File: ExtraValidators.hpp

package info (click to toggle)
cli11 2.6.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,520 kB
  • sloc: cpp: 26,743; python: 129; sh: 64; makefile: 11
file content (621 lines) | stat: -rw-r--r-- 26,160 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// Copyright (c) 2017-2025, University of Cincinnati, developed by Henry Schreiner
// under NSF AWARD 1414736 and by the respective contributors.
// All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause

#pragma once
#if (defined(CLI11_ENABLE_EXTRA_VALIDATORS) && CLI11_ENABLE_EXTRA_VALIDATORS == 1) ||                                  \
    (!defined(CLI11_DISABLE_EXTRA_VALIDATORS) || CLI11_DISABLE_EXTRA_VALIDATORS == 0)
// IWYU pragma: private, include "CLI/CLI.hpp"

#include "Error.hpp"
#include "Macros.hpp"
#include "StringTools.hpp"
#include "Validators.hpp"

// [CLI11:public_includes:set]
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
// [CLI11:public_includes:end]

namespace CLI {
// [CLI11:extra_validators_hpp:verbatim]
// The implementation of the extra validators is using the Validator class;
// the user is only expected to use the const (static) versions (since there's no setup).
// Therefore, this is in detail.
namespace detail {

/// Validate the given string is a legal ipv4 address
class IPV4Validator : public Validator {
  public:
    IPV4Validator();
};

}  // namespace detail

/// Validate the input as a particular type
template <typename DesiredType> class TypeValidator : public Validator {
  public:
    explicit TypeValidator(const std::string &validator_name)
        : Validator(validator_name, [](std::string &input_string) {
              using CLI::detail::lexical_cast;
              auto val = DesiredType();
              if(!lexical_cast(input_string, val)) {
                  return std::string("Failed parsing ") + input_string + " as a " + detail::type_name<DesiredType>();
              }
              return std::string{};
          }) {}
    TypeValidator() : TypeValidator(detail::type_name<DesiredType>()) {}
};

/// Check for a number
const TypeValidator<double> Number("NUMBER");

/// Produce a bounded range (factory). Min and max are inclusive.
class Bound : public Validator {
  public:
    /// This bounds a value with min and max inclusive.
    ///
    /// Note that the constructor is templated, but the struct is not, so C++17 is not
    /// needed to provide nice syntax for Range(a,b).
    template <typename T> Bound(T min_val, T max_val) {
        std::stringstream out;
        out << detail::type_name<T>() << " bounded to [" << min_val << " - " << max_val << "]";
        description(out.str());

        func_ = [min_val, max_val](std::string &input) {
            using CLI::detail::lexical_cast;
            T val;
            bool converted = lexical_cast(input, val);
            if(!converted) {
                return std::string("Value ") + input + " could not be converted";
            }
            if(val < min_val)
                input = detail::to_string(min_val);
            else if(val > max_val)
                input = detail::to_string(max_val);

            return std::string{};
        };
    }

    /// Range of one value is 0 to value
    template <typename T> explicit Bound(T max_val) : Bound(static_cast<T>(0), max_val) {}
};

// Static is not needed here, because global const implies static.

/// Check for an IP4 address
const detail::IPV4Validator ValidIPV4;

namespace detail {
template <typename T,
          enable_if_t<is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
auto smart_deref(T value) -> decltype(*value) {
    return *value;
}

template <
    typename T,
    enable_if_t<!is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
typename std::remove_reference<T>::type &smart_deref(T &value) {
    // NOLINTNEXTLINE
    return value;
}
/// Generate a string representation of a set
template <typename T> std::string generate_set(const T &set) {
    using element_t = typename detail::element_type<T>::type;
    using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type;  // the type of the object pair
    std::string out(1, '{');
    out.append(detail::join(
        detail::smart_deref(set),
        [](const iteration_type_t &v) { return detail::pair_adaptor<element_t>::first(v); },
        ","));
    out.push_back('}');
    return out;
}

/// Generate a string representation of a map
template <typename T> std::string generate_map(const T &map, bool key_only = false) {
    using element_t = typename detail::element_type<T>::type;
    using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type;  // the type of the object pair
    std::string out(1, '{');
    out.append(detail::join(
        detail::smart_deref(map),
        [key_only](const iteration_type_t &v) {
            std::string res{detail::to_string(detail::pair_adaptor<element_t>::first(v))};

            if(!key_only) {
                res.append("->");
                res += detail::to_string(detail::pair_adaptor<element_t>::second(v));
            }
            return res;
        },
        ","));
    out.push_back('}');
    return out;
}

template <typename C, typename V> struct has_find {
    template <typename CC, typename VV>
    static auto test(int) -> decltype(std::declval<CC>().find(std::declval<VV>()), std::true_type());
    template <typename, typename> static auto test(...) -> decltype(std::false_type());

    static const auto value = decltype(test<C, V>(0))::value;
    using type = std::integral_constant<bool, value>;
};

/// A search function
template <typename T, typename V, enable_if_t<!has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    using element_t = typename detail::element_type<T>::type;
    auto &setref = detail::smart_deref(set);
    auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) {
        return (detail::pair_adaptor<element_t>::first(v) == val);
    });
    return {(it != std::end(setref)), it};
}

/// A search function that uses the built in find function
template <typename T, typename V, enable_if_t<has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    auto &setref = detail::smart_deref(set);
    auto it = setref.find(val);
    return {(it != std::end(setref)), it};
}

/// A search function with a filter function
template <typename T, typename V>
auto search(const T &set, const V &val, const std::function<V(V)> &filter_function)
    -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    using element_t = typename detail::element_type<T>::type;
    // do the potentially faster first search
    auto res = search(set, val);
    if((res.first) || (!(filter_function))) {
        return res;
    }
    // if we haven't found it do the longer linear search with all the element translations
    auto &setref = detail::smart_deref(set);
    auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) {
        V a{detail::pair_adaptor<element_t>::first(v)};
        a = filter_function(a);
        return (a == val);
    });
    return {(it != std::end(setref)), it};
}

}  // namespace detail
   /// Verify items are in a set
class IsMember : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction using an initializer list
    template <typename T, typename... Args>
    IsMember(std::initializer_list<T> values, Args &&...args)
        : IsMember(std::vector<T>(values), std::forward<Args>(args)...) {}

    /// This checks to see if an item is in a set (empty function)
    template <typename T> explicit IsMember(T &&set) : IsMember(std::forward<T>(set), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit IsMember(T set, F filter_function) {

        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;             // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type;  // Is value_type if not a map

        using local_item_t = typename IsMemberType<item_t>::type;  // This will convert bad types to good ones
        // (const char * to std::string)

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        // This is the type name for help, it will take the current version of the set contents
        desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); };

        // This is the function that validates
        // It stores a copy of the set pointer-like, so shared_ptr will stay alive
        func_ = [set, filter_fn](std::string &input) {
            using CLI::detail::lexical_cast;
            local_item_t b;
            if(!lexical_cast(input, b)) {
                throw ValidationError(input);  // name is added later
            }
            if(filter_fn) {
                b = filter_fn(b);
            }
            auto res = detail::search(set, b, filter_fn);
            if(res.first) {
                // Make sure the version in the input string is identical to the one in the set
                if(filter_fn) {
                    input = detail::value_string(detail::pair_adaptor<element_t>::first(*(res.second)));
                }

                // Return empty error string (success)
                return std::string{};
            }

            // If you reach this point, the result was not found
            return input + " not in " + detail::generate_set(detail::smart_deref(set));
        };
    }

    /// You can pass in as many filter functions as you like, they nest (string only currently)
    template <typename T, typename... Args>
    IsMember(T &&set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
        : IsMember(
              std::forward<T>(set),
              [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
              other...) {}
};

/// definition of the default transformation object
template <typename T> using TransformPairs = std::vector<std::pair<std::string, T>>;

/// Translate named items to other or a value set
class Transformer : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction
    template <typename... Args>
    Transformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
        : Transformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}

    /// direct map of std::string to std::string
    template <typename T> explicit Transformer(T &&mapping) : Transformer(std::forward<T>(mapping), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit Transformer(T mapping, F filter_function) {

        static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
                      "mapping must produce value pairs");
        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;             // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type;  // Is value_type if not a map
        using local_item_t = typename IsMemberType<item_t>::type;             // Will convert bad types to good ones
        // (const char * to std::string)

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        // This is the type name for help, it will take the current version of the set contents
        desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); };

        func_ = [mapping, filter_fn](std::string &input) {
            using CLI::detail::lexical_cast;
            local_item_t b;
            if(!lexical_cast(input, b)) {
                return std::string();
                // there is no possible way we can match anything in the mapping if we can't convert so just return
            }
            if(filter_fn) {
                b = filter_fn(b);
            }
            auto res = detail::search(mapping, b, filter_fn);
            if(res.first) {
                input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
            }
            return std::string{};
        };
    }

    /// You can pass in as many filter functions as you like, they nest
    template <typename T, typename... Args>
    Transformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
        : Transformer(
              std::forward<T>(mapping),
              [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
              other...) {}
};

/// translate named items to other or a value set
class CheckedTransformer : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction
    template <typename... Args>
    CheckedTransformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
        : CheckedTransformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}

    /// direct map of std::string to std::string
    template <typename T> explicit CheckedTransformer(T mapping) : CheckedTransformer(std::move(mapping), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit CheckedTransformer(T mapping, F filter_function) {

        static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
                      "mapping must produce value pairs");
        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;             // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type;  // Is value_type if not a map
        using local_item_t = typename IsMemberType<item_t>::type;             // Will convert bad types to good ones
        // (const char * to std::string)
        using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type;  // the type of the object pair

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        auto tfunc = [mapping]() {
            std::string out("value in ");
            out += detail::generate_map(detail::smart_deref(mapping)) + " OR {";
            out += detail::join(
                detail::smart_deref(mapping),
                [](const iteration_type_t &v) { return detail::to_string(detail::pair_adaptor<element_t>::second(v)); },
                ",");
            out.push_back('}');
            return out;
        };

        desc_function_ = tfunc;

        func_ = [mapping, tfunc, filter_fn](std::string &input) {
            using CLI::detail::lexical_cast;
            local_item_t b;
            bool converted = lexical_cast(input, b);
            if(converted) {
                if(filter_fn) {
                    b = filter_fn(b);
                }
                auto res = detail::search(mapping, b, filter_fn);
                if(res.first) {
                    input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
                    return std::string{};
                }
            }
            for(const auto &v : detail::smart_deref(mapping)) {
                auto output_string = detail::value_string(detail::pair_adaptor<element_t>::second(v));
                if(output_string == input) {
                    return std::string();
                }
            }

            return "Check " + input + " " + tfunc() + " FAILED";
        };
    }

    /// You can pass in as many filter functions as you like, they nest
    template <typename T, typename... Args>
    CheckedTransformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
        : CheckedTransformer(
              std::forward<T>(mapping),
              [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
              other...) {}
};

/// Helper function to allow ignore_case to be passed to IsMember or Transform
inline std::string ignore_case(std::string item) { return detail::to_lower(item); }

/// Helper function to allow ignore_underscore to be passed to IsMember or Transform
inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); }

/// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform
inline std::string ignore_space(std::string item) {
    item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item));
    item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item));
    return item;
}

/// Multiply a number by a factor using given mapping.
/// Can be used to write transforms for SIZE or DURATION inputs.
///
/// Example:
///   With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}`
///   one can recognize inputs like "100", "12kb", "100 MB",
///   that will be automatically transformed to 100, 14448, 104857600.
///
/// Output number type matches the type in the provided mapping.
/// Therefore, if it is required to interpret real inputs like "0.42 s",
/// the mapping should be of a type <string, float> or <string, double>.
class AsNumberWithUnit : public Validator {
  public:
    /// Adjust AsNumberWithUnit behavior.
    /// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched.
    /// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError
    ///   if UNIT_REQUIRED is set and unit literal is not found.
    enum Options : std::uint8_t {
        CASE_SENSITIVE = 0,
        CASE_INSENSITIVE = 1,
        UNIT_OPTIONAL = 0,
        UNIT_REQUIRED = 2,
        DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL
    };

    template <typename Number>
    explicit AsNumberWithUnit(std::map<std::string, Number> mapping,
                              Options opts = DEFAULT,
                              const std::string &unit_name = "UNIT") {
        description(generate_description<Number>(unit_name, opts));
        validate_mapping(mapping, opts);

        // transform function
        func_ = [mapping, opts](std::string &input) -> std::string {
            Number num{};

            detail::rtrim(input);
            if(input.empty()) {
                throw ValidationError("Input is empty");
            }

            // Find split position between number and prefix
            auto unit_begin = input.end();
            while(unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale())) {
                --unit_begin;
            }

            std::string unit{unit_begin, input.end()};
            input.resize(static_cast<std::size_t>(std::distance(input.begin(), unit_begin)));
            detail::trim(input);

            if(opts & UNIT_REQUIRED && unit.empty()) {
                throw ValidationError("Missing mandatory unit");
            }
            if(opts & CASE_INSENSITIVE) {
                unit = detail::to_lower(unit);
            }
            if(unit.empty()) {
                using CLI::detail::lexical_cast;
                if(!lexical_cast(input, num)) {
                    throw ValidationError(std::string("Value ") + input + " could not be converted to " +
                                          detail::type_name<Number>());
                }
                // No need to modify input if no unit passed
                return {};
            }

            // find corresponding factor
            auto it = mapping.find(unit);
            if(it == mapping.end()) {
                throw ValidationError(unit +
                                      " unit not recognized. "
                                      "Allowed values: " +
                                      detail::generate_map(mapping, true));
            }

            if(!input.empty()) {
                using CLI::detail::lexical_cast;
                bool converted = lexical_cast(input, num);
                if(!converted) {
                    throw ValidationError(std::string("Value ") + input + " could not be converted to " +
                                          detail::type_name<Number>());
                }
                // perform safe multiplication
                bool ok = detail::checked_multiply(num, it->second);
                if(!ok) {
                    throw ValidationError(detail::to_string(num) + " multiplied by " + unit +
                                          " factor would cause number overflow. Use smaller value.");
                }
            } else {
                num = static_cast<Number>(it->second);
            }

            input = detail::to_string(num);

            return {};
        };
    }

  private:
    /// Check that mapping contains valid units.
    /// Update mapping for CASE_INSENSITIVE mode.
    template <typename Number> static void validate_mapping(std::map<std::string, Number> &mapping, Options opts) {
        for(auto &kv : mapping) {
            if(kv.first.empty()) {
                throw ValidationError("Unit must not be empty.");
            }
            if(!detail::isalpha(kv.first)) {
                throw ValidationError("Unit must contain only letters.");
            }
        }

        // make all units lowercase if CASE_INSENSITIVE
        if(opts & CASE_INSENSITIVE) {
            std::map<std::string, Number> lower_mapping;
            for(auto &kv : mapping) {
                auto s = detail::to_lower(kv.first);
                if(lower_mapping.count(s)) {
                    throw ValidationError(std::string("Several matching lowercase unit representations are found: ") +
                                          s);
                }
                lower_mapping[detail::to_lower(kv.first)] = kv.second;
            }
            mapping = std::move(lower_mapping);
        }
    }

    /// Generate description like this: NUMBER [UNIT]
    template <typename Number> static std::string generate_description(const std::string &name, Options opts) {
        std::stringstream out;
        out << detail::type_name<Number>() << ' ';
        if(opts & UNIT_REQUIRED) {
            out << name;
        } else {
            out << '[' << name << ']';
        }
        return out.str();
    }
};

inline AsNumberWithUnit::Options operator|(const AsNumberWithUnit::Options &a, const AsNumberWithUnit::Options &b) {
    return static_cast<AsNumberWithUnit::Options>(static_cast<int>(a) | static_cast<int>(b));
}

/// Converts a human-readable size string (with unit literal) to uin64_t size.
/// Example:
///   "100" => 100
///   "1 b" => 100
///   "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024)
///   "10 KB" => 10240
///   "10 kb" => 10240
///   "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024)
///   "10kb" => 10240
///   "2 MB" => 2097152
///   "2 EiB" => 2^61 // Units up to exibyte are supported
class AsSizeValue : public AsNumberWithUnit {
  public:
    using result_t = std::uint64_t;

    /// If kb_is_1000 is true,
    /// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024
    /// (same applies to higher order units as well).
    /// Otherwise, interpret all literals as factors of 1024.
    /// The first option is formally correct, but
    /// the second interpretation is more wide-spread
    /// (see https://en.wikipedia.org/wiki/Binary_prefix).
    explicit AsSizeValue(bool kb_is_1000);

  private:
    /// Get <size unit, factor> mapping
    static std::map<std::string, result_t> init_mapping(bool kb_is_1000);

    /// Cache calculated mapping
    static std::map<std::string, result_t> get_mapping(bool kb_is_1000);
};

#if defined(CLI11_ENABLE_EXTRA_VALIDATORS) && CLI11_ENABLE_EXTRA_VALIDATORS != 0
// new extra validators
#if CLI11_HAS_FILESYSTEM
namespace detail {
enum class Permission : std::uint8_t { none = 0, read = 1, write = 2, exec = 4 };
class PermissionValidator : public Validator {
  public:
    explicit PermissionValidator(Permission permission);
};
}  // namespace detail

/// Check that the file exist and available for read
const detail::PermissionValidator ReadPermissions(detail::Permission::read);

/// Check that the file exist and available for write
const detail::PermissionValidator WritePermissions(detail::Permission::write);

/// Check that the file exist and available for write
const detail::PermissionValidator ExecPermissions(detail::Permission::exec);
#endif

#endif
// [CLI11:extra_validators_hpp:end]
}  // namespace CLI

#ifndef CLI11_COMPILE
#include "impl/ExtraValidators_inl.hpp"  // IWYU pragma: export
#endif

#endif