1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// -*- C++ -*-
// $Id: testTransform3D.cc,v 1.3 2003/10/24 21:39:45 garren Exp $
// ---------------------------------------------------------------------------
//
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
//
// This is a test for the HepGeom::Transform3D class.
//
#include <assert.h>
#include "CLHEP/Geometry/Transform3D.h"
#include "CLHEP/Vector/Rotation.h"
#include "CLHEP/Vector/ThreeVector.h"
#include "CLHEP/Units/PhysicalConstants.h"
typedef HepGeom::Scale3D Scale;
typedef HepGeom::Rotate3D Rotation;
typedef HepGeom::Translate3D Translation;
typedef HepGeom::Transform3D Transformation;
typedef HepGeom::Point3D<double> Point;
typedef HepGeom::Vector3D<double> Vector;
typedef HepGeom::Normal3D<double> Normal;
#define DEL 10.e-16
int main() {
int i,k;
double E[4][4] = {
{ 1, 0, 0, 0},
{ 0, 1, 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1}
};
// Default constructor
Transformation M;
for (i=0; i<4; i++) {
for (k=0; k<4; k++) {
assert ( M[i][k] == E[i][k] );
}
}
assert ( M == Transformation::Identity );
// Rotation + Translation
HepRotation R;
double angA=CLHEP::pi/3, angB=CLHEP::pi/4, angC=CLHEP::pi/6;
R.rotateX(angA); R.rotateY(angB); R.rotateZ(angC);
const Hep3Vector D(1, 2, 3);
M = Transformation(R,D);
for (i=0; i<3; i++) {
for (k=0; k<3; k++) { assert ( M[i][k] == R[i][k] ); }
}
assert ( M(0,3) == D.x() );
assert ( M(1,3) == D.y() );
assert ( M(2,3) == D.z() );
// Transformation of point, vector, normal
const Point p0(1,1,1);
const Vector v0(1,1,1);
const Normal n0(1,1,1);
Point p1 = M * p0;
Point p2 = R*Hep3Vector(1,1,1) + D;
assert( std::abs(p1.x()-p2.x()) < DEL );
assert( std::abs(p1.y()-p2.y()) < DEL );
assert( std::abs(p1.z()-p2.z()) < DEL );
Vector v1 = M * v0;
Normal n1 = M * n0;
assert( std::abs(v1.x()-n1.x()) < DEL );
assert( std::abs(v1.y()-n1.y()) < DEL );
assert( std::abs(v1.z()-n1.z()) < DEL );
// Transformation of basis
p1 = Point(M[0][0]+D.x(), M[1][0]+D.y(), M[2][0]+D.z());
p2 = Point(M[0][1]+D.x(), M[1][1]+D.y(), M[2][1]+D.z());
Transformation T(Point(0,0,0), Point(1,0,0), Point(0,1,0), D, p1, p2);
for (i=0; i<4; i++) {
for (k=0; k<4; k++) { assert ( std::abs(M[i][k] - T[i][k]) < DEL ); }
}
// Set Identity
T.setIdentity();
for (i=0; i<4; i++) {
for (k=0; k<4; k++) { assert ( T[i][k] == E[i][k] ); }
}
// Assignment, fortran-style subscripting
T = M;
assert (T == M);
for (i=0; i<4; i++) {
for (k=0; k<4; k++) { assert ( T(i,k) == M[i][k] ); }
}
// Inversion
T = M.inverse();
assert (T != M);
T = M * T;
for (i=0; i<4; i++) {
for (k=0; k<4; k++) { assert ( std::abs(T[i][k] - E[i][k]) < DEL ); }
}
T = M.inverse();
T = T * M;
for (i=0; i<4; i++) {
for (k=0; k<4; k++) { assert ( std::abs(T[i][k] - E[i][k]) < DEL ); }
}
// Get Rotation
HepRotation Q;
Q = M.getRotation();
for (i=0; i<3; i++) {
for (k=0; k<3; k++) { assert ( R[i][k] == Q[i][k] ); }
}
// Get Translation
Hep3Vector C;
C = M.getTranslation();
assert ( C.x() == D.x() );
assert ( C.y() == D.y() );
assert ( C.z() == D.z() );
// Compound transformation
// Get Decomposition
Scale S(-2,3,4);
M = Transformation(R,D)*S;
Scale SS;
Rotation RR;
Translation TT;
M.getDecomposition(SS,RR,TT);
S = HepGeom::Scale3D(2,3,-4);
T = TT*RR*SS;
for (i=0; i<4; i++) {
for (k=0; k<4; k++) {
assert ( std::abs(S[i][k] - SS[i][k]) < DEL );
assert ( std::abs(M[i][k] - T[i][k]) < DEL );
}
}
// test for isNear()
assert ( T.isNear(M, DEL) );
S = HepGeom::Scale3D(2.01,3,-4);
T = TT*RR*S;
assert ( !T.isNear(M) );
// Different conversions
Hep3Vector www(1,2,3);
Vector vvv;
Point ppp(3,2,1);
Normal nnn;
vvv = www;
www = vvv;
nnn = ppp;
assert (vvv.x() == nnn.z());
assert (vvv.y() == nnn.y());
assert (vvv.z() == nnn.x());
nnn = Normal(ppp);
www = Hep3Vector(vvv);
return 0;
}
|