File: testRandDists.output

package info (click to toggle)
clhep 2.1.4.1%2Bdfsg-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,012 kB
  • sloc: cpp: 50,094; sh: 6,694; makefile: 2,694; perl: 28
file content (1409 lines) | stat: -rwxr-xr-x 44,280 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

--------------------------------------------
Test of RandGauss distribution 

Please enter an integer seed:        1357924
How many numbers should we generate: 500000
Enter mu: 20
Enter sigma: 4

Instantiating distribution utilizing TripleRand engine...

 Sample  fire(): 
26.7408
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 20): 20.004
Second moment (should be close to 16): 15.95
Third  moment (should be close to zero): -0.012332
Fourth moment (should be close to 768): 762.39
Fifth moment (should be close to zero): -11.238
Sixth moment (should be close to 61440): 60359
        These represent 0.71506, 1.5512, 0.055624, 
                        1.581, 0.2892, 1.8504
                         standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 95731):
          96022 negative and 96081 positive 
        These represent 1.046 and 1.258 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 74941):
          74975 negative and 74625 positive 
        These represent 0.1347 and 1.252 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 45924):
          45803 negative and 45982 positive 
        These represent 0.5925 and 0.28401 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 22028.5):
          21851 negative and 22064 positive 
        These represent 1.2232 and 0.24464 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 8270):
          8218 negative and 8154 positive 
        These represent 0.5766 and 1.2863 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 2430):
          2426 negative and 2514 positive 
        These represent 0.081342 and 1.7082 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 558.5):
          525 negative and 541 positive 
        These represent 1.4183 and 0.74092 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 100.5):
          102 negative and 92 positive 
        These represent 0.14964 and 0.84797 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 14.15):
          15 negative and 10 positive 
        These represent 0.22597 and 1.1033 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 1.555):
          0 negative and 0 positive 
        These represent 1.247 and 1.247 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.1935):
          0 negative and 0 positive 
        These represent 0.43989 and 0.43989 sigma from expectations

 The worst deviation encountered (out of about 25) was 1.8504 sigma 


--------------------------------------------
Test of RandGaussQ distribution 

Please enter an integer seed:        1366781
How many numbers should we generate: 1000000
Enter mu: 0
Enter sigma: 1

Instantiating distribution utilizing DualRand engine...

 Sample  fire(): 
-0.933146
 Testing operator() ... 
0
100001
200002
300003
400004
500005
600006
700007
800008
900009
Mean (should be close to 0): -0.00024951
Second moment (should be close to 1): 0.99963
Third  moment (should be close to zero): -0.0023588
Fourth moment (should be close to 3): 3.0026
Fifth moment (should be close to zero): -0.0198
Sixth moment (should be close to 15): 15.047
        These represent 0.24951, 0.25834, 0.96299, 
                        0.26104, 0.73789, 0.46688
                         standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 191462):
          191300 negative and 191581 positive 
        These represent 0.41174 and 0.30245 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 149882):
          150248 negative and 150025 positive 
        These represent 1.0253 and 0.40061 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 91848):
          91705 negative and 91584 positive 
        These represent 0.49513 and 0.91409 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 44057):
          43780 negative and 44290 positive 
        These represent 1.3498 and 1.1354 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 16540):
          16691 negative and 16391 positive 
        These represent 1.1839 and 1.1683 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 4860):
          4898 negative and 4777 positive 
        These represent 0.54642 and 1.1935 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 1117):
          1110 negative and 1143 positive 
        These represent 0.20956 and 0.77838 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 201):
          206 negative and 208 positive 
        These represent 0.35271 and 0.49379 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 28.3):
          34 negative and 25 positive 
        These represent 1.0715 and 0.62034 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 3.11):
          2 negative and 2 positive 
        These represent 0.62942 and 0.62942 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.387):
          0 negative and 0 positive 
        These represent 0.62209 and 0.62209 sigma from expectations

 The worst deviation encountered (out of about 25) was 1.3498 sigma 


--------------------------------------------
Test of RandGaussT distribution 

Please enter an integer seed:        2354789
How many numbers should we generate: 1000000
Enter mu: 10
Enter sigma: 5

Instantiating distribution utilizing TripleRand engine...

 Sample  fire(): 
19.9288
 Testing operator() ... 
0
100001
200002
300003
400004
500005
600006
700007
800008
900009
Mean (should be close to 10): 10.007
Second moment (should be close to 25): 24.995
Third  moment (should be close to zero): -0.33843
Fourth moment (should be close to 1875): 1872.6
Fifth moment (should be close to zero): -153.02
Sixth moment (should be close to 2.3438e+05): 2.3322e+05
        These represent 1.4634, 0.15033, 1.1053, 
                        0.39904, 1.8248, 0.73091
                         standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 191462):
          191661 negative and 191168 positive 
        These represent 0.50578 and 0.74723 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 149882):
          150041 negative and 150074 positive 
        These represent 0.44543 and 0.53788 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 91848):
          91449 negative and 91915 positive 
        These represent 1.3815 and 0.23199 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 44057):
          43899 negative and 44317 positive 
        These represent 0.7699 and 1.2669 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 16540):
          16439 negative and 16617 positive 
        These represent 0.79191 and 0.60373 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 4860):
          4895 negative and 4895 positive 
        These represent 0.50328 and 0.50328 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 1117):
          1124 negative and 1042 positive 
        These represent 0.20956 and 2.2453 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 201):
          229 negative and 180 positive 
        These represent 1.9752 and 1.4814 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 28.3):
          19 negative and 26 positive 
        These represent 1.7482 and 0.43236 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 3.11):
          3 negative and 6 positive 
        These represent 0.062375 and 1.6388 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.387):
          1 negative and 0 positive 
        These represent 0.98538 and 0.62209 sigma from expectations

 The worst deviation encountered (out of about 25) was 2.2453 sigma 


--------------------------------------------
Test of RandGeneral distribution (using a Gaussian shape)

Please enter an integer seed:        1234987
How many numbers should we generate: 500000
Enter sigma: 0.06
Enter nBins for stepwise pdf test: 10000

Instantiating distribution utilizing Ranlux64 engine...

 Sample fire(): 
0.4408
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.5): 0.49988
Second moment (should be close to 0.0036): 0.0035996
Third  moment (should be close to zero): 5.2049e-07
Fourth moment (should be close to 3.888e-05): 3.9082e-05
Fifth moment (should be close to zero): 2.4841e-08
Sixth moment (should be close to 6.9984e-07): 7.1025e-07
        These represent 1.3553, 0.056148, 0.69561, 
                        1.1263, 0.84186, 1.5638
                         standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 95731):
          95879 negative and 95631 positive 
        These represent 0.53197 and 0.35944 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 74941):
          74863 negative and 75293 positive 
        These represent 0.30903 and 1.3946 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 45924):
          46032 negative and 45416 positive 
        These represent 0.52884 and 2.4875 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 22028.5):
          22020 negative and 21866 positive 
        These represent 0.058575 and 1.1198 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 8270):
          8381 negative and 8344 positive 
        These represent 1.2308 and 0.82054 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 2430):
          2423 negative and 2472 positive 
        These represent 0.14235 and 0.85409 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 558.5):
          574 negative and 556 positive 
        These represent 0.65624 and 0.10585 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 100.5):
          101 negative and 114 positive 
        These represent 0.04988 and 1.3468 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 14.15):
          10 negative and 19 positive 
        These represent 1.1033 and 1.2893 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 1.555):
          4 negative and 1 positive 
        These represent 1.9607 and 0.44507 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.1935):
          1 negative and 0 positive 
        These represent 1.8334 and 0.43989 sigma from expectations

 The worst deviation encountered (out of about 25) was 2.4875 sigma 

Enter nBins for linearized pdf test: 1000

 Sample operator(): 
0.463128
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.5): 0.50006
Second moment (should be close to 0.0036): 0.0036028
Third  moment (should be close to zero): -4.7605e-07
Fourth moment (should be close to 3.888e-05): 3.8957e-05
Fifth moment (should be close to zero): -2.1491e-08
Sixth moment (should be close to 6.9984e-07): 6.9999e-07
        These represent 0.6852, 0.39504, 0.63622, 
                        0.42945, 0.72832, 0.02247
                         standard deviations from expectations
Between 0 sigma and 0.5 sigma (should be about 95731):
          95333 negative and 96081 positive 
        These represent 1.4306 and 1.258 sigma from expectations
Between 0.5 sigma and 1 sigma (should be about 74941):
          74969 negative and 75075 positive 
        These represent 0.11093 and 0.53089 sigma from expectations
Between 1 sigma and 1.5 sigma (should be about 45924):
          45820 negative and 45766 positive 
        These represent 0.50925 and 0.77367 sigma from expectations
Between 1.5 sigma and 2 sigma (should be about 22028.5):
          21895 negative and 22076 positive 
        These represent 0.91997 and 0.32733 sigma from expectations
Between 2 sigma and 2.5 sigma (should be about 8270):
          8310 negative and 8421 positive 
        These represent 0.44354 and 1.6743 sigma from expectations
Between 2.5 sigma and 3 sigma (should be about 2430):
          2475 negative and 2443 positive 
        These represent 0.9151 and 0.26436 sigma from expectations
Between 3 sigma and 3.5 sigma (should be about 558.5):
          560 negative and 545 positive 
        These represent 0.063507 and 0.57156 sigma from expectations
Between 3.5 sigma and 4 sigma (should be about 100.5):
          108 negative and 91 positive 
        These represent 0.74821 and 0.94773 sigma from expectations
Between 4 sigma and 4.5 sigma (should be about 14.15):
          11 negative and 17 positive 
        These represent 0.83741 and 0.75766 sigma from expectations
Between 4.5 sigma and 5 sigma (should be about 1.555):
          2 negative and 2 positive 
        These represent 0.35686 and 0.35686 sigma from expectations
Between 5 sigma and 5.5 sigma (should be about 0.1935):
          0 negative and 0 positive 
        These represent 0.43989 and 0.43989 sigma from expectations

 The worst deviation encountered (out of about 25) was 1.6743 sigma 


--------------------------------------------
Test of RandPoisson distribution 

Please enter an integer seed:        1363971

Instantiating distribution utilizing TripleRand engine...
How many numbers should we generate for each mu: 500000
Enter a value for mu: 0.12

 Sample  fire(): 
0
 Testing operator() ... 
0  443889  443460     0.414589
1  52830  53215.2     2.78866
2  3149  3192.91     0.603963
3  132  131.642     0.000974309
----
0  496719  496675
1  3281  3324.56
Chi^2 is 3.80819 on 3 degrees of freedom.  p = 0.282935
Clumps: Chi^2 is 0.574445 on 1 degrees of freedom.  p = 0.448498
Mean  (should be 0.12) is 0.11906
Sigma (should be 0.34641) is 0.345163
These are 1.91877 and 1.58042 standard deviations from expected values

Enter a value for mu: 9.5

 Sample  fire(): 
13
 Testing operator() ... 
0  37  37.4259     0.004847
1  357  355.546     0.00594454
2  1719  1688.84     0.538451
3  5250  5348.01     1.79608
4  12753  12701.5     0.208673
5  23727  24132.9     6.82641
6  38157  38210.4     0.0746223
7  51789  51857     0.0890864
8  62020  61580.2     3.14172
9  65175  65001.3     0.464332
10  61580  61751.2     0.474673
11  53199  53330.6     0.324677
12  42250  42220     0.0212483
13  30992  30853.1     0.625215
14  20950  20936     0.00930786
15  13105  13259.5     1.80006
16  7985  7872.82     1.59835
17  4377  4399.52     0.115264
18  2409  2321.97     3.2621
19  1190  1160.98     0.725175
20  519  551.467     1.91151
21  268  249.473     1.37584
22  115  107.727     0.491004
23  77  72.5389     0.274359
----
0  2113  2081.82
1  41730  42182.4
2  151966  151648
3  179954  180083
4  94192  94009.2
5  25467  25531.8
6  4118  4034.42
7  433  401.697
8  27  28.0429
Chi^2 is 26.159 on 23 degrees of freedom.  p = 0.29342
Clumps: Chi^2 is 10.8103 on 8 degrees of freedom.  p = 0.212679
Mean  (should be 9.5) is 9.50529
Sigma (should be 3.08221) is 3.08259
These are 1.21269 and 0.121219 standard deviations from expected values

Enter a value for mu: 130.5

 Sample  fire(): 
118
 Testing operator() ... 
91  78  81.3848     0.140772
92  31  36.7233     0.891984
93  34  51.5311     5.96418
94  74  71.5406     0.0845505
95  97  98.2742     0.0165198
96  136  133.591     0.0434251
97  158  179.729     2.62693
98  246  239.333     0.185744
99  338  315.484     1.60698
100  413  411.706     0.00406449
101  494  531.957     2.70841
102  712  680.592     1.44938
103  872  862.304     0.109025
104  1059  1082.03     0.48999
105  1402  1344.8     2.43267
106  1676  1655.63     0.250609
107  2083  2019.25     2.01264
108  2486  2439.93     0.869976
109  2972  2921.2     0.883503
110  3558  3465.6     2.46344
111  4164  4074.42     1.9693
112  4758  4747.43     0.0235237
113  5427  5482.65     0.564941
114  6217  6276.2     0.558329
115  7040  7122.12     0.946825
116  8041  8012.38     0.102209
117  8871  8936.89     0.485775
118  9898  9883.59     0.0210006
119  10851  10838.7     0.0138899
120  11823  11787.1     0.109225
121  12683  12712.6     0.0687068
122  13687  13598.3     0.579041
123  14235  14427.4     2.56652
124  15236  15183.7     0.180121
125  15852  15851.8     2.8726e-06
126  16333  16417.9     0.439259
127  16744  16870.4     0.946806
128  17273  17199.9     0.310814
129  17236  17399.9     1.54355
130  17519  17466.8     0.15597
131  17390  17400.1     0.00590683
132  17133  17202.4     0.280056
133  16951  16879.1     0.306652
134  16447  16438.2     0.0047273
135  15923  15890.2     0.0675176
136  15209  15247.6     0.0978445
137  14572  14524.2     0.157328
138  13776  13734.8     0.123352
139  12925  12894.9     0.0700798
140  11904  12019.9     1.11803
141  11134  11124.8     0.00756807
142  10328  10223.9     1.06056
143  9276  9330.18     0.314566
144  8490  8455.47     0.141001
145  7632  7609.92     0.0640402
146  6803  6802.02     0.000140821
147  6044  6038.53     0.00495662
148  5392  5324.51     0.855361
149  4664  4663.42     7.30132e-05
150  3993  4057.17     1.01501
151  3535  3506.36     0.233863
152  3055  3010.4     0.660817
153  2563  2567.69     0.00857589
154  2141  2175.87     0.558798
155  1857  1831.94     0.342763
156  1499  1532.49     0.731852
157  1239  1273.82     0.951862
158  1076  1052.11     0.542389
159  844  863.526     0.441503
160  723  704.313     0.495805
161  538  570.887     1.89455
162  515  459.881     6.60617
163  374  368.187     0.0917677
164  275  292.978     1.10322
165  238  231.719     0.170243
166  196  182.165     1.05077
167  138  142.35     0.132949
168  94  110.576     2.48476
169  75  85.3854     1.26317
170  56  65.5458     1.39022
171  43  50.0218     0.98569
172  35  37.9526     0.229704
173  20  28.629     2.60084
174  78  80.9759     0.109369
----
8  854  892.107
9  14507  14264.9
10  80648  80627.1
11  174188  174529
12  156302  156180
13  61447  61365.7
14  11081  11126
15  924  971.828
16  49  43.4924
Chi^2 is 67.597 on 83 degrees of freedom.  p = 0.889909
Clumps: Chi^2 is 9.84423 on 8 degrees of freedom.  p = 0.276129
Mean  (should be 130.5) is 130.492
Sigma (should be 11.4237) is 11.4284
These are 0.466962 and 0.414307 standard deviations from expected values

Enter a value for mu: 0

--------------------------------------------
Test of RandPoissonQ distribution 

Please enter an integer seed:        1323456

Instantiating distribution utilizing TripleRand engine...
How many numbers should we generate for each mu: 500000
Enter a value for mu: 1.4

 Sample  fire(): 
0
 Testing operator() ... 
0  123148  123298     0.183659
1  172841  172618     0.288411
2  121143  120833     0.79782
3  55933  56388.5     3.67957
4  19803  19736     0.227609
5  5503  5526.07     0.0963413
6  1291  1289.42     0.00194302
7  279  257.883     1.72911
8  59  53.274     0.615441
----
0  295989  295916
1  177076  177221
2  25306  25262.1
3  1570  1547.3
4  59  53.274
Chi^2 is 7.61991 on 8 degrees of freedom.  p = 0.471451
Clumps: Chi^2 is 1.16141 on 4 degrees of freedom.  p = 0.884411
Mean  (should be 1.4) is 1.39966
Sigma (should be 1.18322) is 1.18302
These are 0.200798 and 0.143597 standard deviations from expected values

Enter a value for mu: 36.5

 Sample  fire(): 
36
 Testing operator() ... 
16  64  57.508     0.732875
17  70  71.636     0.0373644
18  149  145.262     0.0961904
19  268  279.056     0.438024
20  500  509.277     0.168991
21  914  885.172     0.938863
22  1416  1468.58     1.88259
23  2419  2330.57     3.35505
24  3490  3544.41     0.835378
25  5172  5174.85     0.00156413
26  7222  7264.69     0.250819
27  9763  9820.78     0.339941
28  12854  12802.1     0.210504
29  16056  16113     0.201444
30  19763  19604.1     1.28769
31  23412  23082.3     4.7103
32  26121  26328.2     1.63079
33  29273  29120.6     0.797616
34  31090  31261.8     0.944306
35  32608  32601.6     0.0012532
36  32961  33054.4     0.263962
37  32887  32607.7     2.39187
38  31142  31320.6     1.01821
39  29028  29312.9     2.76806
40  26733  26748     0.00838496
41  23878  23812.2     0.1817
42  20659  20694     0.0590449
43  17526  17565.8     0.0901742
44  14563  14571.6     0.00510983
45  11751  11819.2     0.393649
46  9368  9378.29     0.0112822
47  7344  7283.14     0.50861
48  5596  5538.22     0.602838
49  4161  4125.41     0.307071
50  3080  3011.55     1.55591
51  2160  2155.32     0.010147
52  1521  1512.87     0.0436761
53  1030  1041.88     0.13553
54  726  704.236     0.672619
55  432  467.356     2.67479
56  291  304.616     0.608643
57  212  195.061     1.47092
58  126  122.754     0.0858297
59  86  75.9411     1.33237
60  46  46.1975     0.000844299
61  69  65.3406     0.204947
----
2  134  129.144
3  5666  5617.92
4  54557  54719.8
5  162267  161999
6  176629  176856
7  81211  81312
8  17548  17385.3
9  1873  1869.96
10  115  111.538
Chi^2 is 36.2677 on 45 degrees of freedom.  p = 0.820234
Clumps: Chi^2 is 3.57511 on 8 degrees of freedom.  p = 0.893283
Mean  (should be 36.5) is 36.5002
Sigma (should be 6.04152) is 6.04718
These are 0.0224719 and 0.929886 standard deviations from expected values

Enter a value for mu: 100

 Sample  fire(): 
110
 Testing operator() ... 
65  63  61.5743     0.033012
66  35  34.1702     0.0201507
67  63  51.0003     2.82337
68  72  75.0005     0.120036
69  124  108.696     2.15465
70  165  155.28     0.608381
71  217  218.705     0.0132898
72  318  303.757     0.667871
73  413  416.105     0.0231717
74  556  562.304     0.0706795
75  760  749.739     0.140434
76  978  986.499     0.0732157
77  1228  1281.17     2.20638
78  1699  1642.52     1.942
79  2114  2079.14     0.584426
80  2569  2598.93     0.344615
81  3196  3208.55     0.0491034
82  3923  3912.87     0.0262348
83  4742  4714.3     0.162769
84  5655  5612.26     0.325473
85  6530  6602.66     0.799592
86  7648  7677.51     0.113437
87  8777  8824.73     0.258109
88  10113  10028.1     0.718827
89  11419  11267.5     2.03635
90  12627  12519.5     0.923538
91  13822  13757.7     0.300879
92  14896  14954     0.224804
93  15930  16079.5     1.39089
94  16900  17105.9     2.47844
95  18125  18006.2     0.78363
96  19012  18756.5     3.48116
97  19152  19336.6     1.76174
98  19786  19731.2     0.152234
99  20051  19930.5     0.728564
100  19940  19930.5     0.00452976
101  19778  19733.2     0.10186
102  19475  19346.2     0.856944
103  18824  18782.8     0.0905517
104  17895  18060.3     1.51376
105  17189  17200.3     0.00746167
106  16165  16226.7     0.234799
107  15274  15165.2     0.781086
108  14022  14041.8     0.0279714
109  12845  12882.4     0.108592
110  11621  11711.3     0.69587
111  10647  10550.7     0.879002
112  9293  9420.27     1.71934
113  8297  8336.52     0.187335
114  7331  7312.74     0.0456173
115  6397  6358.9     0.228274
116  5433  5481.81     0.434618
117  4625  4685.31     0.776278
118  3899  3970.6     1.29114
119  3217  3336.64     4.28979
120  2767  2780.53     0.0658604
121  2306  2297.96     0.0281251
122  1911  1883.57     0.399329
123  1530  1531.36     0.00121004
124  1250  1234.97     0.182951
125  973  987.975     0.22698
126  821  784.107     1.73584
127  667  617.407     3.98351
128  457  482.349     1.33221
129  358  373.914     0.67733
130  300  287.626     0.532314
131  211  219.562     0.333889
132  156  166.335     0.642141
133  119  125.064     0.294012
134  93  93.3312     0.00117553
135  82  69.1342     2.39429
136  53  50.834     0.0922914
137  28  37.1051     2.23428
138  73  92.0547     3.94421
----
6  357  330.442
7  8448  8395.22
8  64572  64447.4
9  170301  170178
10  171407  171369
11  70760  71164.8
12  13040  12974.2
13  1083  1095.22
14  32  45.8233
Chi^2 is 61.9182 on 73 degrees of freedom.  p = 0.819169
Clumps: Chi^2 is 9.74769 on 8 degrees of freedom.  p = 0.283183
Mean  (should be 100) is 99.9808
Sigma (should be 10) is 9.99529
These are 1.35722 and 0.469398 standard deviations from expected values

Enter a value for mu: 104.5

 Sample  fire(): 
95
 Testing operator() ... 
69  78  70.7124     0.751062
70  34  37.5779     0.340653
71  61  55.3082     0.585737
72  83  80.2738     0.0925871
73  119  114.912     0.145398
74  165  162.275     0.0457588
75  225  226.103     0.0053827
76  321  310.892     0.328647
77  417  421.925     0.0574814
78  557  565.271     0.121019
79  718  747.732     1.18222
80  969  976.725     0.0610925
81  1250  1260.1     0.0808807
82  1574  1605.85     0.631834
83  2055  2021.83     0.544272
84  2520  2515.25     0.00897218
85  3202  3092.28     3.89327
86  3650  3757.48     3.07419
87  4484  4513.29     0.190094
88  5352  5359.53     0.0105872
89  6310  6292.93     0.0462788
90  7306  7306.8     8.67647e-05
91  8440  8390.77     0.288823
92  9414  9530.82     1.43192
93  10725  10709.4     0.0228277
94  11939  11905.6     0.0935698
95  13123  13096.2     0.0549025
96  14204  14255.7     0.187813
97  15356  15358     0.000258347
98  16195  16376.6     2.01452
99  17728  17286.4     11.2787
100  18226  18064.3     1.44676
101  18558  18690.3     0.936903
102  19265  19148.4     0.709698
103  19158  19427.3     3.73264
104  19218  19520.7     4.69344
105  19334  19427.7     0.452213
106  19113  19152.8     0.0827476
107  18543  18705.3     1.40848
108  18081  18099.1     0.0181486
109  17408  17351.9     0.181296
110  16642  16484.3     1.50834
111  15450  15519     0.306953
112  14569  14479.8     0.549513
113  13572  13390.6     2.45711
114  12414  12274.7     1.58025
115  11259  11154     0.988617
116  10047  10048.2     0.000144949
117  8955  8974.68     0.0431571
118  7860  7947.92     0.972488
119  6922  6979.47     0.473259
120  6111  6077.96     0.179635
121  5121  5249.15     3.12835
122  4386  4496.19     2.70066
123  3979  3819.94     6.62341
124  3210  3219.22     0.0264133
125  2774  2691.27     2.5432
126  2249  2232.04     0.128802
127  1812  1836.6     0.329593
128  1541  1499.41     1.15335
129  1280  1214.64     3.51681
130  949  976.385     0.768095
131  782  778.872     0.0125601
132  629  616.607     0.249075
133  465  484.477     0.783024
134  394  377.82     0.692918
135  280  292.461     0.530892
136  230  224.722     0.123987
137  173  171.412     0.0147179
138  121  129.801     0.596723
139  99  97.5841     0.020544
140  68  72.8396     0.321547
141  55  53.9839     0.0191242
142  42  39.7276     0.129979
143  21  29.0317     2.222
144  61  72.5299     1.83289
----
6  78  70.7124
7  2700  2722.27
8  31366  31395.3
9  124430  124216
10  186904  187588
11  117690  117253
12  32463  32336.4
13  4122  4150.14
14  247  268.113
Chi^2 is 78.7613 on 75 degrees of freedom.  p = 0.360784
Clumps: Chi^2 is 7.80106 on 8 degrees of freedom.  p = 0.45314
Mean  (should be 104.5) is 104.508
Sigma (should be 10.2225) is 10.226
These are 0.572048 and 0.335223 standard deviations from expected values

Enter a value for mu: 235.8

 Sample  fire(): 
203
 Testing operator() ... 
183  98  102.415     0.190296
184  22  31.0742     2.64983
185  26  39.607     4.67471
186  58  50.2115     1.20811
187  55  63.3148     1.09194
188  67  79.4129     1.94025
189  89  99.0771     1.02494
190  126  122.96     0.0751647
191  152  151.801     0.000261533
192  187  186.43     0.00174094
193  204  227.773     2.4813
194  285  276.85     0.239902
195  332  334.776     0.0230179
196  391  402.756     0.343142
197  485  482.08     0.0176809
198  563  574.114     0.215151
199  684  680.282     0.020322
200  804  802.052     0.00472983
201  930  940.915     0.12662
202  1105  1098.36     0.0401981
203  1292  1275.82     0.205104
204  1432  1474.7     1.23649
205  1691  1696.27     0.0163538
206  1975  1941.65     0.57285
207  2289  2211.79     2.69515
208  2487  2507.41     0.166073
209  2764  2828.93     1.49029
210  3157  3176.48     0.119515
211  3616  3549.83     1.23327
212  3928  3948.35     0.104918
213  4387  4370.99     0.0586127
214  4842  4816.26     0.137529
215  5190  5282.21     1.60964
216  5938  5766.41     5.10589
217  6185  6265.99     1.04682
218  6839  6777.62     0.555938
219  7293  7297.54     0.00282848
220  7732  7821.64     1.02731
221  8332  8345.44     0.0216498
222  8734  8864.21     1.91278
223  9360  9373.01     0.0180587
224  9865  9866.77     0.000316423
225  10476  10340.4     1.77895
226  10884  10788.8     0.840759
227  11222  11207     0.0200708
228  11630  11590.4     0.135301
229  11960  11934.6     0.0541913
230  12171  12235.5     0.340303
231  12451  12489.8     0.120361
232  12540  12694.3     1.87664
233  13047  12846.9     3.11683
234  13071  12945.7     1.21241
235  12850  12989.8     1.50433
236  13026  12978.8     0.171794
237  12865  12913.1     0.178909
238  12730  12793.7     0.317171
239  12671  12622.4     0.187091
240  12301  12401.5     0.814636
241  12160  12133.9     0.0560214
242  11858  11823.1     0.103265
243  11584  11472.7     1.07886
244  10856  11087.2     4.82062
245  10634  10670.9     0.127263
246  10271  10228.4     0.177414
247  9831  9764.6     0.451481
248  9349  9284.25     0.45161
249  8677  8792.07     1.50605
250  8459  8292.68     3.33571
251  7770  7790.49     0.0539169
252  7296  7289.68     0.00548394
253  6809  6794.09     0.0327009
254  6345  6307.27     0.225657
255  5838  5832.37     0.0054289
256  5328  5372.16     0.36304
257  4898  4929.01     0.195109
258  4468  4504.89     0.302038
259  4197  4101.36     2.23022
260  3727  3719.62     0.0146489
261  3347  3360.48     0.0540953
262  2940  3024.43     2.3572
263  2598  2711.64     4.76256
264  2499  2421.99     2.44871
265  2140  2155.11     0.105981
266  1933  1910.43     0.266532
267  1632  1687.19     1.80552
268  1468  1484.48     0.182908
269  1324  1301.26     0.397264
270  1158  1136.44     0.409147
271  1015  988.826     0.692827
272  837  857.225     0.47717
273  744  740.416     0.0173472
274  626  637.19     0.196521
275  572  546.362     1.20309
276  508  466.783     3.63949
277  389  397.355     0.175688
278  361  337.037     1.7037
279  283  284.851     0.0120265
280  226  239.885     0.803705
281  200  201.299     0.00837779
282  163  168.32     0.168141
283  129  140.247     0.901909
284  121  116.444     0.178232
285  108  96.3424     1.4106
286  83  79.4319     0.160278
287  59  65.2615     0.600755
288  61  53.4328     1.07166
289  43  43.5968     0.00816857
290  34  35.4487     0.0592029
291  25  28.7244     0.482903
292  133  113.119     3.49421
----
11  32  33.6744
12  1337  1397.25
13  19224  19251.9
14  95398  95522.8
15  183594  183371
16  144200  144133
17  48337  48516.4
18  7332  7258.68
19  546  515.357
Chi^2 is 94.1689 on 109 degrees of freedom.  p = 0.843355
Clumps: Chi^2 is 6.41348 on 8 degrees of freedom.  p = 0.60102
Mean  (should be 235.8) is 235.808
Sigma (should be 15.3558) is 15.3533
These are 0.389108 and 0.163437 standard deviations from expected values

Enter a value for mu: 0

--------------------------------------------
Test of RandPoissonT distribution 

Please enter an integer seed:        1357531

Instantiating distribution utilizing TripleRand engine...
How many numbers should we generate for each mu: 500000
Enter a value for mu: 1.4

 Sample  fire(): 
0
 Testing operator() ... 
0  123493  123298     0.306875
1  172488  172618     0.0977156
2  120582  120833     0.519367
3  56258  56388.5     0.302043
4  19999  19736     3.50533
5  5509  5526.07     0.0527511
6  1359  1289.42     3.75501
7  263  257.883     0.101516
8  49  53.274     0.34289
----
0  295981  295916
1  176840  177221
2  25508  25262.1
3  1622  1547.3
4  49  53.274
Chi^2 is 8.98349 on 8 degrees of freedom.  p = 0.34369
Clumps: Chi^2 is 7.17701 on 4 degrees of freedom.  p = 0.126824
Mean  (should be 1.4) is 1.40072
Sigma (should be 1.18322) is 1.18567
These are 0.431478 and 1.78031 standard deviations from expected values

Enter a value for mu: 99.1

 Sample  fire(): 
96
 Testing operator() ... 
64  57  54.5885     0.106528
65  33  30.8208     0.154079
66  47  46.2779     0.0112666
67  72  68.4499     0.184125
68  111  99.7556     1.26745
69  136  143.272     0.369124
70  180  202.833     2.57022
71  265  283.109     1.15828
72  377  389.667     0.411796
73  535  528.987     0.068353
74  671  708.413     1.97592
75  892  936.05     2.073
76  1197  1220.56     0.454785
77  1577  1570.88     0.0238658
78  1964  1995.82     0.507299
79  2486  2503.62     0.123958
80  3112  3101.36     0.0365374
81  3771  3794.37     0.143986
82  4605  4585.64     0.0817387
83  5440  5475.14     0.225573
84  6414  6459.37     0.31861
85  7497  7530.86     0.152241
86  8590  8678     0.892427
87  10091  9884.94     4.29535
88  11200  11131.8     0.417905
89  12369  12395.1     0.0548118
90  13389  13648.3     4.92802
91  14896  14863.2     0.0723976
92  15973  16010.2     0.0866564
93  17108  17060.4     0.132908
94  17951  17986     0.0681034
95  18711  18762.2     0.139918
96  19641  19368.1     3.8452
97  19755  19787.4     0.053084
98  20076  20009.5     0.220918
99  20040  20029.7     0.00527093
100  19835  19849.5     0.0105302
101  19289  19476.1     1.79648
102  18884  18922.3     0.0776066
103  18115  18205.8     0.453303
104  17283  17348.1     0.244063
105  16407  16373.3     0.0694733
106  15254  15307.5     0.186744
107  14130  14177.3     0.15773
108  13192  13009     2.57501
109  12053  11827.4     4.30219
110  10620  10655.4     0.117842
111  9533  9513.1     0.0416453
112  8387  8417.39     0.109727
113  7438  7381.98     0.42516
114  6460  6417.14     0.286261
115  5514  5529.9     0.0457209
116  4814  4724.25     1.70499
117  4056  4001.48     0.742798
118  3440  3360.57     1.87759
119  2786  2798.59     0.05663
120  2361  2311.17     1.07444
121  1878  1892.87     0.11675
122  1491  1537.57     1.41025
123  1231  1238.8     0.0491476
124  959  990.043     0.973374
125  792  784.906     0.0641108
126  617  617.335     0.000181805
127  501  481.716     0.771996
128  355  372.953     0.864245
129  270  286.509     0.951284
130  207  218.408     0.59588
131  161  165.223     0.107949
132  115  124.043     0.659198
133  92  92.4257     0.00196095
134  72  68.3537     0.194516
135  52  50.1766     0.0662584
136  40  36.5625     0.323176
137  87  90.1474     0.109891
----
6  21  21.3177
7  880  907.788
8  12811  12955.3
9  69977  69935.2
10  157500  157495
11  159237  159689
12  78011  77475.6
13  18994  18916
14  2390  2426.97
15  179  176.887
Chi^2 is 51.2478 on 73 degrees of freedom.  p = 0.975104
Clumps: Chi^2 is 8.38105 on 9 degrees of freedom.  p = 0.496248
Mean  (should be 99.1) is 99.1201
Sigma (should be 9.9549) is 9.94589
These are 1.42474 and 0.902668 standard deviations from expected values

Enter a value for mu: 100

 Sample  fire(): 
115
 Testing operator() ... 
65  47  61.5743     3.44965
66  25  34.1702     2.461
67  42  51.0003     1.58834
68  79  75.0005     0.213283
69  126  108.696     2.75462
70  161  155.28     0.210672
71  225  218.705     0.181198
72  288  303.757     0.817348
73  417  416.105     0.00192448
74  565  562.304     0.0129239
75  815  749.739     5.68065
76  1000  986.499     0.184781
77  1317  1281.17     1.00221
78  1650  1642.52     0.0340464
79  1980  2079.14     4.72746
80  2662  2598.93     1.53071
81  3167  3208.55     0.538113
82  3841  3912.87     1.32001
83  4695  4714.3     0.079005
84  5637  5612.26     0.109052
85  6633  6602.66     0.139418
86  7725  7677.51     0.293738
87  8903  8824.73     0.694285
88  10029  10028.1     8.12547e-05
89  11225  11267.5     0.160495
90  12363  12519.5     1.95564
91  13704  13757.7     0.209309
92  14932  14954     0.032308
93  16193  16079.5     0.80047
94  17234  17105.9     0.959252
95  18071  18006.2     0.233102
96  18619  18756.5     1.00758
97  19281  19336.6     0.159696
98  20074  19731.2     5.95587
99  20082  19930.5     1.15164
100  20239  19930.5     4.77526
101  19622  19733.2     0.626257
102  19262  19346.2     0.366826
103  18679  18782.8     0.573183
104  18114  18060.3     0.1594
105  17039  17200.3     1.51317
106  16370  16226.7     1.26505
107  15093  15165.2     0.343394
108  13909  14041.8     1.2563
109  12759  12882.4     1.18209
110  11807  11711.3     0.782436
111  10590  10550.7     0.146403
112  9408  9420.27     0.0159715
113  8272  8336.52     0.499327
114  7223  7312.74     1.10116
115  6371  6358.9     0.0230224
116  5480  5481.81     0.000598168
117  4711  4685.31     0.140878
118  3962  3970.6     0.0186283
119  3284  3336.64     0.830434
120  2688  2780.53     3.07936
121  2340  2297.96     0.769075
122  1818  1883.57     2.28289
123  1543  1531.36     0.0884575
124  1277  1234.97     1.4305
125  974  987.975     0.197678
126  797  784.107     0.211994
127  610  617.407     0.0888662
128  475  482.349     0.11198
129  355  373.914     0.956767
130  280  287.626     0.202211
131  241  219.562     2.09318
132  162  166.335     0.112974
133  98  125.064     5.85662
134  94  93.3312     0.0047921
135  67  69.1342     0.0658863
136  55  50.834     0.341416
137  28  37.1051     2.23428
138  97  92.0547     0.265664
----
6  319  330.442
7  8418  8395.22
8  64517  64447.4
9  170553  170178
10  171086  171369
11  71108  71164.8
12  12877  12974.2
13  1067  1095.22
14  55  45.8233
Chi^2 is 76.6642 on 73 degrees of freedom.  p = 0.361929
Clumps: Chi^2 is 5.1682 on 8 degrees of freedom.  p = 0.739457
Mean  (should be 100) is 99.9835
Sigma (should be 10) is 9.98948
These are 1.16489 and 1.04919 standard deviations from expected values

Enter a value for mu: 130.5

 Sample  fire(): 
141
 Testing operator() ... 
91  82  81.3848     0.00465078
92  30  36.7233     1.23091
93  45  51.5311     0.827767
94  74  71.5406     0.0845505
95  99  98.2742     0.00536107
96  119  133.591     1.59374
97  172  179.729     0.332347
98  246  239.333     0.185744
99  303  315.484     0.493991
100  392  411.706     0.943251
101  538  531.957     0.0686415
102  712  680.592     1.44938
103  893  862.304     1.09271
104  1083  1082.03     0.000877346
105  1333  1344.8     0.103598
106  1622  1655.63     0.683131
107  1978  2019.25     0.842683
108  2387  2439.93     1.14811
109  3127  2921.2     14.4991
110  3370  3465.6     2.6373
111  4113  4074.42     0.36522
112  4658  4747.43     1.68473
113  5506  5482.65     0.0994103
114  6295  6276.2     0.0563376
115  7187  7122.12     0.591067
116  8081  8012.38     0.587627
117  9074  8936.89     2.10359
118  9876  9883.59     0.00583329
119  10810  10838.7     0.0761548
120  11921  11787.1     1.52065
121  12832  12712.6     1.1223
122  13578  13598.3     0.0301994
123  14412  14427.4     0.0164963
124  15252  15183.7     0.307197
125  16107  15851.8     4.10893
126  16486  16417.9     0.282291
127  16783  16870.4     0.452628
128  17361  17199.9     1.50922
129  17412  17399.9     0.00843864
130  17306  17466.8     1.48043
131  17437  17400.1     0.0780916
132  17067  17202.4     1.06588
133  16603  16879.1     4.51487
134  16357  16438.2     0.400955
135  15792  15890.2     0.607425
136  15292  15247.6     0.129144
137  14397  14524.2     1.11395
138  13613  13734.8     1.08081
139  13063  12894.9     2.19036
140  12015  12019.9     0.00201804
141  11153  11124.8     0.0713602
142  10226  10223.9     0.000443665
143  9304  9330.18     0.0734332
144  8332  8455.47     1.80299
145  7676  7609.92     0.573726
146  6753  6802.02     0.35329
147  6038  6038.53     4.63612e-05
148  5334  5324.51     0.0169006
149  4684  4663.42     0.0908521
150  4199  4057.17     4.95791
151  3403  3506.36     3.04707
152  2982  3010.4     0.267891
153  2570  2567.69     0.00207354
154  2119  2175.87     1.48636
155  1819  1831.94     0.0914251
156  1526  1532.49     0.0274816
157  1322  1273.82     1.82225
158  1039  1052.11     0.1634
159  859  863.526     0.0237179
160  670  704.313     1.67168
161  590  570.887     0.639873
162  471  459.881     0.268814
163  390  368.187     1.29226
164  260  292.978     3.71211
165  226  231.719     0.141159
166  171  182.165     0.684284
167  114  142.35     5.64622
168  104  110.576     0.391043
169  101  85.3854     2.85548
170  62  65.5458     0.191819
171  49  50.0218     0.0208733
172  39  37.9526     0.0289055
173  30  28.629     0.0656564
174  94  80.9759     2.09477
----
8  867  892.107
9  14368  14264.9
10  80891  80627.1
11  174966  174529
12  155578  156180
13  61275  61365.7
14  11065  11126
15  941  971.828
16  49  43.4924
Chi^2 is 90.3976 on 83 degrees of freedom.  p = 0.271148
Clumps: Chi^2 is 7.87616 on 8 degrees of freedom.  p = 0.44566
Mean  (should be 130.5) is 130.477
Sigma (should be 11.4237) is 11.4211
These are 1.45102 and 0.223599 standard deviations from expected values

Enter a value for mu: 0

--------------------------------------------
Test of SkewNormal distribution 

Please enter an integer seed:        1357924
How many numbers should we generate: 500000
Enter k: 0

Instantiating distribution utilizing TripleRand engine...

 Sample  fire(): 
-0.840613
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0): 0.00061911
Second moment (should be close to 1): 1.003
Third  moment (should be close to 0): 0.0027104
Fourth moment (should be close to 3): 3.0107
Fifth moment (should be close to 0): 0.032555
Sixth moment (should be close to 15): 15.04
        These represent 0.43778, 1.4884, 0.49486, 
                        0.77532, 0.74883, 0.28291
                         standard deviations from expectations

 The worst deviation encountered (out of about 25) was 1.4884 sigma 


--------------------------------------------
Test of SkewNormal distribution 

Please enter an integer seed:        1357924
How many numbers should we generate: 500000
Enter k: -2

Instantiating distribution utilizing TripleRand engine...

 Sample  fire(): 
-1.90152
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to -0.71365): -0.71456
Second moment (should be close to 1): 1.0034
Third  moment (should be close to -1.57): -1.5773
Fourth moment (should be close to 3): 3.0154
Fifth moment (should be close to -6.3658): -6.3971
Sixth moment (should be close to 15): 15.062
        These represent 0.64302, 1.7193, 1.4522, 
                        1.1129, 0.73617, 0.43656
                         standard deviations from expectations

 The worst deviation encountered (out of about 25) was 1.7193 sigma 


--------------------------------------------
Test of SkewNormal distribution 

Please enter an integer seed:        1357924
How many numbers should we generate: 500000
Enter k: 1

Instantiating distribution utilizing TripleRand engine...

 Sample  fire(): 
0.611677
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.56419): 0.56557
Second moment (should be close to 1): 1.0042
Third  moment (should be close to 1.4105): 1.421
Fourth moment (should be close to 3): 3.0273
Fifth moment (should be close to 6.065): 6.1391
Sixth moment (should be close to 15): 15.212
        These represent 0.97269, 2.1211, 2.0571, 
                        1.9693, 1.7377, 1.4849
                         standard deviations from expectations

 The worst deviation encountered (out of about 25) was 2.1211 sigma 


--------------------------------------------
Test of SkewNormal distribution 

Please enter an integer seed:        1357924
How many numbers should we generate: 500000
Enter k: 5

Instantiating distribution utilizing TripleRand engine...

 Sample  fire(): 
1.50767
 Testing operator() ... 
0
50001
100002
150003
200004
250005
300006
350007
400008
450009
Mean (should be close to 0.78239): 0.78381
Second moment (should be close to 1): 1.0044
Third  moment (should be close to 1.5949): 1.6065
Fourth moment (should be close to 3): 3.0302
Fifth moment (should be close to 6.383): 6.4649
Sixth moment (should be close to 15): 15.234
        These represent 1.0055, 2.2043, 2.3215, 
                        2.1766, 1.9257, 1.644
                         standard deviations from expectations

 The worst deviation encountered (out of about 25) was 2.3215 sigma