1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
|
--------------------------------------------
Test of RandGauss distribution
Please enter an integer seed: 1357924
How many numbers should we generate: 500000
Enter mu: 20
Enter sigma: 4
Instantiating distribution utilizing TripleRand engine...
Sample fire():
26.7408
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 20): 20.004
Second moment (should be close to 16): 15.95
Third moment (should be close to zero): -0.012332
Fourth moment (should be close to 768): 762.39
Fifth moment (should be close to zero): -11.238
Sixth moment (should be close to 61440): 60359
These represent 0.71506, 1.5512, 0.055624,
1.581, 0.2892, 1.8504
standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 95731):
96022 negative and 96081 positive
These represent 1.046 and 1.258 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 74941):
74975 negative and 74625 positive
These represent 0.1347 and 1.252 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 45924):
45803 negative and 45982 positive
These represent 0.5925 and 0.28401 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 22028.5):
21851 negative and 22064 positive
These represent 1.2232 and 0.24464 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 8270):
8218 negative and 8154 positive
These represent 0.5766 and 1.2863 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 2430):
2426 negative and 2514 positive
These represent 0.081342 and 1.7082 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 558.5):
525 negative and 541 positive
These represent 1.4183 and 0.74092 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 100.5):
102 negative and 92 positive
These represent 0.14964 and 0.84797 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 14.15):
15 negative and 10 positive
These represent 0.22597 and 1.1033 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 1.555):
0 negative and 0 positive
These represent 1.247 and 1.247 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.1935):
0 negative and 0 positive
These represent 0.43989 and 0.43989 sigma from expectations
The worst deviation encountered (out of about 25) was 1.8504 sigma
--------------------------------------------
Test of RandGaussQ distribution
Please enter an integer seed: 1366781
How many numbers should we generate: 1000000
Enter mu: 0
Enter sigma: 1
Instantiating distribution utilizing DualRand engine...
Sample fire():
-0.933146
Testing operator() ...
0
100001
200002
300003
400004
500005
600006
700007
800008
900009
Mean (should be close to 0): -0.00024951
Second moment (should be close to 1): 0.99963
Third moment (should be close to zero): -0.0023588
Fourth moment (should be close to 3): 3.0026
Fifth moment (should be close to zero): -0.0198
Sixth moment (should be close to 15): 15.047
These represent 0.24951, 0.25834, 0.96299,
0.26104, 0.73789, 0.46688
standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 191462):
191300 negative and 191581 positive
These represent 0.41174 and 0.30245 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 149882):
150248 negative and 150025 positive
These represent 1.0253 and 0.40061 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 91848):
91705 negative and 91584 positive
These represent 0.49513 and 0.91409 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 44057):
43780 negative and 44290 positive
These represent 1.3498 and 1.1354 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 16540):
16691 negative and 16391 positive
These represent 1.1839 and 1.1683 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 4860):
4898 negative and 4777 positive
These represent 0.54642 and 1.1935 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 1117):
1110 negative and 1143 positive
These represent 0.20956 and 0.77838 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 201):
206 negative and 208 positive
These represent 0.35271 and 0.49379 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 28.3):
34 negative and 25 positive
These represent 1.0715 and 0.62034 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 3.11):
2 negative and 2 positive
These represent 0.62942 and 0.62942 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.387):
0 negative and 0 positive
These represent 0.62209 and 0.62209 sigma from expectations
The worst deviation encountered (out of about 25) was 1.3498 sigma
--------------------------------------------
Test of RandGaussT distribution
Please enter an integer seed: 2354789
How many numbers should we generate: 1000000
Enter mu: 10
Enter sigma: 5
Instantiating distribution utilizing TripleRand engine...
Sample fire():
19.9288
Testing operator() ...
0
100001
200002
300003
400004
500005
600006
700007
800008
900009
Mean (should be close to 10): 10.007
Second moment (should be close to 25): 24.995
Third moment (should be close to zero): -0.33843
Fourth moment (should be close to 1875): 1872.6
Fifth moment (should be close to zero): -153.02
Sixth moment (should be close to 2.3438e+05): 2.3322e+05
These represent 1.4634, 0.15033, 1.1053,
0.39904, 1.8248, 0.73091
standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 191462):
191661 negative and 191168 positive
These represent 0.50578 and 0.74723 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 149882):
150041 negative and 150074 positive
These represent 0.44543 and 0.53788 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 91848):
91449 negative and 91915 positive
These represent 1.3815 and 0.23199 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 44057):
43899 negative and 44317 positive
These represent 0.7699 and 1.2669 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 16540):
16439 negative and 16617 positive
These represent 0.79191 and 0.60373 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 4860):
4895 negative and 4895 positive
These represent 0.50328 and 0.50328 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 1117):
1124 negative and 1042 positive
These represent 0.20956 and 2.2453 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 201):
229 negative and 180 positive
These represent 1.9752 and 1.4814 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 28.3):
19 negative and 26 positive
These represent 1.7482 and 0.43236 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 3.11):
3 negative and 6 positive
These represent 0.062375 and 1.6388 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.387):
1 negative and 0 positive
These represent 0.98538 and 0.62209 sigma from expectations
The worst deviation encountered (out of about 25) was 2.2453 sigma
--------------------------------------------
Test of RandGeneral distribution (using a Gaussian shape)
Please enter an integer seed: 1234987
How many numbers should we generate: 500000
Enter sigma: 0.06
Enter nBins for stepwise pdf test: 10000
Instantiating distribution utilizing Ranlux64 engine...
Sample fire():
0.4408
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.5): 0.49988
Second moment (should be close to 0.0036): 0.0035996
Third moment (should be close to zero): 5.2049e-07
Fourth moment (should be close to 3.888e-05): 3.9082e-05
Fifth moment (should be close to zero): 2.4841e-08
Sixth moment (should be close to 6.9984e-07): 7.1025e-07
These represent 1.3553, 0.056148, 0.69561,
1.1263, 0.84186, 1.5638
standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 95731):
95879 negative and 95631 positive
These represent 0.53197 and 0.35944 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 74941):
74863 negative and 75293 positive
These represent 0.30903 and 1.3946 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 45924):
46032 negative and 45416 positive
These represent 0.52884 and 2.4875 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 22028.5):
22020 negative and 21866 positive
These represent 0.058575 and 1.1198 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 8270):
8381 negative and 8344 positive
These represent 1.2308 and 0.82054 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 2430):
2423 negative and 2472 positive
These represent 0.14235 and 0.85409 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 558.5):
574 negative and 556 positive
These represent 0.65624 and 0.10585 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 100.5):
101 negative and 114 positive
These represent 0.04988 and 1.3468 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 14.15):
10 negative and 19 positive
These represent 1.1033 and 1.2893 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 1.555):
4 negative and 1 positive
These represent 1.9607 and 0.44507 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.1935):
1 negative and 0 positive
These represent 1.8334 and 0.43989 sigma from expectations
The worst deviation encountered (out of about 25) was 2.4875 sigma
Enter nBins for linearized pdf test: 1000
Sample operator():
0.463128
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.5): 0.50006
Second moment (should be close to 0.0036): 0.0036028
Third moment (should be close to zero): -4.7605e-07
Fourth moment (should be close to 3.888e-05): 3.8957e-05
Fifth moment (should be close to zero): -2.1491e-08
Sixth moment (should be close to 6.9984e-07): 6.9999e-07
These represent 0.6852, 0.39504, 0.63622,
0.42945, 0.72832, 0.02247
standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 95731):
95333 negative and 96081 positive
These represent 1.4306 and 1.258 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 74941):
74969 negative and 75075 positive
These represent 0.11093 and 0.53089 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 45924):
45820 negative and 45766 positive
These represent 0.50925 and 0.77367 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 22028.5):
21895 negative and 22076 positive
These represent 0.91997 and 0.32733 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 8270):
8310 negative and 8421 positive
These represent 0.44354 and 1.6743 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 2430):
2475 negative and 2443 positive
These represent 0.9151 and 0.26436 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 558.5):
560 negative and 545 positive
These represent 0.063507 and 0.57156 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 100.5):
108 negative and 91 positive
These represent 0.74821 and 0.94773 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 14.15):
11 negative and 17 positive
These represent 0.83741 and 0.75766 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 1.555):
2 negative and 2 positive
These represent 0.35686 and 0.35686 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.1935):
0 negative and 0 positive
These represent 0.43989 and 0.43989 sigma from expectations
The worst deviation encountered (out of about 25) was 1.6743 sigma
--------------------------------------------
Test of RandPoisson distribution
Please enter an integer seed: 1363971
Instantiating distribution utilizing TripleRand engine...
How many numbers should we generate for each mu: 500000
Enter a value for mu: 0.12
Sample fire():
0
Testing operator() ...
0 443889 443460 0.414589
1 52830 53215.2 2.78866
2 3149 3192.91 0.603963
3 132 131.642 0.000974309
----
0 496719 496675
1 3281 3324.56
Chi^2 is 3.80819 on 3 degrees of freedom. p = 0.282935
Clumps: Chi^2 is 0.574445 on 1 degrees of freedom. p = 0.448498
Mean (should be 0.12) is 0.11906
Sigma (should be 0.34641) is 0.345163
These are 1.91877 and 1.58042 standard deviations from expected values
Enter a value for mu: 9.5
Sample fire():
13
Testing operator() ...
0 37 37.4259 0.004847
1 357 355.546 0.00594454
2 1719 1688.84 0.538451
3 5250 5348.01 1.79608
4 12753 12701.5 0.208673
5 23727 24132.9 6.82641
6 38157 38210.4 0.0746223
7 51789 51857 0.0890864
8 62020 61580.2 3.14172
9 65175 65001.3 0.464332
10 61580 61751.2 0.474673
11 53199 53330.6 0.324677
12 42250 42220 0.0212483
13 30992 30853.1 0.625215
14 20950 20936 0.00930786
15 13105 13259.5 1.80006
16 7985 7872.82 1.59835
17 4377 4399.52 0.115264
18 2409 2321.97 3.2621
19 1190 1160.98 0.725175
20 519 551.467 1.91151
21 268 249.473 1.37584
22 115 107.727 0.491004
23 77 72.5389 0.274359
----
0 2113 2081.82
1 41730 42182.4
2 151966 151648
3 179954 180083
4 94192 94009.2
5 25467 25531.8
6 4118 4034.42
7 433 401.697
8 27 28.0429
Chi^2 is 26.159 on 23 degrees of freedom. p = 0.29342
Clumps: Chi^2 is 10.8103 on 8 degrees of freedom. p = 0.212679
Mean (should be 9.5) is 9.50529
Sigma (should be 3.08221) is 3.08259
These are 1.21269 and 0.121219 standard deviations from expected values
Enter a value for mu: 130.5
Sample fire():
118
Testing operator() ...
91 78 81.3848 0.140772
92 31 36.7233 0.891984
93 34 51.5311 5.96418
94 74 71.5406 0.0845505
95 97 98.2742 0.0165198
96 136 133.591 0.0434251
97 158 179.729 2.62693
98 246 239.333 0.185744
99 338 315.484 1.60698
100 413 411.706 0.00406449
101 494 531.957 2.70841
102 712 680.592 1.44938
103 872 862.304 0.109025
104 1059 1082.03 0.48999
105 1402 1344.8 2.43267
106 1676 1655.63 0.250609
107 2083 2019.25 2.01264
108 2486 2439.93 0.869976
109 2972 2921.2 0.883503
110 3558 3465.6 2.46344
111 4164 4074.42 1.9693
112 4758 4747.43 0.0235237
113 5427 5482.65 0.564941
114 6217 6276.2 0.558329
115 7040 7122.12 0.946825
116 8041 8012.38 0.102209
117 8871 8936.89 0.485775
118 9898 9883.59 0.0210006
119 10851 10838.7 0.0138899
120 11823 11787.1 0.109225
121 12683 12712.6 0.0687068
122 13687 13598.3 0.579041
123 14235 14427.4 2.56652
124 15236 15183.7 0.180121
125 15852 15851.8 2.8726e-06
126 16333 16417.9 0.439259
127 16744 16870.4 0.946806
128 17273 17199.9 0.310814
129 17236 17399.9 1.54355
130 17519 17466.8 0.15597
131 17390 17400.1 0.00590683
132 17133 17202.4 0.280056
133 16951 16879.1 0.306652
134 16447 16438.2 0.0047273
135 15923 15890.2 0.0675176
136 15209 15247.6 0.0978445
137 14572 14524.2 0.157328
138 13776 13734.8 0.123352
139 12925 12894.9 0.0700798
140 11904 12019.9 1.11803
141 11134 11124.8 0.00756807
142 10328 10223.9 1.06056
143 9276 9330.18 0.314566
144 8490 8455.47 0.141001
145 7632 7609.92 0.0640402
146 6803 6802.02 0.000140821
147 6044 6038.53 0.00495662
148 5392 5324.51 0.855361
149 4664 4663.42 7.30132e-05
150 3993 4057.17 1.01501
151 3535 3506.36 0.233863
152 3055 3010.4 0.660817
153 2563 2567.69 0.00857589
154 2141 2175.87 0.558798
155 1857 1831.94 0.342763
156 1499 1532.49 0.731852
157 1239 1273.82 0.951862
158 1076 1052.11 0.542389
159 844 863.526 0.441503
160 723 704.313 0.495805
161 538 570.887 1.89455
162 515 459.881 6.60617
163 374 368.187 0.0917677
164 275 292.978 1.10322
165 238 231.719 0.170243
166 196 182.165 1.05077
167 138 142.35 0.132949
168 94 110.576 2.48476
169 75 85.3854 1.26317
170 56 65.5458 1.39022
171 43 50.0218 0.98569
172 35 37.9526 0.229704
173 20 28.629 2.60084
174 78 80.9759 0.109369
----
8 854 892.107
9 14507 14264.9
10 80648 80627.1
11 174188 174529
12 156302 156180
13 61447 61365.7
14 11081 11126
15 924 971.828
16 49 43.4924
Chi^2 is 67.597 on 83 degrees of freedom. p = 0.889909
Clumps: Chi^2 is 9.84423 on 8 degrees of freedom. p = 0.276129
Mean (should be 130.5) is 130.492
Sigma (should be 11.4237) is 11.4284
These are 0.466962 and 0.414307 standard deviations from expected values
Enter a value for mu: 0
--------------------------------------------
Test of RandPoissonQ distribution
Please enter an integer seed: 1323456
Instantiating distribution utilizing TripleRand engine...
How many numbers should we generate for each mu: 500000
Enter a value for mu: 1.4
Sample fire():
0
Testing operator() ...
0 123148 123298 0.183659
1 172841 172618 0.288411
2 121143 120833 0.79782
3 55933 56388.5 3.67957
4 19803 19736 0.227609
5 5503 5526.07 0.0963413
6 1291 1289.42 0.00194302
7 279 257.883 1.72911
8 59 53.274 0.615441
----
0 295989 295916
1 177076 177221
2 25306 25262.1
3 1570 1547.3
4 59 53.274
Chi^2 is 7.61991 on 8 degrees of freedom. p = 0.471451
Clumps: Chi^2 is 1.16141 on 4 degrees of freedom. p = 0.884411
Mean (should be 1.4) is 1.39966
Sigma (should be 1.18322) is 1.18302
These are 0.200798 and 0.143597 standard deviations from expected values
Enter a value for mu: 36.5
Sample fire():
36
Testing operator() ...
16 64 57.508 0.732875
17 70 71.636 0.0373644
18 149 145.262 0.0961904
19 268 279.056 0.438024
20 500 509.277 0.168991
21 914 885.172 0.938863
22 1416 1468.58 1.88259
23 2419 2330.57 3.35505
24 3490 3544.41 0.835378
25 5172 5174.85 0.00156413
26 7222 7264.69 0.250819
27 9763 9820.78 0.339941
28 12854 12802.1 0.210504
29 16056 16113 0.201444
30 19763 19604.1 1.28769
31 23412 23082.3 4.7103
32 26121 26328.2 1.63079
33 29273 29120.6 0.797616
34 31090 31261.8 0.944306
35 32608 32601.6 0.0012532
36 32961 33054.4 0.263962
37 32887 32607.7 2.39187
38 31142 31320.6 1.01821
39 29028 29312.9 2.76806
40 26733 26748 0.00838496
41 23878 23812.2 0.1817
42 20659 20694 0.0590449
43 17526 17565.8 0.0901742
44 14563 14571.6 0.00510983
45 11751 11819.2 0.393649
46 9368 9378.29 0.0112822
47 7344 7283.14 0.50861
48 5596 5538.22 0.602838
49 4161 4125.41 0.307071
50 3080 3011.55 1.55591
51 2160 2155.32 0.010147
52 1521 1512.87 0.0436761
53 1030 1041.88 0.13553
54 726 704.236 0.672619
55 432 467.356 2.67479
56 291 304.616 0.608643
57 212 195.061 1.47092
58 126 122.754 0.0858297
59 86 75.9411 1.33237
60 46 46.1975 0.000844299
61 69 65.3406 0.204947
----
2 134 129.144
3 5666 5617.92
4 54557 54719.8
5 162267 161999
6 176629 176856
7 81211 81312
8 17548 17385.3
9 1873 1869.96
10 115 111.538
Chi^2 is 36.2677 on 45 degrees of freedom. p = 0.820234
Clumps: Chi^2 is 3.57511 on 8 degrees of freedom. p = 0.893283
Mean (should be 36.5) is 36.5002
Sigma (should be 6.04152) is 6.04718
These are 0.0224719 and 0.929886 standard deviations from expected values
Enter a value for mu: 100
Sample fire():
110
Testing operator() ...
65 63 61.5743 0.033012
66 35 34.1702 0.0201507
67 63 51.0003 2.82337
68 72 75.0005 0.120036
69 124 108.696 2.15465
70 165 155.28 0.608381
71 217 218.705 0.0132898
72 318 303.757 0.667871
73 413 416.105 0.0231717
74 556 562.304 0.0706795
75 760 749.739 0.140434
76 978 986.499 0.0732157
77 1228 1281.17 2.20638
78 1699 1642.52 1.942
79 2114 2079.14 0.584426
80 2569 2598.93 0.344615
81 3196 3208.55 0.0491034
82 3923 3912.87 0.0262348
83 4742 4714.3 0.162769
84 5655 5612.26 0.325473
85 6530 6602.66 0.799592
86 7648 7677.51 0.113437
87 8777 8824.73 0.258109
88 10113 10028.1 0.718827
89 11419 11267.5 2.03635
90 12627 12519.5 0.923538
91 13822 13757.7 0.300879
92 14896 14954 0.224804
93 15930 16079.5 1.39089
94 16900 17105.9 2.47844
95 18125 18006.2 0.78363
96 19012 18756.5 3.48116
97 19152 19336.6 1.76174
98 19786 19731.2 0.152234
99 20051 19930.5 0.728564
100 19940 19930.5 0.00452976
101 19778 19733.2 0.10186
102 19475 19346.2 0.856944
103 18824 18782.8 0.0905517
104 17895 18060.3 1.51376
105 17189 17200.3 0.00746167
106 16165 16226.7 0.234799
107 15274 15165.2 0.781086
108 14022 14041.8 0.0279714
109 12845 12882.4 0.108592
110 11621 11711.3 0.69587
111 10647 10550.7 0.879002
112 9293 9420.27 1.71934
113 8297 8336.52 0.187335
114 7331 7312.74 0.0456173
115 6397 6358.9 0.228274
116 5433 5481.81 0.434618
117 4625 4685.31 0.776278
118 3899 3970.6 1.29114
119 3217 3336.64 4.28979
120 2767 2780.53 0.0658604
121 2306 2297.96 0.0281251
122 1911 1883.57 0.399329
123 1530 1531.36 0.00121004
124 1250 1234.97 0.182951
125 973 987.975 0.22698
126 821 784.107 1.73584
127 667 617.407 3.98351
128 457 482.349 1.33221
129 358 373.914 0.67733
130 300 287.626 0.532314
131 211 219.562 0.333889
132 156 166.335 0.642141
133 119 125.064 0.294012
134 93 93.3312 0.00117553
135 82 69.1342 2.39429
136 53 50.834 0.0922914
137 28 37.1051 2.23428
138 73 92.0547 3.94421
----
6 357 330.442
7 8448 8395.22
8 64572 64447.4
9 170301 170178
10 171407 171369
11 70760 71164.8
12 13040 12974.2
13 1083 1095.22
14 32 45.8233
Chi^2 is 61.9182 on 73 degrees of freedom. p = 0.819169
Clumps: Chi^2 is 9.74769 on 8 degrees of freedom. p = 0.283183
Mean (should be 100) is 99.9808
Sigma (should be 10) is 9.99529
These are 1.35722 and 0.469398 standard deviations from expected values
Enter a value for mu: 104.5
Sample fire():
95
Testing operator() ...
69 78 70.7124 0.751062
70 34 37.5779 0.340653
71 61 55.3082 0.585737
72 83 80.2738 0.0925871
73 119 114.912 0.145398
74 165 162.275 0.0457588
75 225 226.103 0.0053827
76 321 310.892 0.328647
77 417 421.925 0.0574814
78 557 565.271 0.121019
79 718 747.732 1.18222
80 969 976.725 0.0610925
81 1250 1260.1 0.0808807
82 1574 1605.85 0.631834
83 2055 2021.83 0.544272
84 2520 2515.25 0.00897218
85 3202 3092.28 3.89327
86 3650 3757.48 3.07419
87 4484 4513.29 0.190094
88 5352 5359.53 0.0105872
89 6310 6292.93 0.0462788
90 7306 7306.8 8.67647e-05
91 8440 8390.77 0.288823
92 9414 9530.82 1.43192
93 10725 10709.4 0.0228277
94 11939 11905.6 0.0935698
95 13123 13096.2 0.0549025
96 14204 14255.7 0.187813
97 15356 15358 0.000258347
98 16195 16376.6 2.01452
99 17728 17286.4 11.2787
100 18226 18064.3 1.44676
101 18558 18690.3 0.936903
102 19265 19148.4 0.709698
103 19158 19427.3 3.73264
104 19218 19520.7 4.69344
105 19334 19427.7 0.452213
106 19113 19152.8 0.0827476
107 18543 18705.3 1.40848
108 18081 18099.1 0.0181486
109 17408 17351.9 0.181296
110 16642 16484.3 1.50834
111 15450 15519 0.306953
112 14569 14479.8 0.549513
113 13572 13390.6 2.45711
114 12414 12274.7 1.58025
115 11259 11154 0.988617
116 10047 10048.2 0.000144949
117 8955 8974.68 0.0431571
118 7860 7947.92 0.972488
119 6922 6979.47 0.473259
120 6111 6077.96 0.179635
121 5121 5249.15 3.12835
122 4386 4496.19 2.70066
123 3979 3819.94 6.62341
124 3210 3219.22 0.0264133
125 2774 2691.27 2.5432
126 2249 2232.04 0.128802
127 1812 1836.6 0.329593
128 1541 1499.41 1.15335
129 1280 1214.64 3.51681
130 949 976.385 0.768095
131 782 778.872 0.0125601
132 629 616.607 0.249075
133 465 484.477 0.783024
134 394 377.82 0.692918
135 280 292.461 0.530892
136 230 224.722 0.123987
137 173 171.412 0.0147179
138 121 129.801 0.596723
139 99 97.5841 0.020544
140 68 72.8396 0.321547
141 55 53.9839 0.0191242
142 42 39.7276 0.129979
143 21 29.0317 2.222
144 61 72.5299 1.83289
----
6 78 70.7124
7 2700 2722.27
8 31366 31395.3
9 124430 124216
10 186904 187588
11 117690 117253
12 32463 32336.4
13 4122 4150.14
14 247 268.113
Chi^2 is 78.7613 on 75 degrees of freedom. p = 0.360784
Clumps: Chi^2 is 7.80106 on 8 degrees of freedom. p = 0.45314
Mean (should be 104.5) is 104.508
Sigma (should be 10.2225) is 10.226
These are 0.572048 and 0.335223 standard deviations from expected values
Enter a value for mu: 235.8
Sample fire():
203
Testing operator() ...
183 98 102.415 0.190296
184 22 31.0742 2.64983
185 26 39.607 4.67471
186 58 50.2115 1.20811
187 55 63.3148 1.09194
188 67 79.4129 1.94025
189 89 99.0771 1.02494
190 126 122.96 0.0751647
191 152 151.801 0.000261533
192 187 186.43 0.00174094
193 204 227.773 2.4813
194 285 276.85 0.239902
195 332 334.776 0.0230179
196 391 402.756 0.343142
197 485 482.08 0.0176809
198 563 574.114 0.215151
199 684 680.282 0.020322
200 804 802.052 0.00472983
201 930 940.915 0.12662
202 1105 1098.36 0.0401981
203 1292 1275.82 0.205104
204 1432 1474.7 1.23649
205 1691 1696.27 0.0163538
206 1975 1941.65 0.57285
207 2289 2211.79 2.69515
208 2487 2507.41 0.166073
209 2764 2828.93 1.49029
210 3157 3176.48 0.119515
211 3616 3549.83 1.23327
212 3928 3948.35 0.104918
213 4387 4370.99 0.0586127
214 4842 4816.26 0.137529
215 5190 5282.21 1.60964
216 5938 5766.41 5.10589
217 6185 6265.99 1.04682
218 6839 6777.62 0.555938
219 7293 7297.54 0.00282848
220 7732 7821.64 1.02731
221 8332 8345.44 0.0216498
222 8734 8864.21 1.91278
223 9360 9373.01 0.0180587
224 9865 9866.77 0.000316423
225 10476 10340.4 1.77895
226 10884 10788.8 0.840759
227 11222 11207 0.0200708
228 11630 11590.4 0.135301
229 11960 11934.6 0.0541913
230 12171 12235.5 0.340303
231 12451 12489.8 0.120361
232 12540 12694.3 1.87664
233 13047 12846.9 3.11683
234 13071 12945.7 1.21241
235 12850 12989.8 1.50433
236 13026 12978.8 0.171794
237 12865 12913.1 0.178909
238 12730 12793.7 0.317171
239 12671 12622.4 0.187091
240 12301 12401.5 0.814636
241 12160 12133.9 0.0560214
242 11858 11823.1 0.103265
243 11584 11472.7 1.07886
244 10856 11087.2 4.82062
245 10634 10670.9 0.127263
246 10271 10228.4 0.177414
247 9831 9764.6 0.451481
248 9349 9284.25 0.45161
249 8677 8792.07 1.50605
250 8459 8292.68 3.33571
251 7770 7790.49 0.0539169
252 7296 7289.68 0.00548394
253 6809 6794.09 0.0327009
254 6345 6307.27 0.225657
255 5838 5832.37 0.0054289
256 5328 5372.16 0.36304
257 4898 4929.01 0.195109
258 4468 4504.89 0.302038
259 4197 4101.36 2.23022
260 3727 3719.62 0.0146489
261 3347 3360.48 0.0540953
262 2940 3024.43 2.3572
263 2598 2711.64 4.76256
264 2499 2421.99 2.44871
265 2140 2155.11 0.105981
266 1933 1910.43 0.266532
267 1632 1687.19 1.80552
268 1468 1484.48 0.182908
269 1324 1301.26 0.397264
270 1158 1136.44 0.409147
271 1015 988.826 0.692827
272 837 857.225 0.47717
273 744 740.416 0.0173472
274 626 637.19 0.196521
275 572 546.362 1.20309
276 508 466.783 3.63949
277 389 397.355 0.175688
278 361 337.037 1.7037
279 283 284.851 0.0120265
280 226 239.885 0.803705
281 200 201.299 0.00837779
282 163 168.32 0.168141
283 129 140.247 0.901909
284 121 116.444 0.178232
285 108 96.3424 1.4106
286 83 79.4319 0.160278
287 59 65.2615 0.600755
288 61 53.4328 1.07166
289 43 43.5968 0.00816857
290 34 35.4487 0.0592029
291 25 28.7244 0.482903
292 133 113.119 3.49421
----
11 32 33.6744
12 1337 1397.25
13 19224 19251.9
14 95398 95522.8
15 183594 183371
16 144200 144133
17 48337 48516.4
18 7332 7258.68
19 546 515.357
Chi^2 is 94.1689 on 109 degrees of freedom. p = 0.843355
Clumps: Chi^2 is 6.41348 on 8 degrees of freedom. p = 0.60102
Mean (should be 235.8) is 235.808
Sigma (should be 15.3558) is 15.3533
These are 0.389108 and 0.163437 standard deviations from expected values
Enter a value for mu: 0
--------------------------------------------
Test of RandPoissonT distribution
Please enter an integer seed: 1357531
Instantiating distribution utilizing TripleRand engine...
How many numbers should we generate for each mu: 500000
Enter a value for mu: 1.4
Sample fire():
0
Testing operator() ...
0 123493 123298 0.306875
1 172488 172618 0.0977156
2 120582 120833 0.519367
3 56258 56388.5 0.302043
4 19999 19736 3.50533
5 5509 5526.07 0.0527511
6 1359 1289.42 3.75501
7 263 257.883 0.101516
8 49 53.274 0.34289
----
0 295981 295916
1 176840 177221
2 25508 25262.1
3 1622 1547.3
4 49 53.274
Chi^2 is 8.98349 on 8 degrees of freedom. p = 0.34369
Clumps: Chi^2 is 7.17701 on 4 degrees of freedom. p = 0.126824
Mean (should be 1.4) is 1.40072
Sigma (should be 1.18322) is 1.18567
These are 0.431478 and 1.78031 standard deviations from expected values
Enter a value for mu: 99.1
Sample fire():
96
Testing operator() ...
64 57 54.5885 0.106528
65 33 30.8208 0.154079
66 47 46.2779 0.0112666
67 72 68.4499 0.184125
68 111 99.7556 1.26745
69 136 143.272 0.369124
70 180 202.833 2.57022
71 265 283.109 1.15828
72 377 389.667 0.411796
73 535 528.987 0.068353
74 671 708.413 1.97592
75 892 936.05 2.073
76 1197 1220.56 0.454785
77 1577 1570.88 0.0238658
78 1964 1995.82 0.507299
79 2486 2503.62 0.123958
80 3112 3101.36 0.0365374
81 3771 3794.37 0.143986
82 4605 4585.64 0.0817387
83 5440 5475.14 0.225573
84 6414 6459.37 0.31861
85 7497 7530.86 0.152241
86 8590 8678 0.892427
87 10091 9884.94 4.29535
88 11200 11131.8 0.417905
89 12369 12395.1 0.0548118
90 13389 13648.3 4.92802
91 14896 14863.2 0.0723976
92 15973 16010.2 0.0866564
93 17108 17060.4 0.132908
94 17951 17986 0.0681034
95 18711 18762.2 0.139918
96 19641 19368.1 3.8452
97 19755 19787.4 0.053084
98 20076 20009.5 0.220918
99 20040 20029.7 0.00527093
100 19835 19849.5 0.0105302
101 19289 19476.1 1.79648
102 18884 18922.3 0.0776066
103 18115 18205.8 0.453303
104 17283 17348.1 0.244063
105 16407 16373.3 0.0694733
106 15254 15307.5 0.186744
107 14130 14177.3 0.15773
108 13192 13009 2.57501
109 12053 11827.4 4.30219
110 10620 10655.4 0.117842
111 9533 9513.1 0.0416453
112 8387 8417.39 0.109727
113 7438 7381.98 0.42516
114 6460 6417.14 0.286261
115 5514 5529.9 0.0457209
116 4814 4724.25 1.70499
117 4056 4001.48 0.742798
118 3440 3360.57 1.87759
119 2786 2798.59 0.05663
120 2361 2311.17 1.07444
121 1878 1892.87 0.11675
122 1491 1537.57 1.41025
123 1231 1238.8 0.0491476
124 959 990.043 0.973374
125 792 784.906 0.0641108
126 617 617.335 0.000181805
127 501 481.716 0.771996
128 355 372.953 0.864245
129 270 286.509 0.951284
130 207 218.408 0.59588
131 161 165.223 0.107949
132 115 124.043 0.659198
133 92 92.4257 0.00196095
134 72 68.3537 0.194516
135 52 50.1766 0.0662584
136 40 36.5625 0.323176
137 87 90.1474 0.109891
----
6 21 21.3177
7 880 907.788
8 12811 12955.3
9 69977 69935.2
10 157500 157495
11 159237 159689
12 78011 77475.6
13 18994 18916
14 2390 2426.97
15 179 176.887
Chi^2 is 51.2478 on 73 degrees of freedom. p = 0.975104
Clumps: Chi^2 is 8.38105 on 9 degrees of freedom. p = 0.496248
Mean (should be 99.1) is 99.1201
Sigma (should be 9.9549) is 9.94589
These are 1.42474 and 0.902668 standard deviations from expected values
Enter a value for mu: 100
Sample fire():
115
Testing operator() ...
65 47 61.5743 3.44965
66 25 34.1702 2.461
67 42 51.0003 1.58834
68 79 75.0005 0.213283
69 126 108.696 2.75462
70 161 155.28 0.210672
71 225 218.705 0.181198
72 288 303.757 0.817348
73 417 416.105 0.00192448
74 565 562.304 0.0129239
75 815 749.739 5.68065
76 1000 986.499 0.184781
77 1317 1281.17 1.00221
78 1650 1642.52 0.0340464
79 1980 2079.14 4.72746
80 2662 2598.93 1.53071
81 3167 3208.55 0.538113
82 3841 3912.87 1.32001
83 4695 4714.3 0.079005
84 5637 5612.26 0.109052
85 6633 6602.66 0.139418
86 7725 7677.51 0.293738
87 8903 8824.73 0.694285
88 10029 10028.1 8.12547e-05
89 11225 11267.5 0.160495
90 12363 12519.5 1.95564
91 13704 13757.7 0.209309
92 14932 14954 0.032308
93 16193 16079.5 0.80047
94 17234 17105.9 0.959252
95 18071 18006.2 0.233102
96 18619 18756.5 1.00758
97 19281 19336.6 0.159696
98 20074 19731.2 5.95587
99 20082 19930.5 1.15164
100 20239 19930.5 4.77526
101 19622 19733.2 0.626257
102 19262 19346.2 0.366826
103 18679 18782.8 0.573183
104 18114 18060.3 0.1594
105 17039 17200.3 1.51317
106 16370 16226.7 1.26505
107 15093 15165.2 0.343394
108 13909 14041.8 1.2563
109 12759 12882.4 1.18209
110 11807 11711.3 0.782436
111 10590 10550.7 0.146403
112 9408 9420.27 0.0159715
113 8272 8336.52 0.499327
114 7223 7312.74 1.10116
115 6371 6358.9 0.0230224
116 5480 5481.81 0.000598168
117 4711 4685.31 0.140878
118 3962 3970.6 0.0186283
119 3284 3336.64 0.830434
120 2688 2780.53 3.07936
121 2340 2297.96 0.769075
122 1818 1883.57 2.28289
123 1543 1531.36 0.0884575
124 1277 1234.97 1.4305
125 974 987.975 0.197678
126 797 784.107 0.211994
127 610 617.407 0.0888662
128 475 482.349 0.11198
129 355 373.914 0.956767
130 280 287.626 0.202211
131 241 219.562 2.09318
132 162 166.335 0.112974
133 98 125.064 5.85662
134 94 93.3312 0.0047921
135 67 69.1342 0.0658863
136 55 50.834 0.341416
137 28 37.1051 2.23428
138 97 92.0547 0.265664
----
6 319 330.442
7 8418 8395.22
8 64517 64447.4
9 170553 170178
10 171086 171369
11 71108 71164.8
12 12877 12974.2
13 1067 1095.22
14 55 45.8233
Chi^2 is 76.6642 on 73 degrees of freedom. p = 0.361929
Clumps: Chi^2 is 5.1682 on 8 degrees of freedom. p = 0.739457
Mean (should be 100) is 99.9835
Sigma (should be 10) is 9.98948
These are 1.16489 and 1.04919 standard deviations from expected values
Enter a value for mu: 130.5
Sample fire():
141
Testing operator() ...
91 82 81.3848 0.00465078
92 30 36.7233 1.23091
93 45 51.5311 0.827767
94 74 71.5406 0.0845505
95 99 98.2742 0.00536107
96 119 133.591 1.59374
97 172 179.729 0.332347
98 246 239.333 0.185744
99 303 315.484 0.493991
100 392 411.706 0.943251
101 538 531.957 0.0686415
102 712 680.592 1.44938
103 893 862.304 1.09271
104 1083 1082.03 0.000877346
105 1333 1344.8 0.103598
106 1622 1655.63 0.683131
107 1978 2019.25 0.842683
108 2387 2439.93 1.14811
109 3127 2921.2 14.4991
110 3370 3465.6 2.6373
111 4113 4074.42 0.36522
112 4658 4747.43 1.68473
113 5506 5482.65 0.0994103
114 6295 6276.2 0.0563376
115 7187 7122.12 0.591067
116 8081 8012.38 0.587627
117 9074 8936.89 2.10359
118 9876 9883.59 0.00583329
119 10810 10838.7 0.0761548
120 11921 11787.1 1.52065
121 12832 12712.6 1.1223
122 13578 13598.3 0.0301994
123 14412 14427.4 0.0164963
124 15252 15183.7 0.307197
125 16107 15851.8 4.10893
126 16486 16417.9 0.282291
127 16783 16870.4 0.452628
128 17361 17199.9 1.50922
129 17412 17399.9 0.00843864
130 17306 17466.8 1.48043
131 17437 17400.1 0.0780916
132 17067 17202.4 1.06588
133 16603 16879.1 4.51487
134 16357 16438.2 0.400955
135 15792 15890.2 0.607425
136 15292 15247.6 0.129144
137 14397 14524.2 1.11395
138 13613 13734.8 1.08081
139 13063 12894.9 2.19036
140 12015 12019.9 0.00201804
141 11153 11124.8 0.0713602
142 10226 10223.9 0.000443665
143 9304 9330.18 0.0734332
144 8332 8455.47 1.80299
145 7676 7609.92 0.573726
146 6753 6802.02 0.35329
147 6038 6038.53 4.63612e-05
148 5334 5324.51 0.0169006
149 4684 4663.42 0.0908521
150 4199 4057.17 4.95791
151 3403 3506.36 3.04707
152 2982 3010.4 0.267891
153 2570 2567.69 0.00207354
154 2119 2175.87 1.48636
155 1819 1831.94 0.0914251
156 1526 1532.49 0.0274816
157 1322 1273.82 1.82225
158 1039 1052.11 0.1634
159 859 863.526 0.0237179
160 670 704.313 1.67168
161 590 570.887 0.639873
162 471 459.881 0.268814
163 390 368.187 1.29226
164 260 292.978 3.71211
165 226 231.719 0.141159
166 171 182.165 0.684284
167 114 142.35 5.64622
168 104 110.576 0.391043
169 101 85.3854 2.85548
170 62 65.5458 0.191819
171 49 50.0218 0.0208733
172 39 37.9526 0.0289055
173 30 28.629 0.0656564
174 94 80.9759 2.09477
----
8 867 892.107
9 14368 14264.9
10 80891 80627.1
11 174966 174529
12 155578 156180
13 61275 61365.7
14 11065 11126
15 941 971.828
16 49 43.4924
Chi^2 is 90.3976 on 83 degrees of freedom. p = 0.271148
Clumps: Chi^2 is 7.87616 on 8 degrees of freedom. p = 0.44566
Mean (should be 130.5) is 130.477
Sigma (should be 11.4237) is 11.4211
These are 1.45102 and 0.223599 standard deviations from expected values
Enter a value for mu: 0
--------------------------------------------
Test of SkewNormal distribution
Please enter an integer seed: 1357924
How many numbers should we generate: 500000
Enter k: 0
Instantiating distribution utilizing TripleRand engine...
Sample fire():
-0.840613
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0): 0.00061911
Second moment (should be close to 1): 1.003
Third moment (should be close to 0): 0.0027104
Fourth moment (should be close to 3): 3.0107
Fifth moment (should be close to 0): 0.032555
Sixth moment (should be close to 15): 15.04
These represent 0.43778, 1.4884, 0.49486,
0.77532, 0.74883, 0.28291
standard deviations from expectations
The worst deviation encountered (out of about 25) was 1.4884 sigma
--------------------------------------------
Test of SkewNormal distribution
Please enter an integer seed: 1357924
How many numbers should we generate: 500000
Enter k: -2
Instantiating distribution utilizing TripleRand engine...
Sample fire():
-1.90152
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to -0.71365): -0.71456
Second moment (should be close to 1): 1.0034
Third moment (should be close to -1.57): -1.5773
Fourth moment (should be close to 3): 3.0154
Fifth moment (should be close to -6.3658): -6.3971
Sixth moment (should be close to 15): 15.062
These represent 0.64302, 1.7193, 1.4522,
1.1129, 0.73617, 0.43656
standard deviations from expectations
The worst deviation encountered (out of about 25) was 1.7193 sigma
--------------------------------------------
Test of SkewNormal distribution
Please enter an integer seed: 1357924
How many numbers should we generate: 500000
Enter k: 1
Instantiating distribution utilizing TripleRand engine...
Sample fire():
0.611677
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.56419): 0.56557
Second moment (should be close to 1): 1.0042
Third moment (should be close to 1.4105): 1.421
Fourth moment (should be close to 3): 3.0273
Fifth moment (should be close to 6.065): 6.1391
Sixth moment (should be close to 15): 15.212
These represent 0.97269, 2.1211, 2.0571,
1.9693, 1.7377, 1.4849
standard deviations from expectations
The worst deviation encountered (out of about 25) was 2.1211 sigma
--------------------------------------------
Test of SkewNormal distribution
Please enter an integer seed: 1357924
How many numbers should we generate: 500000
Enter k: 5
Instantiating distribution utilizing TripleRand engine...
Sample fire():
1.50767
Testing operator() ...
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.78239): 0.78381
Second moment (should be close to 1): 1.0044
Third moment (should be close to 1.5949): 1.6065
Fourth moment (should be close to 3): 3.0302
Fifth moment (should be close to 6.383): 6.4649
Sixth moment (should be close to 15): 15.234
These represent 1.0055, 2.2043, 2.3215,
2.1766, 1.9257, 1.644
standard deviations from expectations
The worst deviation encountered (out of about 25) was 2.3215 sigma
|