File: reftest2.cpp

package info (click to toggle)
clipper 2.1.20201109-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,364 kB
  • sloc: cpp: 65,248; sh: 11,365; makefile: 238; python: 122; fortran: 41; csh: 18
file content (292 lines) | stat: -rw-r--r-- 12,450 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Clipper app to perform structure factor calculation
/* Copyright 2003-2004 Kevin Cowtan & University of York all rights reserved */

#include <clipper/clipper.h>
#include <clipper/clipper-contrib.h>
#include <clipper/clipper-ccp4.h>
#include <clipper/clipper-mmdb.h>
#include "ccp4-extras.h"


int main( int argc, char** argv )
{
  CCP4program prog( "csfcalc", "0.1", "$Date: 2004/06/01" );

  // defaults
  clipper::String ippdb = "NONE";
  clipper::String ipfile = "NONE";
  clipper::String ipcolfo = "NONE";
  clipper::String ipcolfree = "NONE";
  clipper::String opfile = "sfcalc.mtz";
  clipper::String opcol = "sfcalc";
  bool bulk = true;
  int freeflag = 0;
  int n_refln = 1000;
  int n_param = 20;
  int verbose = 0;

  // command input
  CommandInput args( argc, argv, true );
  int arg = 0;
  while ( ++arg < args.size() ) {
    if ( args[arg] == "-pdbin" ) {
      if ( ++arg < args.size() ) ippdb = args[arg];
    } else if ( args[arg] == "-mtzin" ) {
      if ( ++arg < args.size() ) ipfile = args[arg];
    } else if ( args[arg] == "-colin-fo" ) {
      if ( ++arg < args.size() ) ipcolfo = args[arg];
    } else if ( args[arg] == "-colin-free" ) {
      if ( ++arg < args.size() ) ipcolfree = args[arg];
    } else if ( args[arg] == "-mtzout" ) {
      if ( ++arg < args.size() ) opfile = args[arg];
    } else if ( args[arg] == "-colout" ) {
      if ( ++arg < args.size() ) opcol = args[arg];
    } else if ( args[arg] == "-free-flag" ) {
      if ( ++arg < args.size() ) freeflag = clipper::String(args[arg]).i();
    } else if ( args[arg] == "-num-reflns" ) {
      if ( ++arg < args.size() ) n_refln = clipper::String(args[arg]).i();
    } else if ( args[arg] == "-num-params" ) {
      if ( ++arg < args.size() ) n_param = clipper::String(args[arg]).i();
    } else if ( args[arg] == "-no-bulk" ) {
      bulk = false;
    } else if ( args[arg] == "-verbose" ) {
      if ( ++arg < args.size() ) verbose = clipper::String(args[arg]).i();
    } else {
      std::cout << "Unrecognized:\t" << args[arg] << "\n";
      args.clear();
    }
  }
  if ( args.size() <= 1 ) {
    std::cout << "Usage: csfcalc\n\t-pdbin <filename>\n\t-mtzin <filename>\n\t-colin-fo <colpath>\n\t-colin-free <colpath>\n\t-mtzout <filename>\n\t-colout <colpath>\n\t-free-flag <free set>\n\t-num-reflns <reflns per spline param>\n\t-num-params <spline params>\n\t-no-bulk\nStructure factor calculation with bulk solvent correction.\n";
    exit(1);
  }

  // make data objects
  clipper::CCP4MTZfile mtzin, mtzout;
  clipper::MTZcrystal cxtl;
  clipper::HKL_info hkls;
  double bulkfrc, bulkscl;
  typedef clipper::HKL_data_base::HKL_reference_index HRI;

  // open file
  mtzin.open_read( ipfile );
  mtzin.import_hkl_info( hkls );
  mtzin.import_crystal( cxtl, ipcolfo );
  clipper::HKL_data<clipper::data32::F_sigF> fo( hkls, cxtl );
  clipper::HKL_data<clipper::data32::Flag> free( hkls, cxtl );
  mtzin.import_hkl_data( fo, ipcolfo );
  if ( ipcolfree != "NONE" ) mtzin.import_hkl_data( free, ipcolfree );
  if ( opcol[0] != '/' ) opcol = mtzin.assigned_paths()[0].notail()+"/"+opcol;
  mtzin.close_read();

  // atomic model
  clipper::MMDBManager mmdb;
  mmdb.SetFlag( MMDBF_AutoSerials | MMDBF_IgnoreDuplSeqNum );
  mmdb.ReadPDBASCII( (char*)ippdb.c_str() );

  // get a list of all the atoms
  clipper::mmdb::PPCAtom psel;
  int hndl, nsel;
  hndl = mmdb.NewSelection();
  mmdb.SelectAtoms( hndl, 0, 0, SKEY_NEW );
  mmdb.GetSelIndex( hndl, psel, nsel );
  clipper::MMDBAtom_list atoms( psel, nsel );
  mmdb.DeleteSelection( hndl );

  // calculate structure factors
  clipper::HKL_data<clipper::data32::F_phi> fc( hkls, cxtl );
  if ( bulk ) {
    clipper::SFcalc_obs_bulk<float> sfcb;
    sfcb( fc, fo, atoms );
    bulkfrc = sfcb.bulk_frac();
    bulkscl = sfcb.bulk_scale();
  } else {
    clipper::SFcalc_aniso_fft<float> sfc;
    sfc( fc, atoms );
    bulkfrc = bulkscl = 0.0;
  }

  // now do sigmaa calc
  clipper::HKL_data<clipper::data32::F_phi> fb( hkls, cxtl ), fd( hkls, cxtl );
  clipper::HKL_data<clipper::data32::Phi_fom> phiw( hkls, cxtl );
  clipper::HKL_data<clipper::data32::Flag> flag( hkls, cxtl );
  for ( HRI ih = flag.first(); !ih.last(); ih.next() )
    if ( !fo[ih].missing() && (free[ih].missing()||free[ih].flag()==freeflag) )
      flag[ih].flag() = clipper::SFweight_spline<float>::BOTH;
    else
      flag[ih].flag() = clipper::SFweight_spline<float>::NONE;

  // do sigmaa calc
  clipper::SFweight_spline<float> sfw( n_refln, n_param );
  bool fl = sfw( fb, fd, phiw, fo, fc, flag );

  // expand to p1 and calc map coeffs
  clipper::HKL_info hkls1( clipper::Spacegroup::p1(),
			   hkls.cell(), hkls.resolution(), true );
  clipper::HKL_data<clipper::data32::F_phi> fd1( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdu( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdv( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdw( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fduu( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdvv( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdww( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fduv( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdvw( hkls1, cxtl );
  clipper::HKL_data<clipper::data32::F_phi> fdwu( hkls1, cxtl );
  for ( HRI ih = fd1.first(); !ih.last(); ih.next() ) {
    clipper::HKL hkl = ih.hkl();
    std::complex<float> c = std::complex<float>( fd[hkl] );
    float h = clipper::Util::twopi() * hkl.h();
    float k = clipper::Util::twopi() * hkl.k();
    float l = clipper::Util::twopi() * hkl.l();
    fd1[ih] = clipper::data32::F_phi( c );
    fdu[ih] = clipper::data32::F_phi( c * std::complex<float>( 0.0, h ) );
    fdv[ih] = clipper::data32::F_phi( c * std::complex<float>( 0.0, k ) );
    fdw[ih] = clipper::data32::F_phi( c * std::complex<float>( 0.0, l ) );
    fduu[ih] = clipper::data32::F_phi( c * float( h * h ) );
    fdvv[ih] = clipper::data32::F_phi( c * float( k * k ) );
    fdww[ih] = clipper::data32::F_phi( c * float( l * l ) );
    fduv[ih] = clipper::data32::F_phi( c * float( h * k ) );
    fdvw[ih] = clipper::data32::F_phi( c * float( k * l ) );
    fdwu[ih] = clipper::data32::F_phi( c * float( l * h ) );
  }

  // calc maps
  clipper::Grid_sampling grid( hkls1.spacegroup(), cxtl, hkls1.resolution(), 2.5 );
  clipper::Xmap<float> xmap1( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapu( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapv( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapw( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapuu( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapvv( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapww( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapuv( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapvw( hkls1.spacegroup(), cxtl, grid );
  clipper::Xmap<float> xmapwu( hkls1.spacegroup(), cxtl, grid );
  xmap1.fft_from( fd1 );
  xmapu.fft_from( fdu );
  xmapv.fft_from( fdv );
  xmapw.fft_from( fdw );
  xmapuu.fft_from( fduu );
  xmapvv.fft_from( fdvv );
  xmapww.fft_from( fdww );
  xmapuv.fft_from( fduv );
  xmapvw.fft_from( fdvw );
  xmapwu.fft_from( fdwu );

  // write difference map
  clipper::CCP4MAPfile mapout;
  mapout.open_write( "reftest.map" );
  mapout.export_xmap( xmap1 );
  mapout.close_write();

  // now loop over atoms and calculate parameter gradients and curvatures
  const double radius = 4.5;
  clipper::Grid_range gd( xmap1.cell(), xmap1.grid_sampling(), radius );
  clipper::Coord_grid g0, g1;
  std::vector<clipper::AtomShapeFn::TYPE> params;
  params.push_back( clipper::AtomShapeFn::X );
  params.push_back( clipper::AtomShapeFn::Y );
  params.push_back( clipper::AtomShapeFn::Z );
  params.push_back( clipper::AtomShapeFn::Occ );
  params.push_back( clipper::AtomShapeFn::Uiso );
  std::vector<double>                   func( atoms.size() );
  std::vector<std::vector<double> >     grad( atoms.size() );
  std::vector<clipper::Matrix<double> > curv( atoms.size() );
  std::vector<std::vector<double> >     grad1( atoms.size() );
  std::vector<clipper::Matrix<double> > curv1( atoms.size() );
  double f, rho;
  std::vector<double> g(5);
  clipper::Matrix<double> c(5,5);
  clipper::Xmap<float>::Map_reference_coord i0, iu, iv, iw;
  for ( int a = 0; a < atoms.size(); a++ ) {
    func[a] = 0.0;
    grad[a].resize( 5, 0.0 );
    curv[a].resize( 5, 5, 0.0 );
    grad1[a].resize( 5, 0.0 );
    curv1[a].resize( 5, 5, 0.0 );
    clipper::Grad_frac<double> gf( 0.0, 0.0, 0.0 );
    clipper::Grad_orth<double> go( 0.0, 0.0, 0.0 );
    clipper::Curv_frac<double> cf( clipper::Mat33<double>( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) );
    clipper::Curv_orth<double> co( clipper::Mat33<double>( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) );
    clipper::AtomShapeFn sf( atoms[a].coord_orth(), atoms[a].element(),
			     atoms[a].u_iso(), atoms[a].occupancy() );
    sf.agarwal_params() = params;
    g0 = xmap1.coord_map( atoms[a].coord_orth() ).coord_grid() + gd.min();
    g1 = xmap1.coord_map( atoms[a].coord_orth() ).coord_grid() + gd.max();
    i0 = clipper::Xmap<float>::Map_reference_coord( xmap1, g0 );
    for ( iu = i0; iu.coord().u() <= g1.u(); iu.next_u() )
      for ( iv = iu; iv.coord().v() <= g1.v(); iv.next_v() )
        for ( iw = iv; iw.coord().w() <= g1.w(); iw.next_w() )
	  if ( (iw.coord_orth()-atoms[a].coord_orth()).lengthsq() <
	       radius*radius ) {
	    rho = xmap1[iw];
	    sf.rho_curv( iw.coord_orth(), f, g, c );
	    func[a] += f * rho;
	    for ( int i = 0; i < 5; i++ )
	      grad[a][i] += g[i] * rho;
	    for ( int i = 0; i < 5; i++ )
	      for ( int j = 0; j < 5; j++ )
		curv[a](i,j) += c(i,j) * rho;
	    gf[0] += f * xmapu[iw];
	    gf[1] += f * xmapv[iw];
	    gf[2] += f * xmapw[iw];
	    cf(0,0) += f * xmapuu[iw];
	    cf(1,1) += f * xmapvv[iw];
	    cf(2,2) += f * xmapww[iw];
	    cf(0,1) += f * xmapuv[iw];
	    cf(1,2) += f * xmapvw[iw];
	    cf(2,0) += f * xmapwu[iw];
	  }
    cf(1,0) = cf(0,1);
    cf(2,1) = cf(1,2);
    cf(0,2) = cf(2,0);
    go = gf.grad_orth( cxtl );
    co = cf.curv_orth( cxtl );
    for ( int i = 0; i < 3; i++ )
      grad1[a][i] = -go[i];
    for ( int i = 0; i < 3; i++ )
      for ( int j = 0; j < 3; j++ )
	curv1[a](i,j) = -co(i,j);
  }

  for ( int a = 0; a < atoms.size(); a++ ) {
    std::vector<double> gxyz(3), gxyz1(3);
    clipper::Matrix<double> cxyz(3,3), cxyz1(3,3);
    for ( int i = 0; i < 3; i++ )
      gxyz[i] = grad[a][i];
    for ( int i = 0; i < 3; i++ )
      gxyz1[i] = grad1[a][i];
    for ( int i = 0; i < 3; i++ )
      for ( int j = 0; j < 3; j++ )
	cxyz(i,j) = curv[a](i,j);
    for ( int i = 0; i < 3; i++ )
      for ( int j = 0; j < 3; j++ )
	cxyz1(i,j) = curv1[a](i,j);
    std::cout << "grad " << a << " [" << atoms[a].element() << "]\t" << gxyz[0] << "  \t" << gxyz[1] << "  \t" << gxyz[2] << "\n";
    std::cout << "grad " << a << " [" << atoms[a].element() << "]\t" << gxyz1[0] << "  \t" << gxyz1[1] << "  \t" << gxyz1[2] << "\n";
    std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz(0,0) << "  \t" << cxyz(1,1) << "  \t" << cxyz(2,2) << "\n";
    std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz1(0,0) << "  \t" << cxyz1(1,1) << "  \t" << cxyz1(2,2) << "\n";
    std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz(0,1) << "  \t" << cxyz(1,2) << "  \t" << cxyz(2,0) << "\n";
    std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz1(0,1) << "  \t" << cxyz1(1,2) << "  \t" << cxyz1(2,0) << "\n";
  }
  /*
  // now calculate shifts to parameters
  for ( int a = 0; a < atoms.size(); a++ ) {
    // not all cross terms available, so calc xyz and U shifts independently
    std::vector<double> gxyz(3), sxyz(3);
    clipper::Matrix<double> cxyz(3,3);
    for ( int i = 0; i < 3; i++ )
      gxyz[i] = grad[a][i];
    for ( int i = 0; i < 3; i++ )
      for ( int j = 0; j < 3; j++ )
	cxyz(i,j) = curv[a](i,j);
    sxyz = cxyz.solve(gxyz);
    double gu = grad[a][4];
    double cu = curv[a](4,4);
    double su = gu/cu;
    std::cout << "grad " << a << " [" << atoms[a].element() << "]\t" << gxyz[0] << "  \t" << gxyz[1] << "  \t" << gxyz[2] << "  \t" << gu << "\n";
    std::cout << "Atom " << a << " [" << atoms[a].element() << "]\t" << sxyz[0] << "  \t" << sxyz[1] << "  \t" << sxyz[2] << "  \t" << su << "\n";
  }
  */
}