File: Random.html

package info (click to toggle)
clhep 2.1.4.1%2Bdfsg-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,012 kB
  • sloc: cpp: 50,094; sh: 6,694; makefile: 2,694; perl: 28
file content (915 lines) | stat: -rwxr-xr-x 41,302 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
<html>
<head>
<title>CLHEP - HEP Random</title>
</head>
<body background="http://wwwinfo.cern.ch/asd/geant/icons/backg.jpg">

<pre> </pre>

<center>
  <h1>HEP Random</h1><p>
  <h3>
    release 2.1.1 - Thu, Jan 28 1999<br>
  </h3>
</center>

<hr>
<ol>
<li><a href="#introduction">Introduction</a>.
<li><a href="#description">Classes description</a>.
<li><a href="#examples">Distribution Classes description & examples</a>.
<li><a href="#design">Design Issues</a>.
</ol>
<hr>

<h3><a name="introduction">1. Introduction</a></h3><p>

The <i>HEP Random</i> module originally part of
<a target="_top" href="http://wwwinfo.cern.ch/asd/geant/geant4.html">GEANT4</a>, 
has been designed and developed
starting from  the <i>Random</i> class of 
<a target="ext" href="http://wwwinfo.cern.ch/asd/geant/geant4_public/review/node21.html#SECTION00043000000000000000">MC++</a>, 
the <a target="ext" href="http://alephwww.cern.ch/C++/Catalog/CLHEP/Package.html">CLHEP</a>'s 
<i>HepRandom</i> module with no persistency and the 
<a target="ext" href="http://www.roguewave.com/">Rogue Wave</a> approach in 
<a target="ext" href="http://www.roguewave.com/products/math/math.html">Math.h++</a> 
package.<br>
The current release consists of 24 classes implementing 12 different random
engines and 10 different random distributions.<br>
Each random distribution belongs to a different <i>distribution</i>-class
which can collect different algorithms and different calling sequence for
each method to define distribution parameters or range-intervals.<br>
Each <i>distribution</i>-class collects also methods to fill arrays of
specified size of distributed random values.<p>

There are 3 different ways of shooting random values:
<dl>
<li><b>Using the static generator defined in HepRandom</b>:<br>
  random values are shooted using static methods <i>shoot()</i> defined for
  each distribution class. The static generator will use as default
  engine an <i>HepJamesRandom</i> global object and the user can set its
  properties or change it with a new instantiated engine object by using
  the static methods defined in <i>HepRandom</i>.<br>
  The static generator is a singleton; <i>createInstance()</i> is the method
  to invoke to create it.
<li><b>Skiping the static generator and specifying an engine object</b>:<br>
  random values are shooted using static methods
  <i>shoot(*HepRandomEngine)</i>
  defined for each distribution class. The user must instantiate an engine
  object and give it as argument to the shoot method. The generator mechanism
  will be then by-passed by using the basic <i>flat()</i> method of the specified
  engine.<br>
  The user must take care of the engine objects he/she instantiates.
<li><b>Skiping the static generator and instantiating a distribution object</b>:<br>
  random values are shooted using methods <i>fire()</i> (NOT static)
  defined for each distribution class. The user must instantiate a distribution
  object giving as argument to the constructor an engine by pointer or by
  reference.<br>
  Doing so, the engine will be associated to the distribution object and the
  generator mechanism will be by-passed by using the basic <i>flat()</i>
  method of that engine. If the engine is passed by pointer the corresponding
  engine object will be deleted by the distribution's destructor, if passed by
  reference it will not be deleted by the distribution's destructor.
</dl>

<h3><a name="description">2. Classes description</a></h3><p>

<b>HepRandomEngine</b><br>
Is the abstract class defining the interface for each random engine. It
implements the <i>getSeed()</i> and <i>getSeeds()</i> methods which return 
the initial seed value and the initial array of seeds respectively. It 
defines 7 pure virtual functions: <i>flat()</i>, <i>flatArray()</i>, 
<i>setSeed()</i>, <i>setSeeds()</i>, <i>saveStatus()</i>, <i>restoreStatus()</i> and 
<i>showStatus()</i>, which are implemented by the concrete
random engines each one inheriting from this abstract class.<br>
Many concrete random engines can be defined and added to the structure,
simply making them inheriting from <i>HepRandomEngine</i> and defining concrete 
methods for them in such a way that <i>flat()</i> and <i>flatArray()</i> return double
random values ranging between ]0,1[.<br>
All the random engines have a default seed value already set. They can however
be instantiated with a different seed value set up by the user. The
user, whenever necessary, can initialise the engine with a new seed by either
using a static method defined in <i>HepRandom</i>, or the methods to set seeds
defined in the engine itself.<br>
Methods <i>saveStatus()</i> and <i>restoreStatus()</i> can be used to save to
file the current status of an engine and restore it from a previous saved
configuration.<br>
The <i>showStatus()</i> method dumps on screen the status of the engine
currently in use.<br>
All these methods can be called statically from <i>HepRandom</i>
or directly at engine level.
<p>

<b>HepJamesRandom</b><br>
This class implements the algorithm described in <i>"F.James, Comp. Phys.
Comm. 60 (1990) 329"</i> for pseudo-random numbers generation.<br>
This is the default random engine for the static generator; it will be invoked
by each distribution class unless the user sets a different one.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>DRand48Engine</b><br>
Random engine using the <i>drand48()</i> and <i>srand48()</i> system
functions from C standard library to implement the <i>flat()</i> basic 
distribution and for setting seeds respectively.<br>
DRand48Engine uses the <i>seed48()</i> function from C standard library
to retrieve the current internal status of the generator, which is
represented by 3 short values. Copies of an object of this kind are not
allowed.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>RandEngine</b><br>
Simple random engine using the <i>rand()</i> and <i>srand()</i> system
functions from C standard library to implement the <i>flat()</i> basic
distribution and for setting seeds respectively.<br>
To keep track of the current status of an engine of this kind, a counter
is used and its value is stored as data-member. Copies of an object of 
this kind are not allowed.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>RanluxEngine</b><br>
The algorithm for RanluxEngine has been taken from the original
implementation in FORTRAN77 by Fred James, part of the MATHLIB HEP
library.<br>
The initialisation is carried out using a Multiplicative Congruential
generator using formula constants of L'Ecuyer as described in <i>"F.James,
Comp. Phys. Comm. 60 (1990) 329-344"</i>. It provides 5 different luxury
levels:
<dl>
<li><i>level 0</i>  (p=24): equivalent to the original RCARRY of Marsaglia
                    and Zaman, very long period, but fails many tests.
<li><i>level 1</i>  (p=48): considerable improvement in quality over level
                    0, now passes the gap test, but still fails spectral
                    test.
<li><i>level 2</i>  (p=97): passes all known tests, but theoretically still
                    defective.
<li><i>level 3</i>  (p=223): DEFAULT value. Any theoretically possible
                    correlations have very small chance of being observed.
<li><i>level 4</i>  (p=389): highest possible luxury, all 24 bits chaotic.
</dl>
When instantiating a <i>RanluxEngine</i>, the user can specify the luxury
level to the constructor (if not, the default value is taken):
<pre>
  ex. ...
     RanluxEngine theRanluxEngine(seed,4);
     // instantiates an engine with "seed" and the best luxury-level
      ... or
     RanluxEngine theRanluxEngine;
     // instatiates an engine with default seed value and luxury-level 3
      ...
</pre>
The class provides a method <i>getLuxury()</i> to get the engine
luxury level.<br>
The <i>SetSeed()</i> and <i>SetSeeds()</i> methods can be invoked 
specifying the luxury level:
<pre>
  ex. ...
     HepRandom::setTheSeed(seed,4);  // sets the seed to "seed" and luxury
                                     // to 4
     HepRandom::setTheSeed(seed);  // sets the seed to "seed" keeping the
                                   // current luxury level
</pre>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>Ranlux64Engine</b><br>
The algorithm for this random engine has been taken from the notes of 
a double-precision ranlux implementation by Martin Luscher, dated 
November 1997.<br>
This engine has "luxury" levels,
determining how many pseudo-random numbers are discarded for every 
twelve values used. Three levels are given, with the note that Luscher
himself advocates only the highest two levels for this engine.
<dl>
<li><i>level 0</i>  (p=109): Throw away 109 values for every 12 used
<li><i>level 1</i>  (p=202): DEFAULT. Throw away 202 values for every 12 used
<li><i>level 2</i>  (p=397): Throw away 397 values for every 12 used
</dl>
The initialization is carried out using a Multiplicative Congruential
generator using formula constants of L'Ecuyer as described in <i>"F.James,
Comp. Phys. Comm. 60 (1990) 329-344"</i>.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>RanecuEngine</b><br>
The algorithm for RanecuEngine is taken from the one originally written in
FORTRAN77 as part of the MATHLIB HEP library. The initialisation is carried
out using a Multiplicative Congruential generator using formula constants
of L'Ecuyer as described in <i>"F.James, Comp. Phys. Comm. 60 (1990) 329-344"</i>.<br>
Seeds are taken from <i>SeedTable</i> given an index, the <i>getSeed()</i>
method returns the current index of <i>SeedTable</i>. The <i>setSeeds()</i>
method will set seeds in the local <i>SeedTable</i> at a given position 
index (if the index number specified exceeds the table's size,
<i>(index%size)</i> is taken):
<pre>
  ex. ...
     int index=n;
     long seeds[2];
     const long* table;
     table = HepRandom::getTheSeeds();
       // it returns a pointer "table" to the local SeedTable at the
       // current "index" position
     ...
     HepRandom::setTheSeeds(seeds,index);
       // sets the new "index" for seeds and modify the values inside
       // the local SeedTable at the "index" position. If the index is
       // not specified, the current index in the table is considered.
     ...
</pre>
The <i>setSeed()</i> method resets the current status of the engine to
the original seeds stored in the static table of seeds in HepRandom, at
the specified index.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>Hurd160Engine</b><br>
The starting point for the <i>Hurd Random</i> algorithm is the paper in 
<i>"IEEE Transactions on Computers c23, 2 Feb 1974"</i>. The algorithm is
essentially a series of 32 interconnected b-bit registers. The basic
property is that at each step, bit 1 becomes bit 0, bit 2 the new bit 1,
bit <i>b</i> the new bit <i>b-1</i>. This is modified so that the new bit
<i>b0</i> is the old bit <i>b1</i> XOR'd with some bit <i>b-d</i> from the
previous bit register. The values of <i>d</i> can be chosen so as to
generate a primitive polynomial, a maximal length sequence through all
bit patterns except the zero pattern.<br>
This engine uses values based upon Table I of the afore 
mentioned paper, such that we have 160 total bits, representing 32
5-bit registers (actually implemented as an array of 5 32-bit words).<br>
The engine state can also be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>Hurd288Engine</b><br>
The algorithm adopted for this engine is essentially the same as for
<i>Hurd160Engine</i>, except that it acts over a number of 288 total bits,
representing 32 9-bit registers (actually implemented as an array of 9
32-bit words).<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>MTwistEngine</b><br>
The algorithm for this random engine is based on the article by M. Matsumoto
and T. Nishimura, <i>"Mersenne Twister: A 623-dimensionally equidistributed 
uniform pseudorandom number generator"</i>, to appear in <i>ACM Trans. on
Modeling and Computer Simulation</i>.<br>
It is a twisted GFSR generator with a Mersenne-prime period of 2^19937-1,
uniform on open interval (0,1).<br>
For further information, see
<a href="http://www.math.keio.ac.jp/~matumoto/emt.html">www.math.keio.ac.jp/~matumoto/emt.html</a>.
<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>RanshiEngine</b><br>
The algorithm for this random engine was taken from <i>"F.Gutbrod, Comp.
Phys. Comm. 87 (1995) 291-306"</i>.<br>
As figurative explanation of the algorithm, imagine a physical system as
follows: 512 "black balls" each with their own unique spin, and positions
characterized by discrete angles, where the spin is a 32-bit unsigned integer.
A "red ball" collides based upon the angle determined by the last 8 bits
of its spin, and the spin of the colliding ball is taken as the output
random number. The spin of the colliding ball is replaced then with the
left circular shift of the black ball's spin XOR'd with the red ball's
spin. The black ball's old spin becomes the red ball's.<br>
To avoid the traps presented, two measures are taken: first, the red 
ball will oscillate between hitting the lower half of the buffer on one
turn and the upper half on another; second, the red ball's spin is 
incremented by a counter of the number of random numbers produced.<br>
The result is scaled to a double precision floating point number to which
is added another random double further scaled 2^(53-32) places to the
right in order to ensure that the remaining bits of the result are not 
left empty due to the mere 32 bits representation used internally.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>DualRand</b> Engine<br>
This is a 32-bit C++ implementation of the Canopy random number generator
DualRand: exclusive-or of a feedback shift register and integer congruence
random number generator.<br>
The feedback shift register uses offsets 127 and 97. The integer congruence
generator uses a different multiplier for each stream.
The multipliers are chosen to give full period and maximum <i>potency</i>
for modulo 2^32.  The period of the combined random number generator is
2^159 - 2^32, and the sequences are different for each stream
(not just started in a different place).<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>TripleRand</b> Engine<br>
<i>TripleRand</i> is canopy pseudo-random number generator. It uses
the Tausworthe exclusive-or shift register, a simple Integer Coungruence
generator, and the <i>Hurd 288</i> total bit shift register, all XOR'd with
each other.<br>
It behavies similarly to <i>DualRand</i>, with the addition of the
<i>Hurd288Engine</i>. In addition to <i>DualRand</i>, this generator
is amended to also add in the exclusive or of the 
288-total bit Hurd engine which in this case is a series of 32 
interconnected 9-bit shift registers, with the newest bit of each register
formed by the XOR of the previous bit and some bit <i>b-d</i> from a previous
register, where <i>d</i> is chosen to create a primitive polynomial to maximize
the period.<br>
The engine state can be streamed through ad-hoc defined stream operators
<< and >>.
<p>

<b>HepRandom</b><br>
This is a singleton class, instantiated by default within the
<i>HEP Random</i> module and using an <i>HepJamesRandom</i> 
engine as default algorithm for pseudo-random number generation.<p>
<b>
However, on some compilers the static instance of the HepRandom generator
needs to be created <i>explicitly</i> in the client code. The static
generator is assured to be correctly initialized by including the
<i>Randomize.h</i> header in the client code, or by invoking explicitly
the <i>HepRandom::createInstance()</i> static function before any usage
of the Random classes.
</b>
<pre>
  ex.
      HepRandom::createInstance();  // to force instantiation of static generator
                                    // before any usage of HepRandom classes!
</pre>
<i>HepRandom</i> defines a static private data member <i>theGenerator</i>
and a set of static inlined methods to manipulate it. By means of 
<i>theGenerator</i> the user can change the underlying engine
algorithm, get and set the seeds and use any kind of defined random
distribution.<br>
The static methods <i>setTheSeed()</i> and <i>getTheSeed()</i> will set
and get respectively the <i>initial</i> seed to the main engine used by
the static generator.<br>
The static method <i>getTheTableSeeds()</i> returns the seeds stored in 
the global <i>seedTable</i> at the given position.
<pre>
  ex.  ...
      HepRandom::setTheSeed(seed);  // to change the current seed to 'seed'
      int startSeed = HepRandom::getTheSeed();  // to get the current
       ...                                      // initial seed
      HepRandom::saveEngineStatus();    // to save the current engine status
                                        // on file.
      HepRandom::restoreEngineStatus(); // to restore the current engine to
                                        // a previous saved configuration.
      HepRandom::showEngineStatus();    // to display the current engine
                                        // status to the std output.
      ...
      int index=n;
      long seeds[2];
      HepRandom::getTheTableSeeds(seeds,index);
        // fills "seeds" with the values stored in the global seedTable
        // at position "index"
</pre>
Only one random engine can be active at a time, the user can decide at any
time to change it, define a new one (if not done already) and set it:
<pre>
  ex.  ...
      DRand48Engine theNewEngine;
      HepRandom::setTheEngine(&theNewEngine);
       ...
</pre>
or simply setting it to an old instantiated engine (the old engine status is
kept and the new random sequence will start exactly from the last one previously
interrupted):
<pre>
  ex.  ...
      HepRandom::setTheEngine(&myOldEngine);
</pre>

<h3><a name="examples">3. <i>Distribution</i> Classes description & examples</a></h3><p>

<b>RandFlat</b><br>
<i>Distribution</i>-class defining methods for shooting flat 
random numbers, double or integers. It provides also methods to 
fill with double flat values arrays of specified size.<br>
<pre>
  ex.  ...
      double m,n;
      ...
      double fnum = RandFlat::shoot();         // fnum  ]0,1[
      double fnum = RandFlat::shoot(n);        // fnum  ]0,n[
      double fnum = RandFlat::shoot(-m,n);     // fnum  ]-m,n[
      long h,k;
      ...
      long inum = RandFlat::shootInt(k);       // inum  [0,k[
      long inum = RandFlat::shootInt(-h,k);    // inum  [-h,k[
      ...
      int i = RandFlat::shootBit();     // it returns just a bit (0 or 1)
      ...                               // of a random number
      const int size=n;
      double vect[size];
      RandFlat::shootArray(size,vect);  // to fill an array "vect" of n
                                        // double flat values
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution provided by the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      RanecuEngine theRanecuEngine;
      double m,n;
      ...
      double fnum = RandFlat::shoot(&theRanecuEngine);      // fnum  ]0,1[
      double fnum = RandFlat::shoot(&theRanecuEngine,n);    // fnum  ]0,n[
      double fnum = RandFlat::shoot(&theRanecuEngine,-m,n); // fnum  ]-m,n[
      long h,k;
      ...
      long inum = RandFlat::shootInt(&theRanecuEngine,k);     // inum  [0,k[
      long inum = RandFlat::shootInt(&theRanecuEngine,-h,k); // inum  [-h,k[
       ...
      int i = RandFlat::shootBit(&theRanecuEngine); // it returns just a bit
      ...                                           // of a random number
      const int size=n;                       // to fill an array "vect"
      double vect[size];                      // of n double flat values
      RandFlat::shootArray(&theRanecuEngine,size,vect);
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandFlat</i> object. These methods act directly
on the flat distribution provided by the engine given as argument to the
constructor of <i>RandFlat</i>. These methods will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandFlat</i> destructor,
if passed by reference it will not be deleted by the <i>RandFlat</i> destructor.<br>
An operator () corresponding to the fire() method is provided.
<pre>
  ex.  ...
      RanecuEngine aRanecuEngine;
      RandFlat FlatDist(aRanecuEngine);
      double m,n;
      ...
      double fnum = FlatDist.fire();        // fnum  ]0,1[
      double fnum = FlatDist.fire(n);       // fnum  ]0,n[
      double fnum = FlatDist.fire(-m,n);    // fnum  ]-m,n[
      long h,k;
      ...
      long inum = FlatDist.fireInt(k);      // inum  [0,k[
      long inum = FlatDist.fireInt(-h,k);   // inum  [-h,k[
      ...
      int i = FlatDist.fireBit();       // it returns just a bit (0 or 1)
      ...                               // of a random number
      const int size=n;                     // to fill an array "vect"
      double vect[size];                    // of n double flat values
      FlatDist.fireArray(size,vect);
</pre>

<b>RandExponential</b><br>
<i>Distribution</i>-class defining methods for shooting 
exponential distributed random values, given a mean (default mean = 1).
<pre>
  ex.  ...
      double m;
      ...
      double num = RandExponential::shoot();   // (mean=1)
      double num = RandExponential::shoot(m);  // (mean=m)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      RanluxEngine theRanluxEngine(19780503,4);
      double m;
      ...
      double num = RandExponential::shoot(&theRanluxEngine);   // (mean=1)
      double num = RandExponential::shoot(&theRanluxEngine,m); // (mean=m)
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandExponential</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandExponential</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandExponential</i>
destructor, if passed by reference it will not be deleted by the
<i>RandExponential</i> destructor.<br>
An operator () using the default mean value is provided.
<pre>
  ex.  ...
      RanluxEngine aRanluxEngine(19780503,4);
      RandExponential ExpDist(aRanluxEngine);
      double m;
      ...
      double num = ExpDist.fire();   // (mean=1)
      double num = ExpDist.fire(m);  // (mean=m)
</pre>

<b>RandGauss</b><br>
<i>Distribution</i>-class defining methods for shooting gaussian 
distributed random values, given a mean (default = 0) or specifying also
a deviation (default = 1) . Gaussian random numbers are generated two at the
time, so every other time shoot() or fire() is called the number returned is
the one generated the time before.
<pre>
  ex.  ...
      double m,s;
      ...
      double num = RandGauss::shoot();     // (mean=0)
      double num = RandGauss::shoot(m,s);  // (mean=m, stDev=s)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      RandEngine theRandEngine;
      double m,s;
      ...
      double num = RandGauss::shoot(&theRandEngine);
      double num = RandGauss::shoot(&theRandEngine,m,s);
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot
random numbers via an instantiated <i>RandGauss</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandGauss</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandGauss</i>
destructor, if passed by reference it will not be deleted by the
<i>RandGauss</i> destructor.<br>
An operator () using default mean and deviation is provided.
<pre>
  ex.  ...
      RandEngine aRandEngine;
      RandGauss GaussDist(aRandEngine);
      double m,s;
      ...
      double num = GaussDist.fire();
      double num = GaussDist.fire(m,s);
</pre>

<b>RandBreitWigner</b><br>
<i>Distribution</i>-class defining methods for shooting numbers according
to the Breit-Wigner distribution algorithms (plain or mean^2).
<pre>
  ex.  ...
    double m,g,c;
    ...
    double num = RandBreitWigner::shoot(m,g);   // (mean=m, gamma=g)
    double num = RandBreitWigner::shoot(m,g,c); // (mean=m, gamma=g, cut=c)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
    double m,g,c;
    DRand48Engine theDRand48Engine;
    ...
    double num = RandBreitWigner::shoot(&theDRand48Engine,m,g);
    double num = RandBreitWigner::shoot(&theDRand48Engine,m,g,c);
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandBreitWigner</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandBreitWigner</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor,
the corresponding engine object will be deleted by the <i>RandBreitWigner</i>
destructor, if passed by reference it will not be deleted by the
<i>RandBreitWigner</i> destructor.<br>
An operator () using the plain algorithm and default values is provided.
<pre>
  ex.  ...
    double m,g,c;
    DRand48Engine aDRand48Engine;
    RandBreitWigner BWDist(aDRand48Engine);
    ...
    double num = BWDist.fire(m,g);
    double num = BWDist.fire(m,g,c);
</pre>

<b>RandPoisson</b><br>
<i>Distribution</i>-class defining methods for shooting numbers according to
the Poisson distribution, given a mean (default = 1) (Algorithm taken from
<i>"W.H.Press et al., Numerical Recipes in C, Second Edition"</i>).
<pre>
  ex.  ...
      double m;
      ...
      long num = RandPoisson::shoot(m);  // (mean=m)
</pre>
Other static methods are provided to shoot random numbers from given
random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      RanecuEngine theRanecuEngine;
      double m;
      ...
      long num = RandPoisson::shoot(&theRanecuEngine,m);  // (mean=m)
</pre>
Other <i>fire()/fireArray()</i> methods are provided to shoot random numbers
via an instantiated <i>RandPoisson</i> object. These methods act directly on
the flat distribution of the engine passed as argument to the
constructor of <i>RandPoisson</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor,
the corresponding engine object will be deleted by the <i>RandPoisson</i>
destructor, if passed by reference it will not be deleted by the
<i>RandPoisson</i> destructor.<br>
Operators () are provided.
<pre>
  ex.  ...
      RanecuEngine aRanecuEngine;
      RandPoisson PoissonDist(aRanecuEngine);
      double m;
      ...
      long num = PoissonDist.fire(m);  // (mean=m)
</pre>

<b>RandBinomial</b><br>
Class defining methods for shooting binomial distributed random values,
given a sample size <i>n</i> (default=1) and a probability <i>p</i> (default=0.5).
Default values are used for operator ().<br>
Valid input values satisfy the relation <i>n*min(p,1-p) > 0</i>. When invalid
values are presented, the code silently returns -1.
<pre>
  ex.  ...
      double n,p;
      ...
      double num = RandBinomial::shoot();        // (sample=1, prob=1)
      double num = RandBinomial::shoot(n,p);     // (sample=n, prob=p)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      RanshiEngine theRanshiEngine;
      double n,p;
      ...
      double num =
        RandBinomial::shoot(&theRanshiEngine);     // (sample=1, prob=1)
      double num =
        RandBinomial::shoot(&theRanshiEngine,n,p); // (sample=n, prob=p)
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandBinomial</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandBinomial</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandBinomial</i>
destructor, if passed by reference it will not be deleted by the
<i>RandBinomial</i> destructor.<br>
Operators () are provided.
<pre>
  ex.  ...
      Hurd160Engine aHurd160Engine;
      RandBinomial BinDist(aHurd160Engine);
      double n,p;
      ...
      double num = BinDist.fire();     // (sample=1, prob=1)
      double num = BinDist.fire(n,p);  // (sample=n, prob=p)
</pre>

<b>RandChiSquare</b><br>
Class defining methods for shooting Chi^2 distributed random values,
given a number of degrees of freedom a (default=1.0).
Default values are used for operator ().<br> 
Valid values of <i>a</i> satisfy <i>a > 1</i>. When invalid values are
presented, the code silently returns -1.
<pre>
  ex.  ...
      double a;
      ...
      double num = RandChiSquare::shoot();        // (deg=1)
      double num = RandChiSquare::shoot(a);       // (deg=a)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      DualRand theDualRandEngine;
      double a;
      ...
      double num =
        RandChiSquare::shoot(&theDualRandEngine);   // (deg=1)
      double num =
        RandChisquare::shoot(&theDualRandEngine,a); // (deg=a)
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandChiSquare</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandChiSquare</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandChiSquare</i>
destructor, if passed by reference it will not be deleted by the
<i>RandChiSquare</i> destructor.<br>
Operators () are provided.
<pre>
  ex.  ...
      Hurd288Engine aHurd288Engine;
      RandChiSquare Chi2Dist(aHurd288Engine);
      double a;
      ...
      double num = Chi2Dist.fire();   // (deg=1)
      double num = Chi2Dist.fire(a);  // (deg=a)
</pre>

<b>RandGamma</b><br>
Class defining methods for shooting gamma distributed random values,
given a <i>k</i> (default=1) and specifying also a <i>lambda</i> (default=1).
Default values are used for operator ().<br>
Valid input values are <i>k > 0</i> and <i>lambda > 0</i>.
When invalid values are presented, the code silently returns -1.
<pre>
  ex.  ...
      double a,lm;
      ...
      double num = RandGamma::shoot();        // (k=1, lambda=1)
      double num = RandGamma::shoot(a,lm);    // (k=a, lambda=lm)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      MTwistEngine theMTwistEngine;
      double a,lm;
      ...
      double num =
        RandGamma::shoot(&theMTwistEngine);      // (k=1, lambda=1)
      double num =
        RandGamma::shoot(&theMTwistEngine,a,lm); // (k=a, lambda=lm)
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandGamma</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandGamma</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandGamma</i>
destructor, if passed by reference it will not be deleted by the
<i>RandGamma</i> destructor.<br>
Operators () are provided.
<pre>
  ex.  ...
      Ranlux64Engine aRanlux64Engine;
      RandGamma GammaDist(aRanlux64Engine);
      double a,lm;
      ...
      double num = GammaDist.fire();      // (k=1, lambda=1)
      double num = GammaDist.fire(a,lm);  // (k=a, lambda=lm)
</pre>

<b>RandStudentT</b><br>
Class defining methods for shooting Student's t- distributed random 
values, given a number of degrees of freedom <i>a</i> (default=1.0).
The implementation is based on the one provided in the C-Rand package
by Ernst Stadlober and Franz Niederl of the Technical University of Graz,
Austria (May 1998).<br>
Default values are used for operator (). Valid input values are <i>a > 0</i>.
When invalid values are presented, the code silently returns HUGE_VAL from
<i>math.h</i>.
<pre>
  ex.  ...
      double a;
      ...
      double num = RandStudentT::shoot();        // (deg=1)
      double num = RandStudentT::shoot(a);       // (deg=a)
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      TripleRand theTripleRandEngine;
      double a;
      ...
      double num =
        RandStudentT::shoot(&theTripleRandEngine);   // (deg=1)
      double num =
        RandStudentT::shoot(&theTripleRandEngine,a); // (deg=a)
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandStudentT</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandStudentT</i>; they will by-pass the <i>HepRandom</i>
generator mechanism. If the engine is passed by pointer to the constructor, the
corresponding engine object will be deleted by the <i>RandStudentT</i>
destructor, if passed by reference it will not be deleted by the
<i>RandStudentT</i> destructor.<br>
Operators () are provided.
<pre>
  ex.  ...
      RandEngine aRandEngine;
      RandChiSquare StudDist(aRandEngine);
      double a;
      ...
      double num = StudDist.fire();   // (deg=1)
      double num = StudDist.fire(a);  // (deg=a)
</pre>

<b>RandGeneral</b><br>
This class defines methods for shooting generally distributed random values,
given a user-defined probability distribution function.<br>
The probability distribution function <i>Pdf</i> must be provided by the user
as an array of positive real numbers. The array size must also be
provided. <i>Pdf</i> doesn't need to be normalized to 1.<br>
<blink>NOTE</blink> - No static methods are provided by this class, since
objects of this kind must be explicitly instantiated !
<pre>
  ex.  ...
      double* probList;
      int nBins;
      ...
      RandGeneral GenDist(probList,nBins);
      double num = GenDist.shoot();  // shoots values using the engine
                                     // in the static generator. shoot()
                                     // provides the same functionality
                                     // of fire() in this case.
</pre>
A speculate set of static methods is provided to shoot random numbers from
given random engines. Using these methods, the user is responsible of the
state of the random engine(s) he/she is activating, since these methods act
directly on the flat distribution of the engine, by-passing the
<i>HepRandom</i> generator mechanism.
<pre>
  ex.  ...
      RanecuEngine aRanecuEngine;
      double* probList;
      int nBins;
      ...
      RandGeneral GenDist(probList,nBins);
      double num = GenDist.shoot(&aRanecuEngine);   // shoots values using the
                                                    // specified engine
</pre>
A speculate set of <i>fire()/fireArray()</i> methods is provided to shoot random
numbers via an instantiated <i>RandGeneral</i> object. These methods act
directly on the flat distribution provided by the engine given as argument to
the constructor of <i>RandGeneral</i>; in case an engine is not specified the
engine of the static generator will be used. If the engine is passed by pointer
to the constructor, the corresponding engine object will be deleted by the
<i>RandGeneral</i> destructor, if passed by reference it will not be deleted
by the <i>RandGeneral</i> destructor.<br>
An Operator () is provided.
<pre>
  ex.  ...
      RanluxEngine aRanluxEngine;
      double* probList;
      int nBins;
      ...
      RandGeneral GenDist(aRanluxEngine,probList,nBins);
      ...
      double num = GenDist.fire();  // shoots values using the specified
                                    // engine local to the distribution
</pre>

<h3><a name="design">4. Design Issues</a></h3><p>

The use of a static generator has been introduced in the original design of
<i>HEP Random</i> as a project requirement in Geant4.
In applications like Geant4, where it is necessary to shoot random numbers
(normally of the same engine) in many different methods and parts of the
program, it is highly desirable not to have to rely-on/know global objects
instantiated. By using static methods via a unique generator, randomness of a
sequence of numbers is best assured.<p>

Analysis and design of the <i>HEP Random</i> module have been achieved
following the
<a target="ext" href="http://arkhp1.kek.jp/managers/computing/activities/OO_CollectInfor/Methodologies/Booch/BoochBook/BoochBookContents.html">Booch Object-Oriented methodology</a>.<br>
Here follows a list of diagrams describing the model according to the
Booch notation:
<dl>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/design1/class_diags/global/RandomClassDiagram.ps">Class Diagram</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/analysis1/scen_diagrams/global/ObjDiagStat.ps">Object
    Diagram: shooting via the generator</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/analysis1/scen_diagrams/global/ObjDiagDist.ps">Object
    Diagram: shooting via distribution objects</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/analysis1/scen_diagrams/global/ObjDiagEng.ps">Object
    Diagram: shooting with arbitrary engines</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/design1/scen_diagrams/global/IntDiagStat.ps">Interaction
    Diagram: shooting via the generator</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/design1/scen_diagrams/global/IntDiagDist.ps">Interaction
    Diagram: shooting via distribution objects</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/design1/scen_diagrams/global/IntDiagEng.ps">Interaction
    Diagram: shooting with arbitrary engines</a>
<li><a href="http://wwwinfo.cern.ch/asd/geant/geant4_public/design1/class_spec/global/RandomClassSpec.html">Class Specifications</a>
</dl>
<hr>

</body>
</html>