1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Clipper app to perform structure factor calculation
/* Copyright 2003-2004 Kevin Cowtan & University of York all rights reserved */
#include <clipper/clipper.h>
#include <clipper/clipper-contrib.h>
#include <clipper/clipper-ccp4.h>
#include <clipper/clipper-mmdb.h>
#include "ccp4-extras.h"
int main( int argc, char** argv )
{
CCP4program prog( "csfcalc", "0.1", "$Date: 2004/06/01" );
// defaults
clipper::String ippdb = "NONE";
clipper::String ipfile = "NONE";
clipper::String ipcolfo = "NONE";
clipper::String ipcolfree = "NONE";
clipper::String opfile = "sfcalc.mtz";
clipper::String opcol = "sfcalc";
bool bulk = true;
int freeflag = 0;
int n_refln = 1000;
int n_param = 20;
int verbose = 0;
// command input
CommandInput args( argc, argv, true );
int arg = 0;
while ( ++arg < args.size() ) {
if ( args[arg] == "-pdbin" ) {
if ( ++arg < args.size() ) ippdb = args[arg];
} else if ( args[arg] == "-mtzin" ) {
if ( ++arg < args.size() ) ipfile = args[arg];
} else if ( args[arg] == "-colin-fo" ) {
if ( ++arg < args.size() ) ipcolfo = args[arg];
} else if ( args[arg] == "-colin-free" ) {
if ( ++arg < args.size() ) ipcolfree = args[arg];
} else if ( args[arg] == "-mtzout" ) {
if ( ++arg < args.size() ) opfile = args[arg];
} else if ( args[arg] == "-colout" ) {
if ( ++arg < args.size() ) opcol = args[arg];
} else if ( args[arg] == "-free-flag" ) {
if ( ++arg < args.size() ) freeflag = clipper::String(args[arg]).i();
} else if ( args[arg] == "-num-reflns" ) {
if ( ++arg < args.size() ) n_refln = clipper::String(args[arg]).i();
} else if ( args[arg] == "-num-params" ) {
if ( ++arg < args.size() ) n_param = clipper::String(args[arg]).i();
} else if ( args[arg] == "-no-bulk" ) {
bulk = false;
} else if ( args[arg] == "-verbose" ) {
if ( ++arg < args.size() ) verbose = clipper::String(args[arg]).i();
} else {
std::cout << "Unrecognized:\t" << args[arg] << "\n";
args.clear();
}
}
if ( args.size() <= 1 ) {
std::cout << "Usage: csfcalc\n\t-pdbin <filename>\n\t-mtzin <filename>\n\t-colin-fo <colpath>\n\t-colin-free <colpath>\n\t-mtzout <filename>\n\t-colout <colpath>\n\t-free-flag <free set>\n\t-num-reflns <reflns per spline param>\n\t-num-params <spline params>\n\t-no-bulk\nStructure factor calculation with bulk solvent correction.\n";
exit(1);
}
// make data objects
clipper::CCP4MTZfile mtzin, mtzout;
clipper::MTZcrystal cxtl;
clipper::HKL_info hkls;
double bulkfrc, bulkscl;
typedef clipper::HKL_data_base::HKL_reference_index HRI;
// open file
mtzin.open_read( ipfile );
mtzin.import_hkl_info( hkls );
mtzin.import_crystal( cxtl, ipcolfo );
clipper::HKL_data<clipper::data32::F_sigF> fo( hkls, cxtl );
clipper::HKL_data<clipper::data32::Flag> free( hkls, cxtl );
mtzin.import_hkl_data( fo, ipcolfo );
if ( ipcolfree != "NONE" ) mtzin.import_hkl_data( free, ipcolfree );
if ( opcol[0] != '/' ) opcol = mtzin.assigned_paths()[0].notail()+"/"+opcol;
mtzin.close_read();
// atomic model
clipper::MMDBManager mmdb;
mmdb.SetFlag( MMDBF_AutoSerials | MMDBF_IgnoreDuplSeqNum );
mmdb.ReadPDBASCII( (char*)ippdb.c_str() );
// get a list of all the atoms
clipper::mmdb::PPCAtom psel;
int hndl, nsel;
hndl = mmdb.NewSelection();
mmdb.SelectAtoms( hndl, 0, 0, SKEY_NEW );
mmdb.GetSelIndex( hndl, psel, nsel );
clipper::MMDBAtom_list atoms( psel, nsel );
mmdb.DeleteSelection( hndl );
// calculate structure factors
clipper::HKL_data<clipper::data32::F_phi> fc( hkls, cxtl );
if ( bulk ) {
clipper::SFcalc_obs_bulk<float> sfcb;
sfcb( fc, fo, atoms );
bulkfrc = sfcb.bulk_frac();
bulkscl = sfcb.bulk_scale();
} else {
clipper::SFcalc_aniso_fft<float> sfc;
sfc( fc, atoms );
bulkfrc = bulkscl = 0.0;
}
// now do sigmaa calc
clipper::HKL_data<clipper::data32::F_phi> fb( hkls, cxtl ), fd( hkls, cxtl );
clipper::HKL_data<clipper::data32::Phi_fom> phiw( hkls, cxtl );
clipper::HKL_data<clipper::data32::Flag> flag( hkls, cxtl );
for ( HRI ih = flag.first(); !ih.last(); ih.next() )
if ( !fo[ih].missing() && (free[ih].missing()||free[ih].flag()==freeflag) )
flag[ih].flag() = clipper::SFweight_spline<float>::BOTH;
else
flag[ih].flag() = clipper::SFweight_spline<float>::NONE;
// do sigmaa calc
clipper::SFweight_spline<float> sfw( n_refln, n_param );
bool fl = sfw( fb, fd, phiw, fo, fc, flag );
// expand to p1 and calc map coeffs
clipper::HKL_info hkls1( clipper::Spacegroup::p1(),
hkls.cell(), hkls.resolution(), true );
clipper::HKL_data<clipper::data32::F_phi> fd1( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdu( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdv( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdw( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fduu( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdvv( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdww( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fduv( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdvw( hkls1, cxtl );
clipper::HKL_data<clipper::data32::F_phi> fdwu( hkls1, cxtl );
for ( HRI ih = fd1.first(); !ih.last(); ih.next() ) {
clipper::HKL hkl = ih.hkl();
std::complex<float> c = std::complex<float>( fd[hkl] );
float h = clipper::Util::twopi() * hkl.h();
float k = clipper::Util::twopi() * hkl.k();
float l = clipper::Util::twopi() * hkl.l();
fd1[ih] = clipper::data32::F_phi( c );
fdu[ih] = clipper::data32::F_phi( c * std::complex<float>( 0.0, h ) );
fdv[ih] = clipper::data32::F_phi( c * std::complex<float>( 0.0, k ) );
fdw[ih] = clipper::data32::F_phi( c * std::complex<float>( 0.0, l ) );
fduu[ih] = clipper::data32::F_phi( c * float( h * h ) );
fdvv[ih] = clipper::data32::F_phi( c * float( k * k ) );
fdww[ih] = clipper::data32::F_phi( c * float( l * l ) );
fduv[ih] = clipper::data32::F_phi( c * float( h * k ) );
fdvw[ih] = clipper::data32::F_phi( c * float( k * l ) );
fdwu[ih] = clipper::data32::F_phi( c * float( l * h ) );
}
// calc maps
clipper::Grid_sampling grid( hkls1.spacegroup(), cxtl, hkls1.resolution(), 2.5 );
clipper::Xmap<float> xmap1( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapu( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapv( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapw( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapuu( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapvv( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapww( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapuv( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapvw( hkls1.spacegroup(), cxtl, grid );
clipper::Xmap<float> xmapwu( hkls1.spacegroup(), cxtl, grid );
xmap1.fft_from( fd1 );
xmapu.fft_from( fdu );
xmapv.fft_from( fdv );
xmapw.fft_from( fdw );
xmapuu.fft_from( fduu );
xmapvv.fft_from( fdvv );
xmapww.fft_from( fdww );
xmapuv.fft_from( fduv );
xmapvw.fft_from( fdvw );
xmapwu.fft_from( fdwu );
// write difference map
clipper::CCP4MAPfile mapout;
mapout.open_write( "reftest.map" );
mapout.export_xmap( xmap1 );
mapout.close_write();
// now loop over atoms and calculate parameter gradients and curvatures
const double radius = 4.5;
clipper::Grid_range gd( xmap1.cell(), xmap1.grid_sampling(), radius );
clipper::Coord_grid g0, g1;
std::vector<clipper::AtomShapeFn::TYPE> params;
params.push_back( clipper::AtomShapeFn::X );
params.push_back( clipper::AtomShapeFn::Y );
params.push_back( clipper::AtomShapeFn::Z );
params.push_back( clipper::AtomShapeFn::Occ );
params.push_back( clipper::AtomShapeFn::Uiso );
std::vector<double> func( atoms.size() );
std::vector<std::vector<double> > grad( atoms.size() );
std::vector<clipper::Matrix<double> > curv( atoms.size() );
std::vector<std::vector<double> > grad1( atoms.size() );
std::vector<clipper::Matrix<double> > curv1( atoms.size() );
double f, rho;
std::vector<double> g(5);
clipper::Matrix<double> c(5,5);
clipper::Xmap<float>::Map_reference_coord i0, iu, iv, iw;
for ( int a = 0; a < atoms.size(); a++ ) {
func[a] = 0.0;
grad[a].resize( 5, 0.0 );
curv[a].resize( 5, 5, 0.0 );
grad1[a].resize( 5, 0.0 );
curv1[a].resize( 5, 5, 0.0 );
clipper::Grad_frac<double> gf( 0.0, 0.0, 0.0 );
clipper::Grad_orth<double> go( 0.0, 0.0, 0.0 );
clipper::Curv_frac<double> cf( clipper::Mat33<double>( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) );
clipper::Curv_orth<double> co( clipper::Mat33<double>( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) );
clipper::AtomShapeFn sf( atoms[a].coord_orth(), atoms[a].element(),
atoms[a].u_iso(), atoms[a].occupancy() );
sf.agarwal_params() = params;
g0 = xmap1.coord_map( atoms[a].coord_orth() ).coord_grid() + gd.min();
g1 = xmap1.coord_map( atoms[a].coord_orth() ).coord_grid() + gd.max();
i0 = clipper::Xmap<float>::Map_reference_coord( xmap1, g0 );
for ( iu = i0; iu.coord().u() <= g1.u(); iu.next_u() )
for ( iv = iu; iv.coord().v() <= g1.v(); iv.next_v() )
for ( iw = iv; iw.coord().w() <= g1.w(); iw.next_w() )
if ( (iw.coord_orth()-atoms[a].coord_orth()).lengthsq() <
radius*radius ) {
rho = xmap1[iw];
sf.rho_curv( iw.coord_orth(), f, g, c );
func[a] += f * rho;
for ( int i = 0; i < 5; i++ )
grad[a][i] += g[i] * rho;
for ( int i = 0; i < 5; i++ )
for ( int j = 0; j < 5; j++ )
curv[a](i,j) += c(i,j) * rho;
gf[0] += f * xmapu[iw];
gf[1] += f * xmapv[iw];
gf[2] += f * xmapw[iw];
cf(0,0) += f * xmapuu[iw];
cf(1,1) += f * xmapvv[iw];
cf(2,2) += f * xmapww[iw];
cf(0,1) += f * xmapuv[iw];
cf(1,2) += f * xmapvw[iw];
cf(2,0) += f * xmapwu[iw];
}
cf(1,0) = cf(0,1);
cf(2,1) = cf(1,2);
cf(0,2) = cf(2,0);
go = gf.grad_orth( cxtl );
co = cf.curv_orth( cxtl );
for ( int i = 0; i < 3; i++ )
grad1[a][i] = -go[i];
for ( int i = 0; i < 3; i++ )
for ( int j = 0; j < 3; j++ )
curv1[a](i,j) = -co(i,j);
}
for ( int a = 0; a < atoms.size(); a++ ) {
std::vector<double> gxyz(3), gxyz1(3);
clipper::Matrix<double> cxyz(3,3), cxyz1(3,3);
for ( int i = 0; i < 3; i++ )
gxyz[i] = grad[a][i];
for ( int i = 0; i < 3; i++ )
gxyz1[i] = grad1[a][i];
for ( int i = 0; i < 3; i++ )
for ( int j = 0; j < 3; j++ )
cxyz(i,j) = curv[a](i,j);
for ( int i = 0; i < 3; i++ )
for ( int j = 0; j < 3; j++ )
cxyz1(i,j) = curv1[a](i,j);
std::cout << "grad " << a << " [" << atoms[a].element() << "]\t" << gxyz[0] << " \t" << gxyz[1] << " \t" << gxyz[2] << "\n";
std::cout << "grad " << a << " [" << atoms[a].element() << "]\t" << gxyz1[0] << " \t" << gxyz1[1] << " \t" << gxyz1[2] << "\n";
std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz(0,0) << " \t" << cxyz(1,1) << " \t" << cxyz(2,2) << "\n";
std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz1(0,0) << " \t" << cxyz1(1,1) << " \t" << cxyz1(2,2) << "\n";
std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz(0,1) << " \t" << cxyz(1,2) << " \t" << cxyz(2,0) << "\n";
std::cout << "curv " << a << " [" << atoms[a].element() << "]\t" << cxyz1(0,1) << " \t" << cxyz1(1,2) << " \t" << cxyz1(2,0) << "\n";
}
/*
// now calculate shifts to parameters
for ( int a = 0; a < atoms.size(); a++ ) {
// not all cross terms available, so calc xyz and U shifts independently
std::vector<double> gxyz(3), sxyz(3);
clipper::Matrix<double> cxyz(3,3);
for ( int i = 0; i < 3; i++ )
gxyz[i] = grad[a][i];
for ( int i = 0; i < 3; i++ )
for ( int j = 0; j < 3; j++ )
cxyz(i,j) = curv[a](i,j);
sxyz = cxyz.solve(gxyz);
double gu = grad[a][4];
double cu = curv[a](4,4);
double su = gu/cu;
std::cout << "grad " << a << " [" << atoms[a].element() << "]\t" << gxyz[0] << " \t" << gxyz[1] << " \t" << gxyz[2] << " \t" << gu << "\n";
std::cout << "Atom " << a << " [" << atoms[a].element() << "]\t" << sxyz[0] << " \t" << sxyz[1] << " \t" << sxyz[2] << " \t" << su << "\n";
}
*/
}
|