1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
.TH GRAPHMAT 3 "15 September 1992"
.SH NAME
m_alloc2, m_free2, v_alloc2, v_free2, m_alloc3, m_free3, v_alloc3, v_free3, m_cpy2, m_unity2, v_cpy2, v_fill2, v_unity2, v_zero2, m_cpy3, m_unity3, v_cpy3, v_fill3, v_unity3, v_zero3, m_det2, v_len2, vtmv_mul2, vv_inprod2, m_inv2, m_tra2, mm_add2, mm_mul2, mm_sub2, mtmm_mul2, sm_mul2, mv_mul2, sv_mul2, v_homo2, v_norm2, vv_add2, vv_sub2, vvt_mul2, m_det3, v_len3, vtmv_mul3, vv_inprod3, m_inv3, m_tra3, mm_add3, mm_mul3, mm_sub3, mtmm_mul3, sm_mul3, mv_mul3, sv_mul3, v_homo3, v_norm3, vv_add3, vv_cross3, vv_sub3, vvt_mul3, miraxis2, mirorig2, mirplane2, rot2, scaorig2, scaplane2, scaxis2, transl2, miraxis3, mirorig3, mirplane3, prjorthaxis, prjpersaxis, rot3, scaorig3, scaplane3, scaxis3, transl3 \- 3d graphics and associated matrix and vector routines
.nf
.SH SYNOPSIS
.nf
.B #include <graphmat.h>
.LP
.I /* Data initialisation */
.LP
.ta 1.0i
.B hmat2_t *m_alloc2(m_result)
.br
.B hmat2_t *m_result;
.B void m_free2(matrix)
.br
.B hmat2_t *matrix;
.B hvec2_t *v_alloc2(v_result)
.br
.B hvec2_t *v_result;
.B void v_free2(vector)
.br
.B hmat2_t *vector;
.B hmat3_t *m_alloc3(m_result)
.br
.B hmat3_t *m_result;
.B void m_free3(matrix)
.br
.B hmat3_t *matrix;
.B hvec3_t *v_alloc3(v_result)
.br
.B hvec3_t *v_result;
.B void v_free3(vector)
.br
.B hmat3_t *vector;
.B hmat2_t *m_cpy2(m_source, m_result)
.br
.B hmat2_t *m_source, *m_result;
.B hmat2_t *m_unity2( m_result)
.br
.B hmat2_t *m_result;
.B hvec2_t *v_cpy2(v_source, v_result)
.br
.B hvec2_t *v_source, *v_result;
.B hvec2_t *v_fill2(x, y, w, v_result)
.br
.B double x, y, w;
.br
.B hvec2_t *v_result;
.B hvec2_t *v_unity2(axis, v_result)
.br
.B b_axis axis;
.br
.B hvec2_t *v_result;
.B hvec2_t *v_zero2(v_result)
.br
.B hvec2_t *v_result;
.B hmat3_t *m_cpy3(m_source, m_result)
.br
.B hmat3_t *m_source, *m_result;
.B hmat3_t *m_unity3(m_result)
.br
.B hmat3_t *m_result;
.B hvec3_t *v_cpy3(v_source, v_result)
.br
.B hvec3_t *v_source, *v_result;
.B hvec3_t *v_fill3(x, y, z, w, v_result)
.br
.B double x, y, z, w;
.br
.B hvec3_t *v_result;
.B hvec3_t *v_unity3(axis, v_result)
.br
.B b_axis axis;
.br
.B hvec3_t *v_result;
.B hvec3_t *v_zero3(vector)
.br
.B hvec3_t *vector;
.LP
.I /* Basic Linear Algebra */
.LP
.B double m_det2(matrix)
.br
.B hmat2_t *matrix;
.B double v_len2(vector)
.br
.B hvec2_t *vector;
.B double vtmv_mul2(vector, matrix)
.br
.B hvec2_t *vector;
.br
.B hmat2_t *matrix;
.B double vv_inprod2(vectorA, vectorB)
.br
.B hvec2_t *vectorA, *vectorB;
.B hmat2_t *m_inv2(matrix, m_result)
.br
.B hmat2_t *matrix, *m_result;
.B hmat2_t *m_tra2(matrix, m_result)
.br
.B hmat2_t *matrix, *m_result;
.B hmat2_t *mm_add2(matrixA, matrixB, m_result)
.br
.B hmat2_t *matrixA, *matrixB, *m_result;
.B hmat2_t *mm_mul2(matrixA, matrixB, m_result)
.br
.B hmat2_t *matrixA, *matrixB, *m_result;
.B hmat2_t *mm_sub2(matrixA, matrixB, m_result)
.br
.B hmat2_t *matrixA, *matrixB, *m_result;
.B hmat2_t *mtmm_mul2(matrixA, matrixB, m_result)
.br
.B hmat2_t *matrixA, *matrixB, *m_result;
.B hmat2_t *sm_mul2(scalar, matrix, m_result)
.br
.B double scalar;
.br
.B hmat2_t *matrix, *m_result;
.B hmat2_t *vvt_mul2(vectorA, vectorB, m_result)
.br
.B hvec2_t *vectorA, *vectorB;
.br
.B hmat2_t *m_result;
.B hvec2_t *mv_mul2(matrix, vector, v_result)
.br
.B hmat2 *matrix;
.br
.B hvec2_t *vector, *v_result;
.B hvec2_t *sv_mul2(scalar, vector, v_result)
.br
.B double scalar;
.br
.B hvec2_t *vector, *v_result;
.B hvec2_t *v_homo2(vector, v_result)
.br
.B hvec2_t *vector, *v_result;
.B hvec2_t *v_norm2(vector, v_result)
.br
.B hvec2_t *vector, *v_result;
.B hvec2_t *vv_add2(vectorA, vectorB, v_result)
.br
.B hvec2_t *vectorA, *vectorB, *v_result;
.B hvec2_t *vv_sub2(vectorA, vectorB, v_result)
.br
.B hvec2_t *vectorA, *vectorB, *v_result;
.B double m_det3(matrix)
.br
.B hmat3_t *matrix;
.B double v_len3(vector)
.br
.B hvec3_t *vector;
.B double vtmv_mul3(vector, matrix)
.br
.B hvec3_t *vector;
.br
.B hmat3_t *matrix;
.B double vv_inprod3(vectorA, vectorB)
.br
.B hvec3_t *vectorA, *vectorB;
.B hmat3_t *m_inv3(matrix, m_result)
.br
.B hmat3_t *matrix, *m_result;
.B hmat3_t *m_tra3(matrix, m_result)
.br
.B hmat3_t *matrix, *m_result;
.B hmat3_t *mm_add3(matrixA, matrixB, m_result)
.br
.B hmat3_t *matrixA, *matrixB, *m_result;
.B hmat3_t *mm_mul3(matrixA, matrixB, m_result)
.br
.B hmat3_t *matrixA, *matrixB, *m_result;
.B hmat3_t *mm_sub3(matrixA, matrixB, m_result)
.br
.B hmat3_t *matrixA, *matrixB, *m_result;
.B hmat3_t *mtmm_mul3(matrixA, matrixB, m_result)
.br
.B hmat3_t *matrixA, *matrixB, *m_result;
.B hmat3_t *sm_mul3(scalar, matrix, m_result)
.br
.B double scalar;
.br
.B hmat3_t *matrix, *m_result;
.B hmat3_t *vvt_mul3(vectorA, vectorB, m_result)
.br
.B hvec3_t *vectorA, *vectorB;
.br
.B hmat3_t *m_result;
.B hvec3_t *mv_mul3(matrix, vector, v_result)
.br
.B hmat3_t *matrix;
.br
.B *hvec3_t *vector, *v_result;
.B hvec3_t *sv_mul3(scalar, vec, v_result)
.br
.B double scalar;
.br
.B hvec3_t *vector, *v_result;
.B hvec3_t *v_homo3(vector, v_result)
.br
.B hvec3_t *vector, *v_result;
.B hvec3_t *v_norm3(vector, v_result)
.br
.B hvec3_t *vector, *v_result;
.B hvec3_t *vv_add3(vectorA, vectorB, v_result)
.br
.B hvec3_t *vectorA, *vectorB, *v_result;
.B hvec3_t *vv_cross3(vectorA, vectorB, v_result)
.br
.B hvec3_t *vectorA, *vectorB, *v_result;
.B hvec3_t *vv_sub3(vectorA, vectorB, v_result)
.br
.B hvec3_t *vectorA, *vectorB, *v_result;
.LP
.I /* Elementary transformations */
.LP
.B hmat2_t *miraxis2(axis, m_result)
.br
.B b_axis axis;
.br
.B hmat2_t *m_result;
.B hmat2_t *mirorig2(m_result)
.br
.B hmat2_t *m_result;
.B hmat2_t *rot2( rotation, m_result)
.br
.B double rotation;
.br
.B hmat2_t *m_result;
.B hmat2_t *scaorig2(scale, m_result)
.br
.B double scale;
.br
.B hmat2_t *m_result;
.B hmat2_t *scaxis2(scale, axis, m_result)
.br
.B double scale;
.br
.B b_axis axis;
.br
.B hmat2_t *m_result;
.B hmat2_t *transl2(translation, m_result)
.br
.B hvec2_t *translation;
.br
.B hmat2_t *m_result;
.B hmat3_t *miraxis3(axis, m_result)
.br
.B b_axis axis;
.br
.B hmat3_t *m_result;
.B hmat3_t *mirorig3(m_result)
.br
.B hmat3_t *m_result;
.B hmat3_t *mirplane3(plane, m_result)
.br
.B b_axis plane;
.br
.B hmat3_t *m_result;
.B hmat3_t *prjorthaxis(axis, m_result)
.br
.B b_axis axis;
.br
.B hmat3_t *m_result;
.B hmat3_t *prjpersaxis(axis, m_result)
.br
.B b_axis axis;
.br
.B hmat3_t *m_result;
.B hmat3_t *rot3( rotation, axis, m_result)
.br
.B double rotation;
.br
.B b_axis axis;
.br
.B hmat3_t *m_result;
.B hmat3_t *scaorig3(scale, m_result)
.br
.B double scale;
.br
.B hmat3_t *m_result;
.B hmat3_t *scaplane(scale, plane, m_result)
.br
.B double scale;
.br
.B b_axis plane;
.br
.B hmat3_t *m_result;
.B hmat3_t *scaxis3(scale, axis, m_result)
.br
.B double scale;
.br
.B b_axis axis;
.br
.B hmat3_t *m_result;
.B hmat3_t *transl3(translation, m_result)
.br
.B hvec3_t *translation;
.br
.B hmat3_t *m_result;
.SH DESCRIPTION
Matrix and vector routines associated with 3d
graphics in homogeneous coordinates, such as basic linear algebra
and elementary transformations.
.LP
This library is setup with a multi-level approach.
.br
.I Level1 :
.B the data level.
.br
.I Level 2:
.B the data initialisation level.
.br
.I Level 3:
.B basic linear algebra level.
.br
.I Level 4:
.B elementary transformation level.
.br
.I
Level 1,
the data structures, is realised as follows :
.br
.B typedef union
.br
.B {
.br
.B double a[3];
.br
.B struct
.br
.B {
.br
.B double x, y, w;
.br
.B } s;
.br
.B } hvec2_t;
.LP
.LP
.B typedef union
.br
.B {
.br
.B double a[4];
.br
.B struct
.br
.B {
.br
.B double x, y, z, w;
.br
.B } s;
.br
.B } hvec3_t;
.LP
.LP
.B typedef struct
.br
.B {
.br
.B double m[3][3];
.br
.B } hmat2_t;
.LP
.LP
.B typedef struct
.br
.B {
.br
.B double m[4][4];
.br
.B } hmat3_t;
.LP
.LP
To access the data elements of a vector or a matrix can be accessed with the
macros:
.LP
#define v_x( vec ) ((vec).s.x)
.br
#define v_y( vec ) ((vec).s.y)
.br
#define v_z( vec ) ((vec).s.z)
.br
#define v_w( vec ) ((vec).s.w)
.br
#define v_elem( vec, i ) ((vec).a[(i)])
.br
#define m_elem( mat, i, j ) ((mat).m[(i)][(j)])
.br
.LP
.LP
.B typedef enum
.br
.B {
.br
.B X_AXIS, Y_AXIS, Z_AXIS
.br
.B } b_axis;
.LP
.LP
The functions are as follows sorted:
.br
first on the level in which they belong, then on their return value and then on their name.
.SH NAMES
The function names begin with an abbreviation of the type of
operand, and in which order the operations will be carried out
on that operand. Then the order of and which operation will be
carried out, followed by the type of coordinates. (i.e
.I vtmv_mul3(vector, matrix) :
first take the transpose of
.I vector,
multiply the transpose with
.I matrix,
this result is multiplied by the incoming vector, all coordinates
are homogeneous 3d coordinates.)
.SH USAGE
All the "functions" may have been implemented as macro's, so you can't
take the address of a function. It is however guaranteed that arguments
of each function/macro will be evaluated only once, except for the result
argument, which can be evaluated multiple times.
.LP
All operations can be used in place, but overlapping data gives
unspecified results.
.LP
If the parameter
.I v_result
or
.I m_result
of a function or the parameter of an initialisation function
equals
.B NULL,
space for the parameter will be dynamically allocated using
.B malloc(),
otherwise the parameter is assumed to hold a pointer to a memory
area which can be used. A pointer to the used area (which may have been
new allocated) is always returned.
.br
If an error occurred like memory could not be allocated,
an attempt to divide by
zero occurs, or an attempt to invert a singular matrix a general error-routine
will be called, which has
two parameters :
.I gm_errno
and
.I gm_func.
.br
.I gm_errno
is the error type which is one of the following
constants :
.B DIV0,
.B NOMEM
or
.B MATSING.
.I gm_func
is a pointer to a string which contains the name of
the function where the error occurred.
.LP
A pointer to the error routine is defined as follows :
.br
.B void (* gm_error)(gm_errno, gm_func);
.br
.B gm_error_t gm_errno;
.br
.B char *gm_func;
.LP
With
.I gm_error_t
is defined as :
.br
.B typedef enum
.br
.B {
.br
.B DIV0, NOMEM, MATSING
.br
.B } gm_error_t;
.br
.LP
The default error handler will abort after printing a diagnostic. You can
redirect
.I gm_error
to your own error handler. It is not advisable to return from the error
handler as error recovery is not expected to take place.
.LP
Matrices are of type
.B hmat3_t
or
.B hmat2_t
for 2d or 3d
coordinates, respectively.
.br
Vectors are of type
.B hvec3_t
or
.B hvec2_t.
.LP
The elements of a vector can be accessed in two manners, the
first one is by name of an element of a structure, the second is
like an array.
.LP
A plane is described by the normal to that plane, with the
assumption made that the origin is an element of the plane.
.LP
.I rotation
is assumed to be a radial.
.LP
If a function is deallocating memory, it will check if the
incoming pointer is a
.B NULL
pointer.
.LP
.LP
.I /* Level2 : Data initialisation */
.LP
.B m_alloc2(), v_alloc2(), m_alloc3(), v_alloc3()
allocate memory for a data item of type
.B hmat2_t, hvec2_t, hmat3_t
and
.B hvec3_t
respectively.
.br
.B m_free2(), v_free2(), m_free3(), v_free3()
reclaim the storage allocated previously.
.br
.B m_cpy2(), m_cpy3()
copies
.I m_matrix
into
.I m_result.
.br
.B m_unity2(), m_unity3()
returns the unity matrix. (2d respectively 3d homogeneous coordinates)
.br
.B v_cpy2(), v_cpy3()
copies
.I v_source
into
.I v_result.
(2d respectively 3d homogeneous coordinates)
.br
.B v_fill2(), v_fill3()
fills
.I v_result
according the given values.
.br
.B v_unity2(), v_unity3()
returns the unity vector with
.I w = 1.0,
the incoming basic axis
.I axis = 1.0,
and the
other element(s) are 0.0; (2d respectively 3d homogeneous coordinates)
.br
.B v_zero2(), v_zero3()
return a vector with
.I w
= 1.0
and the other elements 0.0;
.br
.B m_cpy2(), m_cpy3()
copies
.I m_source
into
.I m_result.
(2d respectively 3d homogeneous coordinates)
.LP
.I /* level3 : Basic Linear Algebra */
.LP
.B m_det2(), m_det3()
calculates the determinant of the incoming matrix. The determinant is
calculated in cartesian rather than homogeneous coordinates.
.br
.B v_len2(), v_len3()
calculates the length of the cathesian part of the homogeneous vector.
.br
.B vtmv_mul2(), vtmv_mul3()
calculate the result of the transpose of the incoming vector
multiplied by the incoming matrix multiplied by the incoming
vector (2d respectively 3d homogeneous coordinates)
.br
.B vv_inprod2(), vv_inprod3()
calculates the geometrical innerproduct (vector . vector) of
.I vectorA
and
.I vectorB.
.br
.B m_inv2(), m_inv3()
calculates the inverse of
.I matrix.
It is an error if the matrix in singular.
.br
.B m_tra2(), m_tra3()
calculates the transpose
.I matrix.
(2d respectively 3d homogeneous coordinates)
.br
.B mm_add2(), mm_sub2(), mm_add3(), mm_sub3()
calculates the result of
.I matrixA
+ respectively -
.I matrixB.
This operation is unspecified in the sense of homogeneous coordinates; the
matrices are taken in their normal, mathematial sense.
.br
.B mm_mul2(), mm_mul3()
calculates the result of
.I matrixA*matrixB
(2d respectively 3d homogeneous coordinates)
.br
.B mtmm_mul2(), mtmm_mul3()
calculates the result of the transpose of the incoming
.I matrixA
multiplied by
.I matrixB
multiplied by
.I matrixA
(2d respectively 3d homogeneous coordinates)
.br
.B sm_mul2(), sm_mul3()
calculates the result of
.I scalar*matrix
(2d respectively 3d homogeneous coordinates)
.br
.B mv_mul2(), mv_mul3()
calculates the result of
.I matrix*vector
(2d respectively 3d homogeneous coordinates)
.br
.B sv_mul2(), sv_mul3()
calculates the result of
.I scalar*vector.
(2d respectively 3d homogeneous coordinates)
.br
.B v_homo2(), v_homo3()
homogenize
.I vector
so that the
.I w
component becomes 1.0 but the length of the vector in homogeneous coordinates
stays the same. (2d respectively 3d homogeneous coordinates)
.br
.B v_norm2(), v_norm3()
normalises the incoming vector so the length of the cartesian vector
becomes 1.0. The homogeneous length stays the same.
(2d respectively 3d homogeneous coordinates)
.br
.B vv_add2(), vv_sub2(), vv_add3(), vv_sub3()
calculates the result of
.I vectorA
+ respectively -
.I vectorB.
These operations are done in the mathematical sense. Be careful with homogeneous
coordinates, as not every possible input makes sense.
.br
.B vvt_mul2(), vvt_mul3()
calculates the result of
.I vectorA
multiplied by the transpose of
.I vectorB
(2d respectively 3d homogeneous coordinates)
.br
.B vv_cross3()
calculates the geometrical crossproduct (
.I vectorA x vectorB) of two
vectors (3d homogeneous coordinates)
.LP
.I /* level4 : Elementary transformations */
.LP
.B miraxis2(), miraxis3()
calculates the mirror matrix with respect to
.I axis.
(2d respectively 3d homogeneous coordinates)
.br
.B mirorg2(), mirorg3()
calculates the mirror matrix relative to the origin. (2d respectively 3d
homogeneous coordinates)
.br
.B mirplane3()
calculates the mirror matrix relative to a plane. (3d homogeneous
coordinates)
.br
.B rot2()
calculates the rotation matrix over
.I rotation
relative to the origin.
(2d homogeneous coordinates)
.br
.B rot3()
calculates the rotation matrix over
.I rotation
along
.I axis.
(3d homogeneous coordinates)
.br
.B scaorg2(), scaorg3()
calculates the matrix of scaling with
.I scale
relative to the origin. (2d respectively 3d
homogeneous coordinates)
.br
.B scaplane3()
calculates the matrix of scaling with
.I scale
relative to a plane of which
.I plane
is the normal. (3d
homogeneous coordinates)
.br
.B scaxis2(), scaxis3()
calculates the matrix of scaling with
.I scale
relative to the line given by
.I axis.
(2d respectively 3d homogeneous coordinates)
.br
.B transl2(), transl3()
calculates the translation matrix over
.I translation.
(2d respectively 3d homogeneous coordinates)
.br
.B prjorthaxis()
calculates the orthographic projection matrix along
.I axis.
(3d homogeneous coordinates)
.br
.B prjpersaxis()
calculates the perspective projection with along
.I axis
The focus is in the origin. The projection plane is on distance
1.0 before the camera.
(3d homogeneous coordinates)
.SH CAVEATS
Vector addition and subtraction and matrix addition and
substraction are not defined for homogeneous coordinates.
One can add and subtract a point vector and a free vector, but you have to normalise the point vector first.
The result of the subtraction of two point vectors is a free vector.
.LP
Calculating the determinant of a matrix and the length of a vector is unspecified
in the sense of homogeneous coordinates
.SH RETURN VALUES
There are six types of return values:
.B
void, double, *hvec3_t, *hvec2_t, *hmat3_t and *hmat2_t.
.SH SEE ALSO
graphadd(3), graphmat++(3), fmatpinv(3TV), malloc(3V), Graphics and matrix routines.
.SH NOTE
Library file is
.B /usr/local/lib/libgraphmat.a
.SH AUTHOR
Hans Gringhuis.
.br
Klamer Schutte
|