1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
|
// -*- C++ -*-
// $Id: testRandDists.cc,v 1.11 2011/07/11 15:55:45 garren Exp $
// ----------------------------------------------------------------------
// ----------------------------------------------------------------------
//
// testRandDists -- tests of the correctness of random distributions
//
// Usage:
// testRandDists < testRandDists.dat > testRandDists.log
//
// Currently tested:
// RandGauss
// RandGeneral
//
// M. Fischler 5/17/99 Reconfigured to be suitable for use with
// an automated validation script - will return
// 0 if validation is OK, or a mask indicating
// where problems were found.
// M. Fischler 5/18/99 Added test for RandGeneral.
// Evgenyi T. 5/20/99 Vetted for compilation on various CLHEP/CERN
// platforms.
// M. Fischler 5/26/99 Extended distribution test to intervals of .5
// sigma and to moments up to the sixth.
// M. Fischler 10/29/99 Added validation for RandPoisson.
// M. Fischler 11/09/99 Made gammln static to avoid (harmless)
// confusion with the gammln in RandPoisson.
// M. Fischler 2/04/99 Added validation for the Q and T versions of
// Poisson and Gauss
// M. Fischler 11/04/04 Add kludge to gaussianTest to deal with
// different behaviour under optimization on
// some compilers (gcc 2.95.2)
// This behaviour was only seen with stepwise
// RandGeneral and appears to be solely a
// function of the test program.
//
// ----------------------------------------------------------------------
#include "CLHEP/Units/GlobalPhysicalConstants.h" // used to provoke shadowing warnings
#include "CLHEP/Random/Randomize.h"
#include "CLHEP/Random/RandGaussQ.h"
#include "CLHEP/Random/RandGaussT.h"
#include "CLHEP/Random/RandPoissonQ.h"
#include "CLHEP/Random/RandPoissonT.h"
#include "CLHEP/Random/RandSkewNormal.h"
#include "CLHEP/Random/defs.h"
#include <iostream>
#include <iomanip>
#include <cmath> // double abs()
#include <stdlib.h> // int abs()
#include <cstdlib> // for exit()
using std::cin;
using std::cout;
using std::cerr;
using std::endl;
using std::setprecision;
using namespace CLHEP;
//#ifndef _WIN32
//using std::exp;
//#endif
// Tolerance of deviation from expected results
static const double REJECT = 4.0;
// Mask bits to form a word indicating which if any dists were "bad"
static const int GaussBAD = 1 << 0;
static const int GeneralBAD = 1 << 1;
static const int PoissonBAD = 1 << 2;
static const int GaussQBAD = 1 << 3;
static const int GaussTBAD = 1 << 4;
static const int PoissonQBAD = 1 << 5;
static const int PoissonTBAD = 1 << 6;
static const int SkewNormalBAD = 1 << 7;
// **********************
//
// SECTION I - General tools for the various tests
//
// **********************
static
double gammln(double x) {
// Note: This uses the gammln algorith in Numerical Recipes.
// In the "old" RandPoisson there is a slightly different algorithm,
// which mathematically is identical to this one. The advantage of
// the modified method is one fewer division by x (in exchange for
// doing one subtraction of 1 from x). The advantage of the method
// here comes when .00001 < x < .65: In this range, the alternate
// method produces results which have errors 10-100 times those
// of this method (though still less than 1.0E-10). If we package
// either method, we should use the reflection formula (6.1.4) so
// that the user can never get inaccurate results, even for x very
// small. The test for x < 1 is as costly as a divide, but so be it.
double y, tmp, ser;
static double c[6] = {
76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.001208650973866179,
-0.000005395239384953 };
y = x;
tmp = x + 5.5;
tmp -= (x+.5)*std::log(tmp);
ser = 1.000000000190015;
for (int i = 0; i < 6; i++) {
ser += c[i]/(++y);
}
double ans = (-tmp + std::log (std::sqrt(CLHEP::twopi)*ser/x));
return ans;
}
static
double gser(double a, double x) {
const int ITMAX = 100;
const double EPS = 1.0E-8;
double ap = a;
double sum = 1/a;
double del = sum;
for (int n=0; n < ITMAX; n++) {
ap++;
del *= x/ap;
sum += del;
if (std::fabs(del) < std::fabs(sum)*EPS) {
return sum*std::exp(-x+a*std::log(x)-gammln(a));
}
}
cout << "Problem - inaccurate gser " << a << ", " << x << "\n";
return sum*std::exp(-x+a*std::log(x)-gammln(a));
}
static
double gcf(double a, double x) {
const int ITMAX = 100;
const double EPS = 1.0E-8;
const double VERYSMALL = 1.0E-100;
double b = x+1-a;
double c = 1/VERYSMALL;
double d = 1/b;
double h = d;
for (int i = 1; i <= ITMAX; i++) {
double an = -i*(i-a);
b += 2;
d = an*d + b;
if (std::fabs(d) < VERYSMALL) d = VERYSMALL;
c = b + an/c;
if (std::fabs(c) < VERYSMALL) c = VERYSMALL;
d = 1/d;
double del = d*c;
h *= del;
if (std::fabs(del-1.0) < EPS) {
return std::exp(-x+a*std::log(x)-gammln(a))*h;
}
}
cout << "Problem - inaccurate gcf " << a << ", " << x << "\n";
return std::exp(-x+a*std::log(x)-gammln(a))*h;
}
static
double gammp (double a, double x) {
if (x < a+1) {
return gser(a,x);
} else {
return 1-gcf(a,x);
}
}
// **********************
//
// SECTION II - Validation of specific distributions
//
// **********************
// ------------
// gaussianTest
// ------------
bool gaussianTest ( HepRandom & dist, double mu,
double sigma, int nNumbers ) {
bool good = true;
double worstSigma = 0;
// We will accumulate mean and moments up to the sixth,
// The second moment should be sigma**2, the fourth 3 sigma**4,
// the sixth 15 sigma**6. The expected variance in these is
// (for the m-th moment with m even) (2m-1)!! (m-1)!!**2 / n
// (for the m-th moment with m odd) (2m-1)!! m!!**2 / n
// We also do a histogram with bins every half sigma.
double sumx = 0;
double sumx2 = 0;
double sumx3 = 0;
double sumx4 = 0;
double sumx5 = 0;
double sumx6 = 0;
int counts[11];
int ncounts[11];
int ciu;
for (ciu = 0; ciu < 11; ciu++) {
counts[ciu] = 0;
ncounts[ciu] = 0;
}
int oldprecision = cout.precision();
cout.precision(5);
// hack so that gcc 4.3 puts x and u into memory instead of a register
volatile double x;
volatile double u;
int ipr = nNumbers / 10 + 1;
for (int ifire = 0; ifire < nNumbers; ifire++) {
x = dist(); // We avoid fire() because that is not virtual
// in HepRandom.
if( x < mu - 12.0*sigma ) {
cout << "x = " << x << "\n";
}
if ( (ifire % ipr) == 0 ) {
cout << ifire << endl;
}
sumx += x;
sumx2 += x*x;
sumx3 += x*x*x;
sumx4 += x*x*x*x;
sumx5 += x*x*x*x*x;
sumx6 += x*x*x*x*x*x;
u = (x - mu) / sigma;
if ( u >= 0 ) {
ciu = (int)(2*u);
if (ciu>10) ciu = 10;
counts[ciu]++;
} else {
ciu = (int)(2*(-u));
if (ciu>10) ciu = 10;
ncounts[ciu]++;
}
}
double mean = sumx / nNumbers;
double u2 = sumx2/nNumbers - mean*mean;
double u3 = sumx3/nNumbers - 3*sumx2*mean/nNumbers + 2*mean*mean*mean;
double u4 = sumx4/nNumbers - 4*sumx3*mean/nNumbers
+ 6*sumx2*mean*mean/nNumbers - 3*mean*mean*mean*mean;
double u5 = sumx5/nNumbers - 5*sumx4*mean/nNumbers
+ 10*sumx3*mean*mean/nNumbers
- 10*sumx2*mean*mean*mean/nNumbers
+ 4*mean*mean*mean*mean*mean;
double u6 = sumx6/nNumbers - 6*sumx5*mean/nNumbers
+ 15*sumx4*mean*mean/nNumbers
- 20*sumx3*mean*mean*mean/nNumbers
+ 15*sumx2*mean*mean*mean*mean/nNumbers
- 5*mean*mean*mean*mean*mean*mean;
cout << "Mean (should be close to " << mu << "): " << mean << endl;
cout << "Second moment (should be close to " << sigma*sigma <<
"): " << u2 << endl;
cout << "Third moment (should be close to zero): " << u3 << endl;
cout << "Fourth moment (should be close to " << 3*sigma*sigma*sigma*sigma <<
"): " << u4 << endl;
cout << "Fifth moment (should be close to zero): " << u5 << endl;
cout << "Sixth moment (should be close to "
<< 15*sigma*sigma*sigma*sigma*sigma*sigma
<< "): " << u6 << endl;
// For large N, the variance squared in the scaled 2nd, 3rd 4th 5th and
// 6th moments are roughly 2/N, 6/N, 96/N, 720/N and 10170/N respectively.
// Based on this, we can judge how many sigma a result represents:
double del1 = std::sqrt ( (double) nNumbers ) * std::abs(mean - mu) / sigma;
double del2 = std::sqrt ( nNumbers/2.0 ) * std::abs(u2 - sigma*sigma) / (sigma*sigma);
double del3 = std::sqrt ( nNumbers/6.0 ) * std::abs(u3) / (sigma*sigma*sigma);
double sigma4 = sigma*sigma*sigma*sigma;
double del4 = std::sqrt ( nNumbers/96.0 ) * std::abs(u4 - 3 * sigma4) / sigma4;
double del5 = std::sqrt ( nNumbers/720.0 ) * std::abs(u5) / (sigma*sigma4);
double del6 = std::sqrt ( nNumbers/10170.0 ) * std::abs(u6 - 15*sigma4*sigma*sigma)
/ (sigma4*sigma*sigma);
cout << " These represent " <<
del1 << ", " << del2 << ", " << del3 << ", \n"
<<" " << del4 << ", " << del5 << ", " << del6
<<"\n standard deviations from expectations\n";
if ( del1 > worstSigma ) worstSigma = del1;
if ( del2 > worstSigma ) worstSigma = del2;
if ( del3 > worstSigma ) worstSigma = del3;
if ( del4 > worstSigma ) worstSigma = del4;
if ( del5 > worstSigma ) worstSigma = del5;
if ( del6 > worstSigma ) worstSigma = del6;
if ( del1 > REJECT || del2 > REJECT || del3 > REJECT
|| del4 > REJECT || del5 > REJECT || del6 > REJECT ) {
cout << "REJECT hypothesis that this distribution is correct!!\n";
good = false;
}
// The variance of the bin counts is given by a Poisson estimate (std::sqrt(npq)).
double table[11] = { // Table of integrated density in each range:
.191462, // 0.0 - 0.5 sigma
.149882, // 0.5 - 1.0 sigma
.091848, // 1.0 - 1.5 sigma
.044057, // 1.5 - 2.0 sigma
.016540, // 2.0 - 2.5 sigma
.004860, // 2.5 - 3.0 sigma
.001117, // 3.0 - 3.5 sigma
.000201, // 3.5 - 4.0 sigma
2.83E-5, // 4.0 - 4.5 sigma
3.11E-6, // 4.5 - 5.0 sigma
3.87E-7 // 5.0 sigma and up
};
for (int m1 = 0; m1 < 11; m1++) {
double expect = table[m1]*nNumbers;
double sig = std::sqrt ( table[m1] * (1.0-table[m1]) * nNumbers );
cout.precision(oldprecision);
cout << "Between " << m1/2.0 << " sigma and "
<< m1/2.0+.5 << " sigma (should be about " << expect << "):\n "
<< " "
<< ncounts[m1] << " negative and " << counts[m1] << " positive " << "\n";
cout.precision(5);
double negSigs = std::abs ( ncounts[m1] - expect ) / sig;
double posSigs = std::abs ( counts[m1] - expect ) / sig;
cout << " These represent " <<
negSigs << " and " << posSigs << " sigma from expectations\n";
if ( negSigs > REJECT || posSigs > REJECT ) {
cout << "REJECT hypothesis that this distribution is correct!!\n";
good = false;
}
if ( negSigs > worstSigma ) worstSigma = negSigs;
if ( posSigs > worstSigma ) worstSigma = posSigs;
}
cout << "\n The worst deviation encountered (out of about 25) was "
<< worstSigma << " sigma \n\n";
cout.precision(oldprecision);
return good;
} // gaussianTest()
// ------------
// skewNormalTest
// ------------
bool skewNormalTest ( HepRandom & dist, double k, int nNumbers ) {
bool good = true;
double worstSigma = 0;
// We will accumulate mean and moments up to the sixth,
// The second moment should be sigma**2, the fourth 3 sigma**4.
// The expected variance in these is
// (for the m-th moment with m even) (2m-1)!! (m-1)!!**2 / n
// (for the m-th moment with m odd) (2m-1)!! m!!**2 / n
double sumx = 0;
double sumx2 = 0;
double sumx3 = 0;
double sumx4 = 0;
double sumx5 = 0;
double sumx6 = 0;
int oldprecision = cout.precision();
cout.precision(5);
// hack so that gcc 4.3 puts x into memory instead of a register
volatile double x;
// calculate mean and sigma
double delta = k / std::sqrt( 1 + k*k );
double mu = delta/std::sqrt(CLHEP::halfpi);
double mom2 = 1.;
double mom3 = 3*delta*(1-(delta*delta)/3.)/std::sqrt(CLHEP::halfpi);
double mom4 = 3.;
double mom5 = 15*delta*(1-2.*(delta*delta)/3.+(delta*delta*delta*delta)/5.)/std::sqrt(CLHEP::halfpi);
double mom6 = 15.;
int ipr = nNumbers / 10 + 1;
for (int ifire = 0; ifire < nNumbers; ifire++) {
x = dist(); // We avoid fire() because that is not virtual
// in HepRandom.
if( x < mu - 12.0 ) {
cout << "x = " << x << "\n";
}
if ( (ifire % ipr) == 0 ) {
cout << ifire << endl;
}
sumx += x;
sumx2 += x*x;
sumx3 += x*x*x;
sumx4 += x*x*x*x;
sumx5 += x*x*x*x*x;
sumx6 += x*x*x*x*x*x;
}
double mean = sumx / nNumbers;
double u2 = sumx2/nNumbers;
double u3 = sumx3/nNumbers;
double u4 = sumx4/nNumbers;
double u5 = sumx5/nNumbers;
double u6 = sumx6/nNumbers;
cout << "Mean (should be close to " << mu << "): " << mean << endl;
cout << "Second moment (should be close to " << mom2 << "): " << u2 << endl;
cout << "Third moment (should be close to " << mom3 << "): " << u3 << endl;
cout << "Fourth moment (should be close to " << mom4 << "): " << u4 << endl;
cout << "Fifth moment (should be close to " << mom5 << "): " << u5 << endl;
cout << "Sixth moment (should be close to " << mom6 << "): " << u6 << endl;
double del1 = std::sqrt ( (double) nNumbers ) * std::abs(mean - mu);
double del2 = std::sqrt ( nNumbers/2.0 ) * std::abs(u2 - mom2);
double del3 = std::sqrt ( nNumbers/(15.-mom3*mom3) ) * std::abs(u3 - mom3 );
double del4 = std::sqrt ( nNumbers/96.0 ) * std::abs(u4 - mom4);
double del5 = std::sqrt ( nNumbers/(945.-mom5*mom5) ) * std::abs(u5 - mom5 );
double del6 = std::sqrt ( nNumbers/10170.0 ) * std::abs(u6 - mom6);
cout << " These represent " <<
del1 << ", " << del2 << ", " << del3 << ", \n"
<<" " << del4 << ", " << del5 << ", " << del6
<<"\n standard deviations from expectations\n";
if ( del1 > worstSigma ) worstSigma = del1;
if ( del2 > worstSigma ) worstSigma = del2;
if ( del3 > worstSigma ) worstSigma = del3;
if ( del4 > worstSigma ) worstSigma = del4;
if ( del5 > worstSigma ) worstSigma = del5;
if ( del6 > worstSigma ) worstSigma = del6;
if ( del1 > REJECT || del2 > REJECT || del3 > REJECT ||
del4 > REJECT || del5 > REJECT || del6 > REJECT ) {
cout << "REJECT hypothesis that this distribution is correct!!\n";
good = false;
}
cout << "\n The worst deviation encountered (out of about 25) was "
<< worstSigma << " sigma \n\n";
cout.precision(oldprecision);
return good;
} // skewNormalTest()
// ------------
// poissonTest
// ------------
class poisson {
double mu_;
public:
poisson(double mu) : mu_(mu) {}
double operator()(int r) {
double logAnswer = -mu_ + r*std::log(mu_) - gammln(r+1);
return std::exp(logAnswer);
}
};
double* createRefDist ( poisson pdist, int N,
int MINBIN, int MAXBINS, int clumping,
int& firstBin, int& lastBin ) {
// Create the reference distribution -- making sure there are more than
// 20 points at each value. The entire tail will be rolled up into one
// value (at each end). We shall end up with some range of bins starting
// at 0 or more, and ending at MAXBINS-1 or less.
double * refdist = new double [MAXBINS];
int c = 0; // c is the number of the clump, that is, the member number
// of the refdist array.
int ic = 0; // ic is the number within the clump; mod clumping
int r = 0; // r is the value of the variate.
// Determine the first bin: at least 20 entries must be at the level
// of that bin (so that we won't immediately dip belpw 20) but the number
// to enter is cumulative up to that bin.
double start = 0;
double binc;
while ( c < MAXBINS ) {
for ( ic=0, binc=0; ic < clumping; ic++, r++ ) {
binc += pdist(r) * N;
}
start += binc;
if (binc >= MINBIN) break;
c++;
if ( c > MAXBINS/3 ) {
cout << "The number of samples supplied " << N <<
" is too small to set up a chi^2 to test this distribution.\n";
exit(-1);
}
}
firstBin = c;
refdist[firstBin] = start;
c++;
// Fill all the other bins until one has less than 20 items.
double next = 0;
while ( c < MAXBINS ) {
for ( ic=0, binc=0; ic < clumping; ic++, r++ ) {
binc += pdist(r) * N;
}
next = binc;
if (next < MINBIN) break;
refdist[c] = next;
c++;
}
// Shove all the remaining items into last bin.
lastBin = c-1;
next += refdist[lastBin];
while ( c < MAXBINS ) {
for ( ic=0, binc=0; ic < clumping; ic++, r++ ) {
binc += pdist(r) * N;
}
next += binc;
c++;
}
refdist[lastBin] = next;
return refdist;
} // createRefDist()
bool poissonTest ( RandPoisson & dist, double mu, int N ) {
// Three tests will be done:
//
// A chi-squared test will be used to test the hypothesis that the
// generated distribution of N numbers matches the proper Poisson distribution.
//
// The same test will be applied to the distribution of numbers "clumping"
// together std::sqrt(mu) bins. This will detect small deviations over several
// touching bins, when mu is not small.
//
// The mean and second moment are checked against their theoretical values.
bool good = true;
int clumping = int(std::sqrt(mu));
if (clumping <= 1) clumping = 2;
const int MINBIN = 20;
const int MAXBINS = 1000;
int firstBin;
int lastBin;
int firstBin2;
int lastBin2;
poisson pdist(mu);
double* refdist = createRefDist( pdist, N,
MINBIN, MAXBINS, 1, firstBin, lastBin);
double* refdist2 = createRefDist( pdist, N,
MINBIN, MAXBINS, clumping, firstBin2, lastBin2);
// Now roll the random dists, treating the tails in the same way as we go.
double sum = 0;
double moment = 0;
double* samples = new double [MAXBINS];
double* samples2 = new double [MAXBINS];
int r;
for (r = 0; r < MAXBINS; r++) {
samples[r] = 0;
samples2[r] = 0;
}
int r1;
int r2;
for (int i = 0; i < N; i++) {
r = dist.fire();
sum += r;
moment += (r - mu)*(r - mu);
r1 = r;
if (r1 < firstBin) r1 = firstBin;
if (r1 > lastBin) r1 = lastBin;
samples[r1] += 1;
r2 = r/clumping;
if (r2 < firstBin2) r2 = firstBin2;
if (r2 > lastBin2) r2 = lastBin2;
samples2[r2] += 1;
}
// #ifdef DIAGNOSTIC
int k;
for (k = firstBin; k <= lastBin; k++) {
cout << k << " " << samples[k] << " " << refdist[k] << " " <<
(samples[k]-refdist[k])*(samples[k]-refdist[k])/refdist[k] << "\n";
}
cout << "----\n";
for (k = firstBin2; k <= lastBin2; k++) {
cout << k << " " << samples2[k] << " " << refdist2[k] << "\n";
}
// #endif // DIAGNOSTIC
// Now find chi^2 for samples[] to apply the first test
double chi2 = 0;
for ( r = firstBin; r <= lastBin; r++ ) {
double delta = (samples[r] - refdist[r]);
chi2 += delta*delta/refdist[r];
}
int degFreedom = (lastBin - firstBin + 1) - 1;
// and finally, p. Since we only care about it for small values,
// and never care about it past the 10% level, we can use the approximations
// CL(chi^2,n) = 1/std::sqrt(CLHEP::twopi) * ErrIntC ( y ) with
// y = std::sqrt(2*chi2) - std::sqrt(2*n-1)
// errIntC (y) = std::exp((-y^2)/2)/(y*std::sqrt(CLHEP::twopi))
double pval;
pval = 1.0 - gammp ( .5*degFreedom , .5*chi2 );
cout << "Chi^2 is " << chi2 << " on " << degFreedom << " degrees of freedom."
<< " p = " << pval << "\n";
delete[] refdist;
delete[] samples;
// Repeat the chi^2 and p for the clumped sample, to apply the second test
chi2 = 0;
for ( r = firstBin2; r <= lastBin2; r++ ) {
double delta = (samples2[r] - refdist2[r]);
chi2 += delta*delta/refdist2[r];
}
degFreedom = (lastBin2 - firstBin2 + 1) - 1;
double pval2;
pval2 = 1.0 - gammp ( .5*degFreedom , .5*chi2 );
cout << "Clumps: Chi^2 is " << chi2 << " on " << degFreedom <<
" degrees of freedom." << " p = " << pval2 << "\n";
delete[] refdist2;
delete[] samples2;
// Check out the mean and sigma to apply the third test
double mean = sum / N;
double sigma = std::sqrt( moment / (N-1) );
double deviationMean = std::fabs(mean - mu)/(std::sqrt(mu/N));
double expectedSigma2Variance = (2*N*mu*mu/(N-1) + mu) / N;
double deviationSigma = std::fabs(sigma*sigma-mu)/std::sqrt(expectedSigma2Variance);
cout << "Mean (should be " << mu << ") is " << mean << "\n";
cout << "Sigma (should be " << std::sqrt(mu) << ") is " << sigma << "\n";
cout << "These are " << deviationMean << " and " << deviationSigma <<
" standard deviations from expected values\n\n";
// If either p-value for the chi-squared tests is less that .0001, or
// either the mean or sigma are more than 3.5 standard deviations off,
// then reject the validation. This would happen by chance one time
// in 2000. Since we will be validating for several values of mu, the
// net chance of false rejection remains acceptable.
if ( (pval < .0001) || (pval2 < .0001) ||
(deviationMean > 3.5) || (deviationSigma > 3.5) ) {
good = false;
cout << "REJECT this distributon!!!\n";
}
return good;
} // poissonTest()
// **********************
//
// SECTION III - Tests of each distribution class
//
// **********************
// ---------
// RandGauss
// ---------
int testRandGauss() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandGauss distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
int nNumbers;
cout << "How many numbers should we generate: ";
cin >> nNumbers; cout << nNumbers << "\n";
double mu;
double sigma;
cout << "Enter mu: ";
cin >> mu; cout << mu << "\n";
cout << "Enter sigma: ";
cin >> sigma; cout << sigma << "\n";
cout << "\nInstantiating distribution utilizing TripleRand engine...\n";
TripleRand eng (seed);
RandGauss dist (eng, mu, sigma);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool good = gaussianTest ( dist, mu, sigma, nNumbers );
if (good) {
return 0;
} else {
return GaussBAD;
}
} // testRandGauss()
// ---------
// SkewNormal
// ---------
int testSkewNormal() {
cout << "\n--------------------------------------------\n";
cout << "Test of SkewNormal distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
int nNumbers;
cout << "How many numbers should we generate: ";
cin >> nNumbers; cout << nNumbers << "\n";
double k;
cout << "Enter k: ";
cin >> k; cout << k << "\n";
cout << "\nInstantiating distribution utilizing TripleRand engine...\n";
TripleRand eng (seed);
RandSkewNormal dist (eng, k);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool good = skewNormalTest ( dist, k, nNumbers );
if (good) {
return 0;
} else {
return SkewNormalBAD;
}
} // testSkewNormal()
// ---------
// RandGaussT
// ---------
int testRandGaussT() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandGaussT distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
int nNumbers;
cout << "How many numbers should we generate: ";
cin >> nNumbers; cout << nNumbers << "\n";
double mu;
double sigma;
cout << "Enter mu: ";
cin >> mu; cout << mu << "\n";
cout << "Enter sigma: ";
cin >> sigma; cout << sigma << "\n";
cout << "\nInstantiating distribution utilizing TripleRand engine...\n";
TripleRand eng (seed);
RandGaussT dist (eng, mu, sigma);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool good = gaussianTest ( dist, mu, sigma, nNumbers );
if (good) {
return 0;
} else {
return GaussTBAD;
}
} // testRandGaussT()
// ---------
// RandGaussQ
// ---------
int testRandGaussQ() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandGaussQ distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
int nNumbers;
cout << "How many numbers should we generate: ";
cin >> nNumbers; cout << nNumbers << "\n";
if (nNumbers >= 20000000) {
cout << "With that many samples RandGaussQ need not pass validation...\n";
}
double mu;
double sigma;
cout << "Enter mu: ";
cin >> mu; cout << mu << "\n";
cout << "Enter sigma: ";
cin >> sigma; cout << sigma << "\n";
cout << "\nInstantiating distribution utilizing DualRand engine...\n";
DualRand eng (seed);
RandGaussQ dist (eng, mu, sigma);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool good = gaussianTest ( dist, mu, sigma, nNumbers );
if (good) {
return 0;
} else {
return GaussQBAD;
}
} // testRandGaussQ()
// ---------
// RandPoisson
// ---------
int testRandPoisson() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandPoisson distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
cout << "\nInstantiating distribution utilizing TripleRand engine...\n";
TripleRand eng (seed);
int nNumbers;
cout << "How many numbers should we generate for each mu: ";
cin >> nNumbers; cout << nNumbers << "\n";
bool good = true;
while (true) {
double mu;
cout << "Enter a value for mu: ";
cin >> mu; cout << mu << "\n";
if (mu == 0) break;
RandPoisson dist (eng, mu);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool this_good = poissonTest ( dist, mu, nNumbers );
if (!this_good) {
cout << "\n Poisson distribution for mu = " << mu << " is incorrect!!!\n";
}
good &= this_good;
} // end of the while(true)
if (good) {
return 0;
} else {
return PoissonBAD;
}
} // testRandPoisson()
// ---------
// RandPoissonQ
// ---------
int testRandPoissonQ() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandPoissonQ distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
cout << "\nInstantiating distribution utilizing TripleRand engine...\n";
TripleRand eng (seed);
int nNumbers;
cout << "How many numbers should we generate for each mu: ";
cin >> nNumbers; cout << nNumbers << "\n";
bool good = true;
while (true) {
double mu;
cout << "Enter a value for mu: ";
cin >> mu; cout << mu << "\n";
if (mu == 0) break;
RandPoissonQ dist (eng, mu);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool this_good = poissonTest ( dist, mu, nNumbers );
if (!this_good) {
cout << "\n Poisson distribution for mu = " << mu << " is incorrect!!!\n";
}
good &= this_good;
} // end of the while(true)
if (good) {
return 0;
} else {
return PoissonQBAD;
}
} // testRandPoissonQ()
// ---------
// RandPoissonT
// ---------
int testRandPoissonT() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandPoissonT distribution \n\n";
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
cout << "\nInstantiating distribution utilizing TripleRand engine...\n";
TripleRand eng (seed);
int nNumbers;
cout << "How many numbers should we generate for each mu: ";
cin >> nNumbers; cout << nNumbers << "\n";
bool good = true;
while (true) {
double mu;
cout << "Enter a value for mu: ";
cin >> mu; cout << mu << "\n";
if (mu == 0) break;
RandPoissonT dist (eng, mu);
cout << "\n Sample fire(): \n";
double x;
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
bool this_good = poissonTest ( dist, mu, nNumbers );
if (!this_good) {
cout << "\n Poisson distribution for mu = " << mu << " is incorrect!!!\n";
}
good &= this_good;
} // end of the while(true)
if (good) {
return 0;
} else {
return PoissonTBAD;
}
} // testRandPoissonT()
// -----------
// RandGeneral
// -----------
int testRandGeneral() {
cout << "\n--------------------------------------------\n";
cout << "Test of RandGeneral distribution (using a Gaussian shape)\n\n";
bool good;
long seed;
cout << "Please enter an integer seed: ";
cin >> seed; cout << seed << "\n";
if (seed == 0) {
cout << "Moving on to next test...\n";
return 0;
}
int nNumbers;
cout << "How many numbers should we generate: ";
cin >> nNumbers; cout << nNumbers << "\n";
double mu;
double sigma;
mu = .5; // Since randGeneral always ranges from 0 to 1
sigma = .06;
cout << "Enter sigma: ";
cin >> sigma; cout << sigma << "\n";
// We suggest sigma be .06. This leaves room for 8 sigma
// in the distribution. If it is much smaller, the number
// of bins necessary to expect a good match will increase.
// If sigma is much larger, the cutoff before 5 sigma can
// cause the Gaussian hypothesis to be rejected. At .14, for
// example, the 4th moment is 7 sigma away from expectation.
int nBins;
cout << "Enter nBins for stepwise pdf test: ";
cin >> nBins; cout << nBins << "\n";
// We suggest at least 10000 bins; fewer would risk
// false rejection because the step-function curve
// does not match an actual Gaussian. At 10000 bins,
// a million-hit test does not have the resolving power
// to tell the boxy pdf from the true Gaussian. At 5000
// bins, it does.
double xBins = nBins;
double* aProbFunc = new double [nBins];
double x;
for ( int iBin = 0; iBin < nBins; iBin++ ) {
x = iBin / (xBins-1);
aProbFunc [iBin] = std::exp ( - (x-mu)*(x-mu) / (2*sigma*sigma) );
}
// Note that this pdf is not normalized; RandGeneral does that
cout << "\nInstantiating distribution utilizing Ranlux64 engine...\n";
Ranlux64Engine eng (seed, 3);
{ // Open block for testing type 1 - step function pdf
RandGeneral dist (eng, aProbFunc, nBins, 1);
delete[] aProbFunc;
double* garbage = new double[nBins];
// We wish to verify that deleting the pdf
// after instantiating the engine is fine.
for ( int gBin = 0; gBin < nBins; gBin++ ) {
garbage [gBin] = 1;
}
cout << "\n Sample fire(): \n";
x = dist.fire();
cout << x;
cout << "\n Testing operator() ... \n";
good = gaussianTest ( dist, mu, sigma, nNumbers );
delete[] garbage;
} // Close block for testing type 1 - step function pdf
// dist goes out of scope but eng is supposed to stick around;
// by closing this block we shall verify that!
cout << "Enter nBins for linearized pdf test: ";
cin >> nBins; cout << nBins << "\n";
// We suggest at least 1000 bins; fewer would risk
// false rejection because the non-smooth curve
// does not match an actual Gaussian. At 1000 bins,
// a million-hit test does not resolve the non-smoothness;
// at 300 bins it does.
xBins = nBins;
aProbFunc = new double [nBins];
for ( int jBin = 0; jBin < nBins; jBin++ ) {
x = jBin / (xBins-1);
aProbFunc [jBin] = std::exp ( - (x-mu)*(x-mu) / (2*sigma*sigma) );
}
// Note that this pdf is not normalized; RandGeneral does that
RandGeneral dist (eng, aProbFunc, nBins, 0);
cout << "\n Sample operator(): \n";
x = dist();
cout << x;
cout << "\n Testing operator() ... \n";
bool good2 = gaussianTest ( dist, mu, sigma, nNumbers );
good = good && good2;
if (good) {
return 0;
} else {
return GeneralBAD;
}
} // testRandGeneral()
// **********************
//
// SECTION IV - Main
//
// **********************
int main() {
int mask = 0;
mask |= testRandGauss();
mask |= testRandGaussQ();
mask |= testRandGaussT();
mask |= testRandGeneral();
mask |= testRandPoisson();
mask |= testRandPoissonQ();
mask |= testRandPoissonT();
mask |= testSkewNormal(); // k = 0 (gaussian)
mask |= testSkewNormal(); // k = -2
mask |= testSkewNormal(); // k = 1
mask |= testSkewNormal(); // k = 5
return mask > 0 ? -mask : mask;
}
|