fprintf(stdout, "\n");
PrintErrorLog({{StatusCode::kSuccess, clblast_status, kStatusError, args}});
fprintf(stdout, " ");
}
}
// Routine is not implemented
else if (clblast_status == StatusCode::kNotImplemented) {
PrintTestResult(kSkippedCompilation);
ReportSkipped();
}
// Cannot compare error codes against a library other than clBLAS
else if (compare_cblas_) {
PrintTestResult(kUnsupportedReference);
ReportSkipped();
}
// Finished successfully
else if (clblas_status == clblast_status) {
PrintTestResult(kSuccessStatus);
ReportPass();
}
// No support for this kind of precision
else if (clblast_status == StatusCode::kNoDoublePrecision ||
clblast_status == StatusCode::kNoHalfPrecision) {
PrintTestResult(kUnsupportedPrecision);
ReportSkipped();
}
// Error occurred
else {
PrintTestResult(kErrorStatus);
ReportError({clblas_status, clblast_status, kStatusError, args});
if (verbose_) {
fprintf(stdout, "\n");
PrintErrorLog({{clblas_status, clblast_status, kStatusError, args}});
fprintf(stdout, " ");
}
}
}
// =================================================================================================
// Retrieves the offset values to test with
template <typename T, typename U>
const std::vector<size_t> Tester<T,U>::GetOffsets() const {
if (full_test_) { return {0, 10}; }
else { return {0}; }
}
// Retrieves the options as a string for a specific test
template <typename T, typename U>
std::string Tester<T,U>::GetOptionsString(const Arguments<U> &args) {
auto result = std::string("");
const auto equals = std::string("=");
for (auto &o: options_) {
if (o == kArgM) { result += kArgM + equals + ToString(args.m) + " "; }
if (o == kArgN) { result += kArgN + equals + ToString(args.n) + " "; }
if (o == kArgK) { result += kArgK + equals + ToString(args.k) + " "; }
if (o == kArgKU) { result += kArgKU + equals + ToString(args.ku) + " "; }
if (o == kArgKL) { result += kArgKL + equals + ToString(args.kl) + " "; }
if (o == kArgXInc) { result += kArgXInc + equals + ToString(args.x_inc) + " "; }
if (o == kArgYInc) { result += kArgYInc + equals + ToString(args.y_inc) + " "; }
if (o == kArgXOffset) { result += kArgXOffset + equals + ToString(args.x_offset) + " "; }
if (o == kArgYOffset) { result += kArgYOffset + equals + ToString(args.y_offset) + " "; }
if (o == kArgALeadDim) { result += kArgALeadDim + equals + ToString(args.a_ld) + " "; }
if (o == kArgBLeadDim) { result += kArgBLeadDim + equals + ToString(args.b_ld) + " "; }
if (o == kArgCLeadDim) { result += kArgCLeadDim + equals + ToString(args.c_ld) + " "; }
if (o == kArgAOffset) { result += kArgAOffset + equals + ToString(args.a_offset) + " "; }
if (o == kArgBOffset) { result += kArgBOffset + equals + ToString(args.b_offset) + " "; }
if (o == kArgCOffset) { result += kArgCOffset + equals + ToString(args.c_offset) + " "; }
if (o == kArgAPOffset) { result += kArgAPOffset + equals + ToString(args.ap_offset) + " "; }
if (o == kArgDotOffset){ result += kArgDotOffset + equals + ToString(args.dot_offset) + " "; }
if (o == kArgAlpha) { result += kArgAlpha + equals + ToString(args.alpha) + " "; }
if (o == kArgBeta) { result += kArgBeta + equals + ToString(args.beta) + " "; }
if (o == kArgBatchCount){result += kArgBatchCount + equals + ToString(args.batch_count) + " "; }
if (o == kArgKernelMode){result += kArgKernelMode + equals + ToString(args.kernel_mode) + " "; }
if (o == kArgChannels) { result += kArgChannels + equals + ToString(args.channels) + " "; }
if (o == kArgHeight) { result += kArgHeight + equals + ToString(args.height) + " "; }
if (o == kArgWidth) { result += kArgWidth + equals + ToString(args.width) + " "; }
if (o == kArgNumKernels){result += kArgNumKernels + equals + ToString(args.num_kernels) + " "; }
if (o == kArgKernelH) { result += kArgKernelH + equals + ToString(args.kernel_h) + " "; }
if (o == kArgKernelW) { result += kArgKernelW + equals + ToString(args.kernel_w) + " "; }
if (o == kArgPadH) { result += kArgPadH + equals + ToString(args.pad_h) + " "; }
if (o == kArgPadW) { result += kArgPadW + equals + ToString(args.pad_w) + " "; }
if (o == kArgStrideH) { result += kArgStrideH + equals + ToString(args.stride_h) + " "; }
if (o == kArgStrideW) { result += kArgStrideW + equals + ToString(args.stride_w) + " "; }
if (o == kArgDilationH){ result += kArgDilationH + equals + ToString(args.dilation_h) + " "; }
if (o == kArgDilationW){ result += kArgDilationW + equals + ToString(args.dilation_w) + " "; }
}
return result;
}
// As above, but now only prints information relevant to invalid buffer sizes
template <typename T, typename U>
std::string Tester<T,U>::GetSizesString(const Arguments<U> &args) {
auto result = std::string("");
const auto equals = std::string("=");
for (auto &o: options_) {
if (o == kArgM) { result += kArgM + equals + ToString(args.m) + " "; }
if (o == kArgN) { result += kArgN + equals + ToString(args.n) + " "; }
if (o == kArgK) { result += kArgK + equals + ToString(args.k) + " "; }
if (o == kArgXOffset) { result += "xsize" + equals + ToString(args.x_size) + " "; }
if (o == kArgYOffset) { result += "ysize" + equals + ToString(args.y_size) + " "; }
if (o == kArgAOffset) { result += "asize" + equals + ToString(args.a_size) + " "; }
if (o == kArgBOffset) { result += "bsize" + equals + ToString(args.b_size) + " "; }
if (o == kArgCOffset) { result += "csize" + equals + ToString(args.c_size) + " "; }
if (o == kArgAPOffset) { result += "apsize" + equals + ToString(args.ap_size) + " "; }
if (o == kArgDotOffset){ result += "scalarsize" + equals + ToString(args.scalar_size) + " "; }
}
return result;
}
// =================================================================================================
// A test can either pass, be skipped, or fail
template <typename T, typename U>
void Tester<T,U>::ReportPass() {
num_passed_++;
}
template <typename T, typename U>
void Tester<T,U>::ReportSkipped() {
num_skipped_++;
}
template <typename T, typename U>
void Tester<T,U>::ReportError(const ErrorLogEntry &error_log_entry) {
error_log_.push_back(error_log_entry);
num_failed_++;
}
// =================================================================================================
// Prints the test-result symbol to screen. This function limits the maximum number of symbols per
// line by printing newlines once every so many calls.
template <typename T, typename U>
void Tester<T,U>::PrintTestResult(const std::string &message) {
if (verbose_) {
fprintf(stdout, "%s\n", message.c_str());
}
else
{
if (print_count_ == kResultsPerLine) {
print_count_ = 0;
fprintf(stdout, "\n ");
}
fprintf(stdout, "%s", message.c_str());
print_count_++;
}
std::cout << std::flush;
}
// Prints details of errors occurred in a given error log
template <typename T, typename U>
void Tester<T,U>::PrintErrorLog(const std::vector<ErrorLogEntry> &error_log) {
for (auto &entry: error_log) {
if (entry.error_percentage != kStatusError) {
fprintf(stdout, " Error rate %.2lf%%: ", entry.error_percentage);
}
else {
fprintf(stdout, " Status code %d (expected %d): ",
static_cast<int>(entry.status_found),
static_cast<int>(entry.status_expect));
}
fprintf(stdout, "%s\n", GetOptionsString(entry.args).c_str());
}
}
// =================================================================================================
// Below are the non-member functions (separated because of otherwise required partial class
// template specialization)
// =================================================================================================
// Compares two floating point values and returns whether they are within an acceptable error
// margin. This replaces GTest's EXPECT_NEAR().
template <typename T>
bool TestSimilarityNear(const T val1, const T val2,
const T error_margin_absolute, const T error_margin_relative) {
const auto difference = std::fabs(val1 - val2);
// Shortcut, handles infinities
if (val1 == val2) {
return true;
}
// Handles cases with both results NaN or inf
else if ((std::isnan(val1) && std::isnan(val2)) || (std::isinf(val1) && std::isinf(val2))) {
return true;
}
// Also considers it OK if one of the results in NaN and the other is inf
// Note: for TRSV and TRSM routines
else if ((std::isnan(val1) && std::isinf(val2)) || (std::isinf(val1) && std::isnan(val2))) {
return true;
}
// Also considers it OK if one of the values is super large and the other is inf or NaN
// Note: for TRSV and TRSM routines
else if ((std::abs(val1) > getAlmostInfNumber<T>() && (std::isinf(val2) || std::isnan(val2))) ||
(std::abs(val2) > getAlmostInfNumber<T>() && (std::isinf(val1) || std::isnan(val1)))) {
return true;
}
// The values are zero or very small: the relative error is less meaningful
else if (val1 == 0 || val2 == 0 || difference < error_margin_absolute) {
return (difference < error_margin_absolute);
}
// Use relative error
else {
const auto absolute_sum = std::fabs(val1) + std::fabs(val2);
return (difference / absolute_sum) < error_margin_relative;
}
}
// Default method for similarity testing
template <typename T>
bool TestSimilarity(const T val1, const T val2) {
const auto kErrorMarginRelative = static_cast<T>(getRelativeErrorMargin<T>());
const auto kErrorMarginAbsolute = static_cast<T>(getAbsoluteErrorMargin<T>());
return TestSimilarityNear(val1, val2, kErrorMarginAbsolute, kErrorMarginRelative);
}
// Compiles the default case for standard data-types
template bool TestSimilarity<float>(const float, const float);
template bool TestSimilarity<double>(const double, const double);
// Specialisations for non-standard data-types
template <>
bool TestSimilarity(const float2 val1, const float2 val2) {
const auto real = TestSimilarity(val1.real(), val2.real());
const auto imag = TestSimilarity(val1.imag(), val2.imag());
if (real && imag) { return true; }
// also OK if one is good and the combined is good (indicates a big diff between real & imag)
if (real || imag) { return TestSimilarity(val1.real() + val1.imag(), val2.real() + val2.imag()); }
return false; // neither real nor imag is good, return false
}
template <>
bool TestSimilarity(const double2 val1, const double2 val2) {
const auto real = TestSimilarity(val1.real(), val2.real());
const auto imag = TestSimilarity(val1.imag(), val2.imag());
if (real && imag) { return true; }
// also OK if one is good and the combined is good (indicates a big diff between real & imag)
if (real || imag) { return TestSimilarity(val1.real() + val1.imag(), val2.real() + val2.imag()); }
return false; // neither real nor imag is good, return false
}
template <>
bool TestSimilarity(const half val1, const half val2) {
const auto kErrorMarginRelative = getRelativeErrorMargin<half>();
const auto kErrorMarginAbsolute = getAbsoluteErrorMargin<half>();
return TestSimilarityNear(HalfToFloat(val1), HalfToFloat(val2),
kErrorMarginAbsolute, kErrorMarginRelative);
}
// =================================================================================================
// Retrieves a list of example scalar values, used for the alpha and beta arguments for the various
// routines. This function is specialised for the different data-types.
template <> const std::vector<float> GetExampleScalars(const bool full_test) {
if (full_test) { return {0.0f, 1.0f, 3.14f}; }
else { return {3.14f}; }
}
template <> const std::vector<double> GetExampleScalars(const bool full_test) {
if (full_test) { return {0.0, 1.0, 3.14}; }
else { return {3.14}; }
}
template <> const std::vector<float2> GetExampleScalars(const bool full_test) {
if (full_test) { return {{0.0f, 0.0f}, {1.0f, 1.3f}, {2.42f, 3.14f}}; }
else { return {{2.42f, 3.14f}}; }
}
template <> const std::vector<double2> GetExampleScalars(const bool full_test) {
if (full_test) { return {{0.0, 0.0}, {1.0, 1.3}, {2.42, 3.14}}; }
else { return {{2.42, 3.14}}; }
}
template <> const std::vector<half> GetExampleScalars(const bool full_test) {
if (full_test) { return {FloatToHalf(0.0f), FloatToHalf(1.0f), FloatToHalf(3.14f)}; }
else { return {FloatToHalf(3.14f)}; }
}
// =================================================================================================
// Compiles the templated class
template class Tester<half, half>;
template class Tester<float, float>;
template class Tester<double, double>;
template class Tester<float2, float2>;
template class Tester<double2, double2>;
template class Tester<float2, float>;
template class Tester<double2, double>;
// =================================================================================================
} // namespace clblast
|