1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
#include <string.h>
#include <random>
#include <pcg_random.hpp>
#include <common/likely.h>
#include <common/Types.h>
#include <IO/ReadBuffer.h>
#include <IO/ReadBufferFromFileDescriptor.h>
#include <IO/WriteBufferFromFileDescriptor.h>
#include <IO/BufferWithOwnMemory.h>
#include <IO/CompressedStream.h>
#include <IO/WriteHelpers.h>
#include <IO/copyData.h>
#include <Common/PODArray.h>
/** Quick and dirty implementation of data scrambler.
*
* The task is to replace the data with pseudorandom values.
* But with keeping some probability distributions
* and with maintaining the same compression ratio.
*
* The solution is to operate directly on compressed LZ4 stream.
* The stream consists of independent compressed blocks.
* Each block is a stream of "literals" and "matches".
* Liteal is an instruction to literally put some following bytes,
* and match is an instruction to copy some bytes that was already seen before.
*
* We get literals and apply some scramble operation on it.
* But we keep literal length and matches without changes.
*
* That's how we get pseudorandom data but with keeping
* all repetitive patterns and maintaining the same compression ratio.
*
* Actually, the compression ratio, if you decompress scrambled data and compress again
* become slightly worse, because LZ4 use simple match finder based on value of hash function,
* and it can find different matches due to collisions in hash function.
*
* Scramble operation replace literals with pseudorandom bytes,
* but with some heuristics to keep some sort of data structure.
*
* It's in question, is it scramble data enough and while is it safe to publish scrambled data.
* In general, you should assume that it is not safe.
*/
#define ML_BITS 4
#define ML_MASK ((1U<<ML_BITS)-1)
#define RUN_BITS (8-ML_BITS)
#define RUN_MASK ((1U<<RUN_BITS)-1)
#define MINMATCH 4
#define WILDCOPYLENGTH 8
#define LASTLITERALS 5
static UInt8 rand(pcg64 & generator, UInt8 min, UInt8 max)
{
return min + generator() % (max + 1 - min);
}
static void mutate(pcg64 & generator, void * src, size_t length)
{
UInt8 * pos = static_cast<UInt8 *>(src);
UInt8 * end = pos + length;
while (pos < end)
{
if (pos + strlen("https") <= end && 0 == memcmp(pos, "https", strlen("https")))
{
pos += strlen("https");
continue;
}
if (pos + strlen("http") <= end && 0 == memcmp(pos, "http", strlen("http")))
{
pos += strlen("http");
continue;
}
if (pos + strlen("www") <= end && 0 == memcmp(pos, "www", strlen("www")))
{
pos += strlen("www");
continue;
}
if (*pos >= '1' && *pos <= '9')
*pos = rand(generator, '1', '9');
else if (*pos >= 'a' && *pos <= 'z')
*pos = rand(generator, 'a', 'z');
else if (*pos >= 'A' && *pos <= 'Z')
*pos = rand(generator, 'A', 'Z');
else if (*pos >= 0x80 && *pos <= 0xBF)
*pos = rand(generator, *pos & 0xF0U, *pos | 0x0FU);
else if (*pos == '\\')
++pos;
++pos;
}
pos = static_cast<UInt8 *>(src);
while (pos < end)
{
if (pos + 3 <= end
&& isAlphaASCII(pos[0])
&& !isAlphaASCII(pos[1]) && pos[1] != '\\' && pos[1] >= 0x20
&& isAlphaASCII(pos[2]))
{
auto res = rand(generator, 0, 3);
if (res == 2)
{
std::swap(pos[0], pos[1]);
}
else if (res == 3)
std::swap(pos[1], pos[2]);
pos += 3;
}
else if (pos + 5 <= end
&& pos[0] >= 0xC0 && pos[0] <= 0xDF && pos[1] >= 0x80 && pos[1] <= 0xBF
&& pos[2] >= 0x20 && pos[2] < 0x80 && !isAlphaASCII(pos[2])
&& pos[3] >= 0xC0 && pos[0] <= 0xDF && pos[4] >= 0x80 && pos[4] <= 0xBF)
{
auto res = rand(generator, 0, 3);
if (res == 2)
{
std::swap(pos[1], pos[2]);
std::swap(pos[0], pos[1]);
}
else if (res == 3)
{
std::swap(pos[3], pos[2]);
std::swap(pos[4], pos[3]);
}
pos += 5;
}
else
++pos;
}
}
static void LZ4_copy8(void* dst, const void* src)
{
memcpy(dst,src,8);
}
/* customized variant of memcpy, which can overwrite up to 8 bytes beyond dstEnd */
static void LZ4_wildCopy(void* dstPtr, const void* srcPtr, void* dstEnd)
{
UInt8* d = (UInt8*)dstPtr;
const UInt8* s = (const UInt8*)srcPtr;
UInt8* const e = (UInt8*)dstEnd;
do { LZ4_copy8(d,s); d+=8; s+=8; } while (d<e);
}
static UInt16 LZ4_read16(const void* memPtr)
{
UInt16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
static void LZ4_write32(void* memPtr, UInt32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
int LZ4_decompress_mutate(
char* const source,
char* const dest,
int outputSize)
{
pcg64 generator;
/* Local Variables */
UInt8* ip = (UInt8*) source;
UInt8* op = (UInt8*) dest;
UInt8* const oend = op + outputSize;
UInt8* cpy;
const unsigned dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4};
const int dec64table[] = {0, 0, 0, -1, 0, 1, 2, 3};
/* Main Loop : decode sequences */
while (1) {
size_t length;
const UInt8* match;
size_t offset;
/* get literal length */
unsigned const token = *ip++;
if ((length=(token>>ML_BITS)) == RUN_MASK) {
unsigned s;
do {
s = *ip++;
length += s;
} while (s==255);
}
/* copy literals */
cpy = op+length;
if (cpy>oend-WILDCOPYLENGTH)
{
if (cpy != oend) goto _output_error; /* Error : block decoding must stop exactly there */
mutate(generator, ip, length);
memcpy(op, ip, length);
ip += length;
op += length;
break; /* Necessarily EOF, due to parsing restrictions */
}
mutate(generator, ip, cpy - op);
LZ4_wildCopy(op, ip, cpy);
ip += length; op = cpy;
/* get offset */
offset = LZ4_read16(ip); ip+=2;
match = op - offset;
LZ4_write32(op, (UInt32)offset); /* costs ~1%; silence an msan warning when offset==0 */
/* get matchlength */
length = token & ML_MASK;
if (length == ML_MASK) {
unsigned s;
do {
s = *ip++;
length += s;
} while (s==255);
}
length += MINMATCH;
/* copy match within block */
cpy = op + length;
if (unlikely(offset<8)) {
const int dec64 = dec64table[offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[offset];
memcpy(op+4, match, 4);
match -= dec64;
} else { LZ4_copy8(op, match); match+=8; }
op += 8;
if (unlikely(cpy>oend-12)) {
UInt8* const oCopyLimit = oend-(WILDCOPYLENGTH-1);
if (cpy > oend-LASTLITERALS) goto _output_error; /* Error : last LASTLITERALS bytes must be literals (uncompressed) */
if (op < oCopyLimit) {
LZ4_wildCopy(op, match, oCopyLimit);
match += oCopyLimit - op;
op = oCopyLimit;
}
while (op<cpy) *op++ = *match++;
} else {
LZ4_copy8(op, match);
if (length>16) LZ4_wildCopy(op+8, match+8, cpy);
}
op=cpy; /* correction */
}
return (int) (((const char*)ip)-source); /* Nb of input bytes read */
/* Overflow error detected */
_output_error:
return (int) (-(((const char*)ip)-source))-1;
}
namespace DB
{
namespace ErrorCodes
{
extern const int UNKNOWN_COMPRESSION_METHOD;
extern const int TOO_LARGE_SIZE_COMPRESSED;
extern const int CANNOT_DECOMPRESS;
}
class MutatingCompressedReadBufferBase
{
protected:
ReadBuffer * compressed_in;
/// If 'compressed_in' buffer has whole compressed block - then use it. Otherwise copy parts of data to 'own_compressed_buffer'.
PODArray<char> own_compressed_buffer;
/// Points to memory, holding compressed block.
char * compressed_buffer = nullptr;
size_t readCompressedData(size_t & size_decompressed, size_t & size_compressed_without_checksum)
{
if (compressed_in->eof())
return 0;
CityHash_v1_0_2::uint128 checksum;
compressed_in->readStrict(reinterpret_cast<char *>(&checksum), sizeof(checksum));
own_compressed_buffer.resize(COMPRESSED_BLOCK_HEADER_SIZE);
compressed_in->readStrict(&own_compressed_buffer[0], COMPRESSED_BLOCK_HEADER_SIZE);
UInt8 method = own_compressed_buffer[0]; /// See CompressedWriteBuffer.h
size_t & size_compressed = size_compressed_without_checksum;
if (method == static_cast<UInt8>(CompressionMethodByte::LZ4) ||
method == static_cast<UInt8>(CompressionMethodByte::ZSTD) ||
method == static_cast<UInt8>(CompressionMethodByte::NONE))
{
size_compressed = unalignedLoad<UInt32>(&own_compressed_buffer[1]);
size_decompressed = unalignedLoad<UInt32>(&own_compressed_buffer[5]);
}
else
throw Exception("Unknown compression method: " + toString(method), ErrorCodes::UNKNOWN_COMPRESSION_METHOD);
if (size_compressed > DBMS_MAX_COMPRESSED_SIZE)
throw Exception("Too large size_compressed. Most likely corrupted data.", ErrorCodes::TOO_LARGE_SIZE_COMPRESSED);
/// Is whole compressed block located in 'compressed_in' buffer?
if (compressed_in->offset() >= COMPRESSED_BLOCK_HEADER_SIZE &&
compressed_in->position() + size_compressed - COMPRESSED_BLOCK_HEADER_SIZE <= compressed_in->buffer().end())
{
compressed_in->position() -= COMPRESSED_BLOCK_HEADER_SIZE;
compressed_buffer = compressed_in->position();
compressed_in->position() += size_compressed;
}
else
{
own_compressed_buffer.resize(size_compressed);
compressed_buffer = &own_compressed_buffer[0];
compressed_in->readStrict(compressed_buffer + COMPRESSED_BLOCK_HEADER_SIZE, size_compressed - COMPRESSED_BLOCK_HEADER_SIZE);
}
return size_compressed + sizeof(checksum);
}
void decompress(char * to, size_t size_decompressed, size_t size_compressed_without_checksum)
{
UInt8 method = compressed_buffer[0]; /// See CompressedWriteBuffer.h
if (method == static_cast<UInt8>(CompressionMethodByte::LZ4))
{
if (LZ4_decompress_mutate(compressed_buffer + COMPRESSED_BLOCK_HEADER_SIZE, to, size_decompressed) < 0)
throw Exception("Cannot LZ4_decompress_fast", ErrorCodes::CANNOT_DECOMPRESS);
}
else
throw Exception("Unknown compression method: " + toString(method), ErrorCodes::UNKNOWN_COMPRESSION_METHOD);
}
public:
/// 'compressed_in' could be initialized lazily, but before first call of 'readCompressedData'.
MutatingCompressedReadBufferBase(ReadBuffer * in = nullptr)
: compressed_in(in), own_compressed_buffer(COMPRESSED_BLOCK_HEADER_SIZE)
{
}
};
class MutatingCompressedReadBuffer : public MutatingCompressedReadBufferBase, public BufferWithOwnMemory<ReadBuffer>
{
private:
size_t size_compressed = 0;
bool nextImpl() override
{
size_t size_decompressed;
size_t size_compressed_without_checksum;
size_compressed = readCompressedData(size_decompressed, size_compressed_without_checksum);
if (!size_compressed)
return false;
memory.resize(size_decompressed);
working_buffer = Buffer(&memory[0], &memory[size_decompressed]);
decompress(working_buffer.begin(), size_decompressed, size_compressed_without_checksum);
return true;
}
public:
MutatingCompressedReadBuffer(ReadBuffer & in_)
: MutatingCompressedReadBufferBase(&in_), BufferWithOwnMemory<ReadBuffer>(0)
{
}
};
}
int main(int, char **)
try
{
DB::ReadBufferFromFileDescriptor in(STDIN_FILENO);
DB::MutatingCompressedReadBuffer mutating_in(in);
DB::WriteBufferFromFileDescriptor out(STDOUT_FILENO);
DB::copyData(mutating_in, out);
return 0;
}
catch (...)
{
std::cerr << DB::getCurrentExceptionMessage(true);
return DB::getCurrentExceptionCode();
}
|