1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file contains all the CUDA related code; used only in case of testing against cuBLAS
//
// =================================================================================================
#ifndef CLBLAST_TEST_WRAPPER_CUDA_H_
#define CLBLAST_TEST_WRAPPER_CUDA_H_
#include <string>
#include <vector>
#include <memory>
#include <stdexcept>
#include "utilities/utilities.hpp"
#ifdef CLBLAST_REF_CUBLAS
#define CUDA_NO_HALF
#include <cuda_runtime.h>
#include <cublas_v2.h>
#endif
namespace clblast {
// =================================================================================================
#ifdef CLBLAST_REF_CUBLAS
template <typename T>
void cublasSetup(Arguments<T> &args) {
cudaSetDevice(static_cast<int>(args.device_id));
auto status = cublasCreate(reinterpret_cast<cublasHandle_t*>(&args.cublas_handle));
if (status != CUBLAS_STATUS_SUCCESS) {
throw std::runtime_error("CUDA cublasCreate error");
}
}
#endif
#ifdef CLBLAST_REF_CUBLAS
template <typename T>
void cublasTeardown(Arguments<T> &args) {
auto status = cublasDestroy(reinterpret_cast<cublasHandle_t>(args.cublas_handle));
if (status != CUBLAS_STATUS_SUCCESS) {
throw std::runtime_error("CUDA cublasDestroy error");
}
}
#endif
// =================================================================================================
// Copies data from the CUDA device to the host and frees-up the CUDA memory afterwards
#ifdef CLBLAST_REF_CUBLAS
template <typename T>
void CUDAToHost(T** buffer_cuda, std::vector<T> &buffer_host, const size_t size) {
auto status1 = cudaMemcpy(
reinterpret_cast<void*>(buffer_host.data()),
reinterpret_cast<void*>(*buffer_cuda),
size*sizeof(T),
cudaMemcpyDeviceToHost
);
if (status1 != cudaSuccess) {
throw std::runtime_error("CUDA cudaMemcpy error with status: "+ToString(static_cast<int>(status1)));
}
auto status2 = cudaFree(*buffer_cuda);
if (status2 != cudaSuccess) {
throw std::runtime_error("CUDA cudaFree error with status: "+ToString(static_cast<int>(status2)));
}
*buffer_cuda = nullptr;
}
#else
template <typename T> void CUDAToHost(T**, const std::vector<T>&, const size_t) { }
#endif
// Allocates space on the CUDA device and copies in data from the host
#ifdef CLBLAST_REF_CUBLAS
template <typename T>
void HostToCUDA(T** buffer_cuda, std::vector<T> &buffer_host, const size_t size) {
if (*buffer_cuda == nullptr) {
auto status1 = cudaMalloc(reinterpret_cast<void**>(buffer_cuda), size*sizeof(T));
if (status1 != cudaSuccess) {
throw std::runtime_error("CUDA cudaMalloc error with status: "+ToString(static_cast<int>(status1)));
}
}
auto status2 = cudaMemcpy(
reinterpret_cast<void*>(*buffer_cuda),
reinterpret_cast<void*>(buffer_host.data()),
size*sizeof(T),
cudaMemcpyHostToDevice
);
if (status2 != cudaSuccess) {
throw std::runtime_error("CUDA cudaMemcpy error with status: "+ToString(static_cast<int>(status2)));
}
}
#else
template <typename T> void HostToCUDA(T**, const std::vector<T>&, const size_t) { }
#endif
// =================================================================================================
template <typename T>
struct BuffersCUDA {
T* x_vec = nullptr;
T* y_vec = nullptr;
T* a_mat = nullptr;
T* b_mat = nullptr;
T* c_mat = nullptr;
T* ap_mat = nullptr;
T* scalar = nullptr;
};
template <typename T, typename U>
void CUDAToHost(const Arguments<U> &args, BuffersCUDA<T> &buffers, BuffersHost<T> &buffers_host,
const std::vector<std::string> &names) {
for (auto &name: names) {
if (name == kBufVecX) { buffers_host.x_vec = std::vector<T>(args.x_size, static_cast<T>(0)); CUDAToHost(&buffers.x_vec, buffers_host.x_vec, args.x_size); }
else if (name == kBufVecY) { buffers_host.y_vec = std::vector<T>(args.y_size, static_cast<T>(0)); CUDAToHost(&buffers.y_vec, buffers_host.y_vec, args.y_size); }
else if (name == kBufMatA) { buffers_host.a_mat = std::vector<T>(args.a_size, static_cast<T>(0)); CUDAToHost(&buffers.a_mat, buffers_host.a_mat, args.a_size); }
else if (name == kBufMatB) { buffers_host.b_mat = std::vector<T>(args.b_size, static_cast<T>(0)); CUDAToHost(&buffers.b_mat, buffers_host.b_mat, args.b_size); }
else if (name == kBufMatC) { buffers_host.c_mat = std::vector<T>(args.c_size, static_cast<T>(0)); CUDAToHost(&buffers.c_mat, buffers_host.c_mat, args.c_size); }
else if (name == kBufMatAP) { buffers_host.ap_mat = std::vector<T>(args.ap_size, static_cast<T>(0)); CUDAToHost(&buffers.ap_mat, buffers_host.ap_mat, args.ap_size); }
else if (name == kBufScalar) { buffers_host.scalar = std::vector<T>(args.scalar_size, static_cast<T>(0)); CUDAToHost(&buffers.scalar, buffers_host.scalar, args.scalar_size); }
else { throw std::runtime_error("Invalid buffer name"); }
}
}
template <typename T, typename U>
void HostToCUDA(const Arguments<U> &args, BuffersCUDA<T> &buffers, BuffersHost<T> &buffers_host,
const std::vector<std::string> &names) {
for (auto &name: names) {
if (name == kBufVecX) { HostToCUDA(&buffers.x_vec, buffers_host.x_vec, args.x_size); }
else if (name == kBufVecY) { HostToCUDA(&buffers.y_vec, buffers_host.y_vec, args.y_size); }
else if (name == kBufMatA) { HostToCUDA(&buffers.a_mat, buffers_host.a_mat, args.a_size); }
else if (name == kBufMatB) { HostToCUDA(&buffers.b_mat, buffers_host.b_mat, args.b_size); }
else if (name == kBufMatC) { HostToCUDA(&buffers.c_mat, buffers_host.c_mat, args.c_size); }
else if (name == kBufMatAP) { HostToCUDA(&buffers.ap_mat, buffers_host.ap_mat, args.ap_size); }
else if (name == kBufScalar) { HostToCUDA(&buffers.scalar, buffers_host.scalar, args.scalar_size); }
else { throw std::runtime_error("Invalid buffer name"); }
}
}
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_WRAPPER_CUDA_H_
#endif
|