File: rfltest.cpp

package info (click to toggle)
clipper 2.1.20130601-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,812 kB
  • ctags: 4,269
  • sloc: cpp: 26,716; sh: 11,175; makefile: 242; fortran: 41; csh: 18
file content (216 lines) | stat: -rw-r--r-- 8,541 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include <clipper/clipper.h>
#include <clipper/core/fftmap_sparse.h>

#include <stdlib.h>
#include <iostream>

#define T(X) (fmod(Util::rad2d(X)+72000.0,360.0))


using namespace clipper;
using namespace clipper::data32;

int main()
{
  int sg_num,i,n;

  std::cout << "Enter spacegroup: ";
  std::cin >> sg_num;

  CSpacegroup cspgr("spgr",Spacegroup(Spgr_descr(sg_num)));
  CCell ccell(cspgr,"cell",Cell(Cell_descr(100.0,100.0,100.0,Util::pi()/2.0,Util::pi()/2.0,Util::pi()/2.0)));
  CCell ccell2(cspgr,"cell2",Cell(Cell_descr(99.0,99.0,99.0,Util::pi()/2.0,Util::pi()/2.0,Util::pi()/2.0)));
  cspgr.Spacegroup::debug(); ccell.Cell::debug();
  CHKL_info chkl(ccell,"hkl");

  chkl.init( cspgr, ccell, Resolution(19.99) );
  chkl.generate_hkl_list();
  chkl.spacegroup().debug();

  CHKL_data<F_phi> cfphi(chkl, "myfphi");
  CHKL_data<F_phi> cfphi2(chkl, "myfphi2");
  CHKL_data<F_sigF> cfsig(chkl, "myfsig");

  cspgr.Container::debug();

  std::cout << dynamic_cast<const HKL_data_base*>(chkl.find_path_ptr("myfphi"))->type() << "\n";
  std::cout << dynamic_cast<const HKL_data_base*>(chkl.find_path_ptr("myfsig"))->type() << "\n";

  F_sigF dat1;
  F_phi  dat2;
  dat1.f()=dat1.sigf()=0.0f;
  dat2.f()=dat2.phi()=0.0f;
  n = chkl.spacegroup().num_symops(); std::cout << n << " ";
  n = Util::min( n-1, 1 ); std::cout << n << "\n";
  for (i=0; i<chkl.num_reflections(); i++) {
    dat1.f()=i;
    cfsig[i]=dat1;
    dat2.f()=i; dat2.phi()=(23*i)*Util::twopi()/40.0;
    if ( chkl.hkl_of(i) == HKL(0,0,0) ) dat2.phi() = 0.0;
    cfphi[i]=dat2;
    HKL rfl=-chkl.hkl_of(i).transform(cspgr.symop(n));
    std::cout << cfphi[i].f() << "=" << (cfphi[rfl]).f() << "\n";
  }


  for (int h=-1; h<=1; h++)
    for (int k=-1; k<=1; k++)
      for (int l=-1; l<=1; l++)
	if (!cspgr.hkl_class(HKL(h,k,l)).sys_abs()) {
          std::cout << " (" << h << "," << k << "," << l << ") " << " ";
          std::cout <<  (cfphi[HKL(h,k,l)].f()) << " ";
          std::cout << T(cfphi[-HKL(h,k,l).transform(cspgr.symop(n))].phi()) << "\n";
        }


  // now make an fftmap

  Grid_sampling cgrid(24,24,24);

  FFTmap fftmap( cspgr, ccell, cgrid );
  FFTmap_p1 fftmapp1( cgrid );

  for (i=0; i<chkl.num_reflections(); i++)
    fftmap.set_recip_data( chkl.hkl_of(i), cfphi[i] );

  fftmap.fft_h_to_x();
  std::cout << "done fft\n";
  for ( Coord_grid c(0,0,0); !c.last(cgrid); c.next(cgrid) )
    fftmapp1.real_data(c) = fftmap.get_real_data(c);  // copy to fftmap_p1
  fftmapp1.fft_x_to_h(ccell.volume());
  fftmapp1.fft_h_to_x(1.0/ccell.volume());
  fftmapp1.fft_x_to_h(ccell.volume());

  FFTmap_sparse_p1_hx fftmaps1( cgrid );
  FFTmap_sparse_p1_xh fftmaps2( cgrid );
  for (i=0; i<chkl.num_reflections(); i++)
    fftmaps1.set_hkl( chkl.hkl_of(i), std::complex<ffttype>(cfphi[i]) );
  Grid_range mgrid( Coord_grid(-1,-1,-1), Coord_grid(1,1,1) );
  for ( Coord_grid c = mgrid.min(); !c.last(mgrid); c.next(mgrid) )
    fftmaps1.require_real_data(c.unit(cgrid));
  fftmaps1.fft_h_to_x(1.0/ccell.volume());
  for ( Coord_grid c = mgrid.min(); !c.last(mgrid); c.next(mgrid) )
    std::cout << c.format() << "\t" << fftmaps1.real_data(c.unit(cgrid)) << "\t" << fftmap.get_real_data(c) << "\n";
  fftmapp1.reset();
  for ( Coord_grid c = mgrid.min(); !c.last(mgrid); c.next(mgrid) )
    fftmapp1.real_data(c.unit(cgrid)) = fftmaps1.real_data(c.unit(cgrid));
  for ( Coord_grid c = mgrid.min(); !c.last(mgrid); c.next(mgrid) )
    fftmaps2.real_data(c.unit(cgrid)) = fftmaps1.real_data(c.unit(cgrid));
  for (i=0; i<chkl.num_reflections(); i++)
    fftmaps2.require_hkl( chkl.hkl_of(i) );
  fftmaps2.fft_x_to_h(ccell.volume());
  fftmapp1.fft_x_to_h(ccell.volume());
  for (i=0; i<chkl.num_reflections(); i++)
    std::cout << chkl.hkl_of(i).format() << "\t" << fftmapp1.get_hkl( chkl.hkl_of(i) ) << "\t" << fftmaps2.get_hkl( chkl.hkl_of(i) ) << "\n";

  fftmap.fft_x_to_h();

  Xmap<float> xmap( cspgr, ccell, cgrid );
  xmap.fft_from( cfphi );
  std::cout << "done fft\n";
  xmap.fft_to  ( cfphi2 );

  // for (i=0; i<chkl.num_reflections(); i++) cfphi[i] = fftmapp1.get_hkl( chkl.hkl_of(i) );

  std::cout.precision(3);
  for (int h=-2; h<=2; h++)
    for (int k=-2; k<=2; k++)
      for (int l=-2; l<=2; l++) {
	HKL rfl(h,k,l);
	if ((!cspgr.hkl_class(rfl).sys_abs())&&(!cspgr.hkl_class(rfl).centric())) {
          std::cout << rfl.format() << " ";
          std::cout.width(4); std::cout <<  (cfphi[rfl].f()) << " ";
          std::cout.width(4); std::cout << T(cfphi[rfl].phi()) << ":";
          std::cout.width(4); std::cout <<  (cfphi2[rfl].f()) << " ";
          std::cout.width(4); std::cout << T(cfphi2[rfl].phi()) << ":";
	  std::cout.width(4); std::cout << fftmap.get_recip_data( rfl ).f() << " ";
	  std::cout.width(4); std::cout << T(fftmap.get_recip_data( rfl ).phi()) << "\n";
        }
      }

  for ( double x=0.1; x<50; x*=1.5 )
    std::cout << x << " " << Util::sim(x) << " " << Util::invsim(Util::sim(x)) << " " << Util::sim(-x) << " " << Util::invsim(Util::sim(-x)) << " " << (Util::bessel_i0(x+0.0001)/Util::bessel_i0(x)-1.0)/0.0001 << " " << (Util::sim_integ(x+0.0001)-Util::sim_integ(x))/0.0001 << "\n";
  for ( double x=0.1; x>0.0001; x/=3.1 )
    std::cout << x << " " << Util::sim_deriv(x) << " " << Util::sim(x) << " " << Util::sim_integ(x) << " " << Util::sim_deriv(-x) << " " << Util::sim(-x) << " " << Util::sim_integ(-x) << "\n";


  CHKL_data<Phi_fom> cphifom(chkl, "myphifom");
  CHKL_data<ABCD> cabcd(chkl, "myABCD");
  CHKL_data<Phi_fom> cphifom2(chkl, "myphifom2");
  Phi_fom phifom;
  for (i=0; i<chkl.num_reflections(); i++) {
    if ( chkl.hkl_class(i).centric() )
      phifom.phi() = chkl.hkl_class(i).allowed() + Util::pi()*ftype(i%2);
    else
      phifom.phi() = Util::pi() * float(i%40)/20;
    phifom.fom() = 0.1 * float(i%10) + 0.05;
    cphifom[i] = phifom;
  }
  cabcd.compute( cphifom, Compute_abcd_from_phifom() );
  cphifom2.compute( cabcd, Compute_phifom_from_abcd() );
  HKL_info::HKL_reference_index ih;
  for ( ih = cphifom2.first(); !ih.last(); ih.next() ) {
    LogPhaseProb<24> q(ih.hkl_class());
    q.set_phi_fom( cphifom2[ih] );
    q.get_abcd( cabcd[ih] );
    q.set_abcd( cabcd[ih] );
    q.get_phi_fom( cphifom2[ih] );
  }
  for (i=0; i<chkl.num_reflections(); i++) {
    std::cout << i << chkl.hkl_of(i).format() << " : " << cphifom[i].phi() << " " << cphifom[i].fom() << " : " << cabcd[i].a() << " " << cabcd[i].b() << " : " << cphifom2[i].phi() << " " << cphifom2[i].fom() << "\n";
  }

  cfphi.compute( cfsig, cphifom, Compute_fphi_from_fsigf_phifom() );

  // Now test HKL_sampling
  for ( double a = 20.0; a < 22.0; a+=0.01 ) {
    clipper::Cell cell( clipper::Cell_descr( a, 24.0, 18.0, 60.0, 70.0, 80.0 ) );
    clipper::Resolution reso( 2.0 );
    clipper::HKL_sampling hklsam( cell, reso ); 
    HKL lim = hklsam.hkl_limit();
    for ( int ih = -20; ih <= 20; ih++ )
      for ( int ik = -20; ik <= 20; ik++ )
	for ( int il = -20; il <= 20; il++ ) {
	  HKL hkl(ih,ik,il);
	  if ( hklsam.in_resolution(hkl) ^ ( hkl.invresolsq(cell) < reso.invresolsq_limit() ) ) std::cout << "Err " << hkl.format() << hklsam.in_resolution(hkl) << ( hkl.invresolsq(cell) < reso.invresolsq_limit() ) << "\n";
	  if ( hklsam.in_resolution(hkl) && ( abs(ih) > lim.h() || abs(ik) > lim.k() || abs(il) > lim.l() ) ) std::cout << "Err " << lim.format() << " " << hkl.format() << "\n";
	}
  }

  /*
  // Compare reciprocal cell conventions:
  clipper::Cell cell( clipper::Cell_descr( 20.0, 24.0, 18.0, 60.0, 70.0, 80.0 ) );
  
  // Orthogonalisation matrix (A**-1)
  // Reciprocal cell
  double as = cell.a_star();
  double bs = cell.b_star();
  double cs = cell.c_star();
  double cas = cos(cell.alpha_star());
  double cbs = cos(cell.beta_star() );
  double cgs = cos(cell.gamma_star());
  double sas = sin(cell.alpha_star());
  double sbs = sin(cell.beta_star() );
  double sgs = sin(cell.gamma_star());

  double cc = cell.c();
  double ca = cos(cell.alpha());

  Mat33<> bmat = Mat33<>(as, bs*cgs, cs*cbs,
			 0., bs*sgs, -cs*sbs*ca,
			 0., 0., 1.0/cc);
  std::cout << cell.matrix_frac().format() << "\n";
  std::cout << bmat.format() << "\n";
    for ( int ih = 0; ih <= 5; ih++ )
      for ( int ik = 0; ik <= 5; ik++ )
	for ( int il = 0; il <= 5; il++ ) {
	  HKL hkl(ih,ik,il);
	  std::cout << hkl.format() << "\n";
	  Vec3<> v1 = cell.matrix_frac().transpose()*hkl.coord_reci_frac();
	  Vec3<> v2 = bmat*hkl.coord_reci_frac();
	  std::cout << v1.format() << "\t" << v1*v1 << "\n";
	  std::cout << v2.format() << "\t" << v2*v2 << "\n";
	  std::cout << hkl.invresolsq(cell) << "\n";
	}
  */
}