1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// Clipper-fft utility.
/* (C) 2000 Kevin Cowtan */
// This is more of a demo application than a serious version
#include <clipper/clipper.h>
#include <clipper/clipper-ccp4.h>
#include <clipper/clipper-contrib.h>
#include <iostream>
extern "C" {
#include <time.h>
}
using namespace clipper;
using namespace clipper::data32;
int main()
{
String filename, cmapname( "out.map" );
String dataname;
double rlim = 0.0;
Grid_sampling grid(24,24,24);
String line = "";
// read and parse input lines
while ( std::getline( std::cin, line ), !std::cin.eof() ) {
std::vector<String> tokens = line.split(" ");
// input file
if ( tokens[0] == "inputfile" ) {
filename = tokens[1];
}
// output file
if ( tokens[0] == "outputfile" ) {
cmapname = tokens[1];
}
// import a column list
else if ( tokens[0] == "F_phi" ) {
dataname = tokens[1];
}
// resolution
else if ( tokens[0] == "resolution" ) {
rlim = tokens[1].f();
}
// grid
else if ( tokens[0] == "grid" ) {
grid = Grid_sampling( tokens[1].i(), tokens[2].i(), tokens[3].i() );
}
}
std::cout << filename << "\n" << cmapname << "\n" << dataname << "\n" << rlim << "\n";
// Make data objects: Need spacegroup, cell, hkls, and data
CSpacegroup spgr( "base spgr" );
CCell cell( spgr, "base cell" );
CResolution reso( cell, "base reso" );
CHKL_info rfl( reso, "cfft" );
CHKL_data<F_phi> fphidata( rfl, "" );
CCP4MTZfile mtzin; mtzin.open_read( filename ); // open new file
spgr.init( mtzin.spacegroup() ); // get info from file
cell.init( mtzin.cell() );
reso.init( Resolution( Util::max( rlim, mtzin.resolution().limit() ) ) );
rfl.generate_hkl_list();
mtzin.import_chkl_data( fphidata, dataname ); // read data
mtzin.close_read();
std::cout << "Number of reflections: " << rfl.num_reflections() << "\n";
// make map
Xmap<float> xmap( rfl.spacegroup(), rfl.cell(), grid );
Xmap<float> xmap1( rfl.spacegroup(), rfl.cell(), grid );
Xmap<float> xmap2( rfl.spacegroup(), rfl.cell(), grid );
// fft
xmap.fft_from( fphidata );
// write map
CCP4MAPfile mapout; mapout.open_write( cmapname );
mapout.export_xmap( xmap );
mapout.close_write();
// now bench the fft methods
int t0 = time( NULL );
for ( int i = 0; i < 20; i++ )
xmap1.fft_from( fphidata, Xmap_base::Normal );
int t1 = time( NULL );
for ( int i = 0; i < 20; i++ )
xmap2.fft_from( fphidata, Xmap_base::Sparse );
int t2 = time( NULL );
std::cout << "Times: " << t2-t1 << "\t" << t1-t0 << "\n";
Xmap<float>::Map_reference_index ix;
for ( ix = xmap1.first(); !ix.last(); ix.next() )
if ( ix.index() % 100 == 0 ) std::cout << ix.coord().format() << "\t" << xmap1[ix] << "\t" << xmap2[ix] << "\n";
// do some diagnostics
Coord_grid c;
for ( c.w() = 0; c.w() < 2; c.w()++ ) {
for ( c.v() = 0; c.v() < 24; c.v()++ ) {
for ( c.u() = 0; c.u() < 24; c.u()++ ) {
std::cout.width(5);
std::cout << rint(1000*xmap.get_data(c)) << " ";
}
std::cout << "\n";
}
std::cout << c.w() << "\n";
}
std::cout << "at 012 " << xmap.get_data( Coord_grid( 0, 1, 2 ) ) << "\n";
std::cout << "at 112 " << xmap.get_data( Coord_grid( 1, 1, 2 ) ) << "\n";
std::cout << "at 212 " << xmap.get_data( Coord_grid( 2, 1, 2 ) ) << "\n";
for ( ftype u = 0; u < 2.01; u+=0.1 ) {
Coord_frac f( u/24.0, 1.0/24.0, 2.0/24.0 );
float v1; Grad_frac<float> g1;
float v2; Grad_frac<float> g2;
xmap.interp_grad<Interp_cubic>(f,v1,g1);
xmap.interp_grad<Interp_cubic>(f,v2,g2);
std::cout.precision(5);
std::cout << u << " " << xmap.interp<Interp_linear>(f) << " " << v1 << " " << xmap.interp<Interp_cubic>(f) << " " << g1[0]/24 << " " << g2[0]/24 << " " << g1[2]/24 << " " << g2[2]/24 << "\n";
}
std::cout << "---\n";
for ( ftype u = 0; u < 2.01; u+=0.1 ) {
Coord_frac f( u/24.0, 1.0+u/36.0, 2.0+u/48.0 );
float v1; Grad_frac<float> g1;
float v2; Grad_frac<float> g2; Curv_frac<float> c2;
xmap.interp_grad<Interp_cubic>(f,v1,g1);
xmap.interp_curv<Interp_cubic>(f,v2,g2,c2);
Grad_orth<float> go = g2.grad_orth(cell);
std::cout.precision(5);
float v; Interp_linear::interp(xmap,f.coord_map(grid),v);
std::cout << u << " " << v << " " << v1 << " " << v2 << " " << g1[0]/24 << " " << g2[0]/24 << " " << g1[1]/24 << " " << g2[1]/24 << "\n";
}
// test interpolation
Coord_map m0( 1.1, 2.2, 3.3 ), m1( 1.11, 2.2, 3.3 ), m2( 1.1, 2.21, 3.3 ), m3( 1.1, 2.2, 3.31 );
float v0; Grad_map<float> g0, g1, g2, g3; Curv_map<float> c0;
Interp_cubic::interp_curv<float>( xmap, m0, v0, g0, c0 );
Interp_cubic::interp_grad<float>( xmap, m1, v0, g1 );
Interp_cubic::interp_grad<float>( xmap, m2, v0, g2 );
Interp_cubic::interp_grad<float>( xmap, m3, v0, g3 );
std:: cout << "Interp curv\n" << c0.format() << "\n" << (100.0f*(g1-g0)).format() << "\n" << (100.0f*(g2-g0)).format() << "\n"<< (100.0f*(g3-g0)).format() << "\n";
// benchmark the interpolators
//for ( ftype u = 0; u < 20.01; u+=0.00001 ) {
for ( ftype u = 0; u < 20.01; u+=0.01 ) {
Coord_frac f( u/24.0, 1.0+u/36.0, 2.0+u/48.0 );
//Coord_map g = grid.to_map(f);
ftype x = xmap.interp<Interp_linear>(f);
//ftype x = Interp_linear<Xmap,float>::interp(xmap,g);
//ftype y = Interp_linear<Xmap<float> >::interp(xmap,g);
ftype y = xmap.interp<Interp_linear>(f);
if ( fabs( x-y ) > 1.0e-6 ) std::cout << u << " " << x << " " << y << "\n";
}
// now try making some grids
Spacegroup sg(Spgr_descr(76));
for ( ftype x = 30; x < 66; x+=5 ) {
Cell c(Cell_descr(x,33,33));
Grid_sampling g( sg, c, Resolution(2.0), 1.0 );
std::cout << x << " " << g.format() << "\n";
}
// now test the fffear objects
Xmap<float> r1( Spacegroup::p1(), xmap.cell(), xmap.grid_sampling() );
Xmap<float> r2( Spacegroup::p1(), xmap.cell(), xmap.grid_sampling() );
int irad = 2;
clipper::Grid_range tg( clipper::Coord_grid(-irad,-irad,-irad),
clipper::Coord_grid(irad,irad,irad) );
NXmap<float> target( xmap.cell(), xmap.grid_sampling(), tg );
NXmap<float> weight( xmap.cell(), xmap.grid_sampling(), tg );
target = weight = 0.0;
for ( Coord_grid c = tg.min(); !c.last(tg); c.next(tg) ) {
if ( c*c <= 2 ) {
target.set_data(c-tg.min(),xmap.get_data(c));
weight.set_data(c-tg.min(),1.0);
}
}
//FFFear_slow_basic srch1( xmap );
//FFFear_fft_basic srch2( xmap );
FFFear_slow<float> srch1( xmap );
FFFear_fft<float> srch2( xmap );
srch1( r1, target, weight );
srch2( r2, target, weight );
for ( ix = r1.first(); !ix.last(); ix.next() )
if ( fabs(r1[ix] - r2[ix]) > 0.001 )
std::cout << ix.coord().format() << " \t" << r1[ix] << " \t" << r2[ix] << "\n";
MapFilterFn_step step( 2.5 );
MapFilter_slow<float> fltr1( step, 1.0, MapFilter_slow<float>::Relative );
MapFilter_fft<float> fltr2( step, 1.0, MapFilter_fft<float>::Relative );
Xmap<float> f1, f2;
fltr1( f1, xmap );
fltr2( f2, xmap );
for ( ix = xmap.first(); !ix.last(); ix.next() )
if ( fabs(f1[ix] - f2[ix]) > 0.001 )
std::cout << ix.coord().format() << " \t" << f1[ix] << " \t" << f2[ix] << " \t" << xmap[ix] << "\n";
// test
SFweight_spline<float> sfw;
sfw.debug();
}
|