1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
// tutvis library
// Copyright (C) 1993 University of Twente
// klamer@mi.el.utwente.nl
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free
// Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
// Revision 1.5 2005/02/28 17:21:12 klamer
// Changed to have g++ 3.2.3 run silently using g++ -ansi -pedantic -Wall -Wno-unused -Wno-reorder.
// Change use of (libg++) String to ANSI C++ string.
//
// Revision 1.1 1994/01/04 12:55:37 klamer
// Initial revision
//
// Revision 1.6 1993/01/18 16:19:46 klamer
// Fixed bug in swapping d1 and d2.
//
// Revision 1.5 1992/10/20 10:54:07 klamer
// Made comparisons accurate.
// Made in points const references.
//
// Revision 1.4 1992/09/16 15:54:07 klamer
// Fixed bug for parallel lines...
//
// Revision 1.3 1992/09/11 14:51:38 klamer
// Numerical more stable algorithm used.
//
// Revision 1.2 1992/09/09 15:49:10 klamer
// split C and C++ parts.
//
//
// GRAPHADD.CC
//
//
// author : G.H.J. Hilhorst
//
// created : 16-04-1992
// last modified : 17-08-1992
//
#include <assert.h>
#include "graphadd.h"
#include <graphmat++.h>
#define Dabs(x) (((x)<0) ? (-(x)):(x))
#ifndef EPSILON
#define EPSILON 1e-10
#endif
#ifdef notdef
#define Pos_cmp(pos1,pos2) (Dabs((pos1)-(pos2))<EPSILON)
#define ChkZero(x) (Dabs(x) < EPSILON)
#else
#define Pos_cmp(pos1,pos2) ((pos1) == (pos2))
#define ChkZero(x) (x == 0.0)
#endif
inline int
operator==( const hvec2_t &h1, const hvec2_t &h2 )
{
return (v_x(h1) == v_x(h2)) && (v_y(h1) == v_y(h2));
}
inline int
operator!=( const hvec2_t &h1, const hvec2_t &h2 )
{
return (v_x(h1) != v_x(h2)) || (v_y(h1) != v_y(h2));
}
inline double
max(double x, double y)
{
return x > y ? x : y;
}
inline double
min(double x, double y)
{
return x < y ? x : y;
}
static
#ifdef __GNUG__
inline double
m_len( const hvec2_t &v )
#else
double m_len( const hvec2_t v )
#endif
{
if (v_x(v) > 0)
return len( v );
if (v_x(v) < 0)
return -len( v );
if (v_y(v) > 0)
return len(v);
return -len(v);
}
static inline double
inp_ort( const hvec2_t &a, const hvec2_t &b )
{
return v_x(a) * v_y(b) - v_y(a) * v_x(b);
}
static void
recursive_intersection( const hvec2_t &p1, const hvec2_t &p2,
const hvec2_t & q1, const hvec2_t &q2, hvec2_t &ret )
{
// Find intersection point of p1-p2 and q1-q2 by iteratively
// taking the middle of p1-p2
hvec2_t q = q2 - q1;
if (len(q) < len(p2 - p1))
{
recursive_intersection(q1,q2,p1,p2,ret);
return;
}
hvec2_t s1 = p1 - q1, s2 = p2 - q1;
hvec2_t m = (s1 + s2) / 2.0;
double inp = inp_ort( q, s1 );
if (inp > 0)
{
hvec2_t tmp = s1;
s1 = s2;
s2 = tmp;
}
while ((m != s1) && (m != s2))
{
assert(inp_ort(q,s1) <= 0);
assert(inp_ort(q,s2) >= 0);
#ifdef notdef
hvec2_t mp = m + q1 - p1, q1p = q1 - p1, q2p = q2 - p1;
assert(inp_ort(mp,q1p) * inp_ort(mp,q2p) <= 0);
mp = m + q1 - p2, q1p = q1 - p2, q2p = q2 - p2;
assert(inp_ort(mp,q1p) * inp_ort(mp,q2p) <= 0);
#else
// assert(len(m) <= len(q2 - q1));
// assert(len(m+q1 - q2) <= len(q2 - q1));
#endif
if (inp_ort(q,m) <= 0)
s1 = m;
else
s2 = m;
m = (s1 + s2) / 2.0;
}
assert(len(m) <= len(q2 - q1));
assert(len(m+q1 - q2) <= len(q2 - q1));
ret = m + q1;
return;
}
int v_inters2(
const hvec2_t &p1,
const hvec2_t &p2,
const hvec2_t &q1,
const hvec2_t &q2,
hvec2_t *S1,
hvec2_t *S2
)
/*******************************************************************
*
* procedure that calculates the intersection point of point pair p
* and point pair q. It returns if they hit each other and
* the position of the hit(s) (S1 (and S2))
*
*******************************************************************/
{
double rpx, rpy, rqx, rqy, t, deel, c1, c2, d1, d2, h;
hvec2_t // normal,
hv,hp1,hq1,hp2,hq2;
if (max(v_x(p1),v_x(p2)) < min(v_x(q1),v_x(q2)))
return 0;
if (max(v_x(q1),v_x(q2)) < min(v_x(p1),v_x(p2)))
return 0;
rpx=v_x(p2)-v_x(p1);
rpy=v_y(p2)-v_y(p1);
rqx=v_x(q2)-v_x(q1);
rqy=v_y(q2)-v_y(q1);
deel=rpx*rqy-rpy*rqx;
// every value below EPSILON is considered as being 0. Hence, we do not intro-
// duce numerical inaccuracies
// if (deel == 0) //
//if(Dabs(deel)<EPSILON) /* parallel */
if(ChkZero(deel)) /* parallel */
{
#ifdef notdef
// This might fail if the intersection point is far away!
if(rpy!=0)
{
if(rqy!=0)
{ // Check intersection points on X axis of lines
if(!Pos_cmp(v_x(p1)-v_y(p1)*rpx/rpy,v_x(q1)-v_y(q1)*rqx/rqy))
return(0);
} else if(!Pos_cmp(v_x(p1),v_x(q1)+(v_y(p1)-v_y(q1))/rqy*rqx))
return(0);
} else
{ /* rpy=0 */
if(rpx!=0)
{
if(Pos_cmp(v_y(p1)-v_x(p1)*rpy/rpx,v_y(q1)-v_x(q1)*rqy/rqx))
return(0);
} else if(!Pos_cmp(v_y(p1),v_y(q1)+(v_x(p1)-v_x(q1))/rqx*rqy))
return(0);
}
#else
// Check too see whether p1-p2 and q1-q2 are on the same line
hvec2_t q1p1, q1q2;
vv_sub2( &q1, &p1, &q1p1 );
vv_sub2( &q1, &q2, &q1q2 );
// double inpr = vv_inprod2( &q1p1, &q1q2 );
double inpr = v_x(q1p1)*v_y(q1q2) - v_y(q1p1) * v_x(q1q2);
// If this product is not zero then p1 is not on q1-q2!
// if (inpr != 0) //
//if (!(Dabs(inpr)<EPSILON))
if (!ChkZero(inpr))
return 0;
#endif
#ifdef notdef
// This will fail if the origin is on (or close to) the line!
vv_sub2(&p2, &p1, &normal);
c1= vv_inprod2(&normal, &p1); /* assume W=0 */
c2= vv_inprod2(&normal, &p2);
d1= vv_inprod2(&normal, &q1);
d2= vv_inprod2(&normal, &q2);
#else
c1 = 0; // m_len(p1 - p1)
c2 = m_len(p1 - p2);
d1 = m_len(p1 - q1);
d2 = m_len(p1 - q2);
#endif
/* Sorting the independent points from small to large: */
v_cpy2(&p1,&hp1);
v_cpy2(&p2,&hp2);
v_cpy2(&q1,&hq1);
v_cpy2(&q2,&hq2);
if (c1>c2)
{ /* hv and h are used as help-variable. */
v_cpy2(&hp1,&hv);
v_cpy2(&hp2,&hp1);
v_cpy2(&hv,&hp2);
h=c1; c1=c2; c2=h;
}
if (d1>d2)
{
v_cpy2(&hq1,&hv);
v_cpy2(&hq2,&hq1);
v_cpy2(&hv,&hq2);
h=d1; d1=d2; d2=h;
}
/* Now the line-pieces are compared: */
if (c1<d1)
{
if (c2<d1) return 0;
if (c2<d2) { v_cpy2(&hp2,S1); v_cpy2(&hq1,S2); }
else { v_cpy2(&hq1,S1); v_cpy2(&hq2,S2); };
}
else
{
if (c1>d2) return 0;
if (c2<d2) { v_cpy2(&hp1,S1); v_cpy2(&hp2,S2); }
else { v_cpy2(&hp1,S1); v_cpy2(&hq2,S2); };
}
if((v_x(*S1)==v_x(*S2)) && (v_y(*S1)==v_y(*S2))) return(1);
else return(2);
}
else /* not parallel */
{
/*
* We have the lines:
* l1: p1 + s(p2 - p1)
* l2: q1 + t(q2 - q1)
* And we want to know the intersection point.
* Calculate t:
* p1 + s(p2-p1) = q1 + t(q2-q1)
* which is similar to the two equations:
* p1x + s * rpx = q1x + t * rqx
* p1y + s * rpy = q1y + t * rqy
* Multiplying these by rpy resp. rpx gives:
* rpy * p1x + s * rpx * rpy = rpy * q1x + t * rpy * rqx
* rpx * p1y + s * rpx * rpy = rpx * q1y + t * rpx * rqy
* Subtracting these gives:
* rpy * p1x - rpx * p1y = rpy * q1x - rpx * q1y + t * ( rpy * rqx - rpx * rqy )
* So t can be isolated:
* t = (rpy * ( p1x - q1x ) + rpx * ( - p1y + q1y )) / ( rpy * rqx - rpx * rqy )
* and deel = rpx * rqy - rpy * rqx
*/
if ((q1 == p1) || (q1 == p2))
*S1 = q1;
else if ((q2 == p1) || (q2 == p2))
*S1 = q2;
else {
t = -(rpy*(-v_x(q1)+v_x(p1))+rpx*(v_y(q1)-v_y(p1)))/deel;
v_x(*S1) = v_x(q1)+t*rqx;
v_y(*S1) = v_y(q1)+t*rqy;
v_w(*S1) = 1;
}
#ifdef notdef
// Say that *S1 equals one of the points if the relative distance is smaller
// than EPSILON
double l_p = len(p1 - p2);
if (EPSILON > len(*S1 - p2) / l_p)
*S1 = p2;
else if (EPSILON > len(*S1 - p1) / l_p)
*S1 = p1;
else {
double l_q = len(q1 - q2);
if (EPSILON > len(*S1 - q2) / l_q)
*S1 = q2;
else if (EPSILON > len(*S1 - q1) / l_q)
*S1 = q1;
}
#endif
/*
* The intersection point is valid if it is
* 1) on q1-q2 --> t >= 0 && t <= 1
* 2) on p1-p2 --> p1 must be on the other side of q1-q2 as p2
* This is so if the difference of the x coordinate of p1-s1 has the
* opposite sign as the x coordinate of p2-s2. So the multiplication of
* these two must be negative. This might fail if p1-p2 is a vertical line;
* this can be solved by adding the same product for the y coordinates
*/
#ifdef notdef
return((t>=0) && (t<=1) &&
((v_x(*S1)-v_x(p1))*(v_x(*S1)-v_x(p2))+
(v_y(*S1)-v_y(p1))*(v_y(*S1)-v_y(p2))<=0) );
#else
#ifdef notdef
int condition = ((t>=0) && (t<=1) &&
((v_x(*S1)-v_x(p1))*(v_x(*S1)-v_x(p2))+
(v_y(*S1)-v_y(p1))*(v_y(*S1)-v_y(p2))<=0) );
#endif
// Implement an other way of checking whether the calculated point is valid.
// This is done using the inproduct on the original points.
hvec2_t p = p2 - p1, pq1 = q1 - p1, pq2 = q2 - p1;
double inp1 = v_x(p) * v_y(pq1) - v_y(p) * v_x(pq1),
inp2 = v_x(p) * v_y(pq2) - v_y(p) * v_x(pq2);
int c1 = inp1 * inp2 <= 0;
hvec2_t q = q2 - q1, qp1 = p1 - q1, qp2 = p2 - q1;
double inp3 = v_x(q) * v_y(qp1) - v_y(q) * v_x(qp1),
inp4 = v_x(q) * v_y(qp2) - v_y(q) * v_x(qp2);
int c2 = inp3 * inp4 <= 0;
//if (c1 && c2 && 0)
{
// Say that *S1 equals one of the points if the relative distance is smaller
// than EPSILON
double l_q = len(q1 - q2);
double l_p = len(p1 - p2);
if (EPSILON > len(*S1 - p2) / l_p)
{ *S1 = p2; c2 = 2; }
else if (EPSILON > len(*S1 - p1) / l_p)
{ *S1 = p1; c2 = 2; }
else {
// double l_q = len(q1 - q2);
if (EPSILON > len(*S1 - q2) / l_q)
{ *S1 = q2; c1 = 2; }
else if (EPSILON > len(*S1 - q1) / l_q)
{ *S1 = q1; c1 = 2; }
}
}
hvec2_t s = *S1 - p1;
double inp1s = v_x(s) * v_y(pq1) - v_y(s) * v_x(pq1),
inp2s = v_x(s) * v_y(pq2) - v_y(s) * v_x(pq2);
int c1s = (*S1 == p1) ? -1 : inp1s * inp2s <= 0;
hvec2_t qs = *S1 - q1;
double inp3s = v_x(qs) * v_y(qp1) - v_y(qs) * v_x(qp1),
inp4s = v_x(qs) * v_y(qp2) - v_y(qs) * v_x(qp2);
int c2s = (*S1 == q1) ? -1 : inp3s * inp4s <= 0;
// Rounding errors might make the statements below untrue
int failed = 0;
if (!((c1 == 0) || (c2 == 0) || (c1s == (c1 != 0)) || (c1s == -1)))
failed = 1;
else if (!((c1 == 0) || (c2 == 0) || (c2s == (c2 != 0)) || (c2s == -1)))
failed = 2;
else if (c1 && c2 && (len(*S1 - q1) > len(q2 - q1)))
failed = 3;
else if (c1 && c2 && (len(*S1 - q2) > len(q2 - q1)))
failed = 4;
else if (c1 && c2 && (len(*S1 - p1) > len(p2 - p1)))
failed = 5;
else if (c1 && c2 && (len(*S1 - p2) > len(p2 - p1)))
failed = 6;
if ((failed >= 3) && (c1 == 2 || c2 == 2))
{
failed = -1; c1 = c2 = 0;
}
if (failed > 0)
recursive_intersection(p1, p2, q1, q2, *S1);
#ifdef notdef
assert((c1 && c2) == condition);
return condition;
#else
return (c1 && c2);
#endif
#endif
}
}
|