File: lfloat.d

package info (click to toggle)
clisp 1%3A2.41-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 49,804 kB
  • ctags: 16,291
  • sloc: lisp: 75,912; ansic: 49,247; xml: 24,289; asm: 21,993; sh: 11,234; fortran: 6,692; cpp: 2,660; objc: 2,481; makefile: 2,355; perl: 164; sed: 55
file content (1572 lines) | stat: -rw-r--r-- 61,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
/* Basic functions for Long-Floats */

/* error-message for too long Long-FLoat */
nonreturning_function(local, fehler_LF_toolong, (void)) {
  fehler(arithmetic_error,GETTEXT("long float too long"));
}

/* Decoding a Long-Float:
 LF_decode(obj, zero_statement, sign=,exp=,mantMSDptr=,mantlen=,mantLSDptr=);
 decodes a Long-Float obj.
 If obj=0.0, zero_statement is executed.
 Else: signean sign = sign (0 = +, -1 = -),
        sintL exp = exponent (with sign),
        UDS mantMSDptr/mantlen/mantLSDptr = mantissa
          (>= 2^(intDsize*mantlen-1), < 2^(intDsize*mantlen)),
          with mantlen>=LF_minlen. */
#define LF_decode(obj,zero_statement,sign_zuweisung,exp_zuweisung,mantMSDptr_zuweisung,mantlen_zuweisung,mantLSDptr_zuweisung)   do { \
  var object _obj = (obj);                                              \
  var Lfloat _x = TheLfloat(_obj);                                      \
  var uintL uexp = _x->expo;                                            \
  if (uexp==0) {                                                        \
    unused (mantlen_zuweisung lfloat_length(_x));                       \
    zero_statement; /* e=0 -> number 0.0 */                             \
  } else {                                                              \
    exp_zuweisung (sintL)(uexp - LF_exp_mid);     /* exponent */        \
    sign_zuweisung LF_sign(_obj);                 /* sign */            \
    unused (mantMSDptr_zuweisung &(_x->data[0])); /* mantissa-UDS */    \
    unused (mantLSDptr_zuweisung &(_x->data[(uintP)( mantlen_zuweisung lfloat_length(_x) )])); \
  }                                                                     \
 } while(0)

/* encoding a Long-Float:
 encode_LF0(len,erg_zuweisung) returns a Long-Float 0.0 with len digits.
 > uintC len: number of digits
 < object erg: new Long-Float 0.0 with len digits
 can trigger GC */
#define encode_LF0(len,erg_zuweisung)   do {                            \
  var uintC _len = (len);                                               \
  var object _erg = allocate_lfloat(_len,0,0); /* exponent 0, sign + */ \
  clear_loop_up(&TheLfloat(_erg)->data[0],_len); /* mantissa := 0 */    \
  erg_zuweisung _erg;                                                   \
 } while(0)

/* encoding a Long-Float:
 encode_LF1s(sign,len,erg_zuweisung) returns a Long-Float +-1.0 with len digits.
 > signean sign: sign
 > uintC len: number of digits
 < object erg: new Long-Float +1.0 or -1.0 with len digits
 can trigger GC */
#define encode_LF1s(sign,len,erg_zuweisung)    do {                     \
  var uintC _len = (len);                                               \
  var object _erg = allocate_lfloat(_len,LF_exp_mid+1,(sign)); /* exponent 1 */ \
  TheLfloat(_erg)->data[0] = bit(intDsize-1); /* mantissa := 2^(intDsize*len-1) */ \
  clear_loop_up(&TheLfloat(_erg)->data[1],_len-1);                      \
  erg_zuweisung _erg;                                                   \
 } while(0)

/* encoding a Long-Float:
 encode_LF1(len,erg_zuweisung) returns a Long-Float 1.0 with len digits.
 > uintC len: number of digits
 < object erg: new Long-Float 1.0 with len digits
 can trigger GC */
#define encode_LF1(len,erg_zuweisung)  encode_LF1s(0,len,erg_zuweisung)

/* encoding a Long-Float:
 encode_LFu(sign,uexp,mantMSDptr,mantlen, erg_zuweisung) returns a Long-Float
 > signean sign: sign
 > uintL exp: exponent + LF_exp_mid
 > uintD* mantMSDptr: pointer to a NUDS with set highest bit
 > uintC mantlen: number of digits, >= LF_minlen
 < object erg: new Long-Float with the UDS mantMSDptr/mantlen/.. as mantissa
 the exponent is not tested for overflow/underflow.
 can trigger GC */
#define encode_LFu(sign,uexp,mantMSDptr,mantlen,erg_zuweisung)        do { \
  var uintC _len = (mantlen);                                           \
  var object _erg = allocate_lfloat(_len,uexp,(sign)); /* exponent */   \
  copy_loop_up((mantMSDptr),&TheLfloat(_erg)->data[0],_len); /* mantissa copied */ \
  erg_zuweisung _erg;                                                   \
 } while(0)

/* encoding a Long-Float:
 encode_LF(sign,exp,mantMSDptr,mantlen, erg_zuweisung) returns a Long-Float
 > signean sign: sign
 > sintL exp: exponent
 > uintD* mantMSDptr: pointer to a NUDS with set highest bit
 > uintC mantlen: number of digits, >= LF_minlen
 < object erg: new Long-Float with the UDS mantMSDptr/mantlen/.. as mantissa
 the exponent is not tested for overflow/underflow.
 can trigger GC */
#define encode_LF(sign,exp,mantMSDptr,mantlen,erg_zuweisung)            \
  encode_LFu(sign,LF_exp_mid+(uintL)(exp),mantMSDptr,mantlen,_EMA_ erg_zuweisung)

/* hash-code of a Long-Float: mixture of exponent, length, first 32 bits */
global uint32 hashcode_lfloat (object obj) {
  return TheLfloat(obj)->expo + Lfloat_length(obj)
    + get_32_Dptr(&TheLfloat(obj)->data[0]);
}

/* LF_zerop(x) determines, if a Long-Float x is = 0.0 . */
#define LF_zerop(x)  (TheLfloat(x)->expo == 0)

/* returns for a Long-Float x : (ftruncate x), a LF.
 LF_ftruncate_LF(x)
 x is rounded towards 0 to the next whole number.
 can trigger GC */
local maygc object LF_ftruncate_LF (object x);
/* method:
 x = 0.0 or e<=0 -> result 0.0
 1<=e<=16n -> set the last (16n-e) bits of the mantissa to 0,
              keep exponent and sign
 e>=16n -> result x */
#if 0
local maygc object LF_ftruncate_LF (object x)
{
  var signean sign;
  var sintL exp;
  var uintD* mantMSDptr;
  var uintC mantlen;
  LF_decode(x, { return x; }, sign=,exp=,mantMSDptr=,mantlen=,);
  if (exp<=0) { encode_LF0(mantlen, return); } /* e<=0 -> result 0.0 */
  if ((uintL)exp >= intDsize*(uintL)mantlen) { /* e>=16n -> x as result */
    return x;
  } else { /* 0 < e < 16n */
    /* create new NUDS wit e bits from mant and 16n-e nullbits: */
    SAVE_NUM_STACK /* save num_stack */
    var uintD* MSDptr;
    num_stack_need(mantlen, MSDptr=,);
    {
      var uintC count = floor((uintL)exp,intDsize); /* digits to copy, < mantlen */
      var uintC bitcount = ((uintL)exp) % intDsize; /* bits to copy behind it, >=0, <intDsize */
      var uintD* ptr = /* copy count complete digits */
        copy_loop_up(mantMSDptr,MSDptr,count);
      *ptr++ = mantMSDptr[count] & minus_bitm(intDsize-bitcount); /* then copy bitcount bits */
      clear_loop_up(ptr,mantlen-count-1); /* fill rest with Nulls */
    }
    var object result;
    encode_LF(sign,exp,MSDptr,mantlen, result =);
    RESTORE_NUM_STACK /* restore num_stack */
    return result;
  }
}
#else
local maygc object LF_ftruncate_LF (object x)
{
  var uintC len = Lfloat_length(x);
  var uintL uexp = TheLfloat(x)->expo;
  if (uexp <= LF_exp_mid) {
    if (uexp == 0)
      return x; /* x=0.0 -> result 0.0 */
    encode_LF0(len, return); /* e<=0 -> result 0.0 */
  }
  var uintL exp = uexp - LF_exp_mid;
  if (exp >= intDsize*(uintL)len) /* e>=16n -> x as result */
    return x;
  /* 0 < e < 16n */
  pushSTACK(x);
  var object y = allocate_lfloat(len,uexp,LF_sign(x)); /* new Long-Float */
  x = popSTACK();
  /* y_mant := NUDS with e bits from x_mant and 16n-e nullbits: */
  var uintC count = floor(exp,intDsize); /* digits to copy, < mantlen */
  var uintC bitcount = exp % intDsize; /* bits to copy behind it, >=0, <intDsize */
  var uintD* x_mantMSDptr = &TheLfloat(x)->data[0];
  var uintD* ptr = /* copy count complete digits */
    copy_loop_up(x_mantMSDptr,&TheLfloat(y)->data[0],count);
  *ptr++ = x_mantMSDptr[count] & minus_bitm(intDsize-bitcount); /* then copy bitcount bits */
  clear_loop_up(ptr,len-count-1); /* fill rest with Nulls */
  return y;
}
#endif

/* Returns for a Long-Float x : (futruncate x), a LF.
 LF_futruncate_LF(x)
 x is rounded away from the 0 to the next whole number.
 can trigger GC */
local maygc object LF_futruncate_LF (object x);
/* method:
 x = 0.0 -> result 0.0
 e<=0 -> result 1.0 or -1.0, according to sign of x.
 1<=e<16n -> extract the last (16n-e) bits from x.
             If they are all =0 -> result x.
             Else set them all to 0 and then increase the front e bits
             by 1.
             No Overflow -> done.
             Else (result, a power of two): mantissa := .1000...000,
               e:=e+1. (test for overflow superfluous because of e<=16n)
 e>=16n -> result x. */
#if 0
local maygc object LF_futruncate_LF (object x)
{
  var signean sign;
  var sintL exp;
  var uintD* mantMSDptr;
  var uintC mantlen;
  LF_decode(x, { return x; }, sign=,exp=,mantMSDptr=,mantlen=,);
  if (exp<=0) { encode_LF1s(sign,mantlen, return); } /* e<=0 -> result +-1.0 */
  if ((uintL)exp >= intDsize*(uintL)mantlen) { /* e>=16n -> x as result */
    return x;
  } else { /* 0 < e < 16n */
    /* test, if all rear 16n-e bits are =0: */
    var uintC count = floor((uintL)exp,intDsize); /* digits to copy, < mantlen */
    var uintC bitcount = ((uintL)exp) % intDsize; /* bits to copy behind it, >=0, <intDsize */
    var uintD mask = minus_bitm(intDsize-bitcount); /* mask with bitcount bits */
    var uintD* mantptr = &mantMSDptr[count];
    if (((mantptr[0] & ~mask) ==0)
        && !test_loop_up(&mantptr[1],mantlen-count-1))
      return x;
    /* create new NUDS with e bits from mant with increment
       and 16n-e nullbits: */
    {
      SAVE_NUM_STACK /* save num_stack */
      var uintD* MSDptr;
      num_stack_need(mantlen, MSDptr=,);
      {
        var uintD* ptr = /* copy count complete digits */
          copy_loop_up(mantMSDptr,MSDptr,count);
        if ((ptr[0] = ((mantptr[0] & mask) - mask)) == 0) /* then copy bitcount bits and increment */
          if (inc_loop_down(ptr,count)!=0) { /* poss. continue to increment */
            MSDptr[0] = bit(intDsize-1); exp = exp+1; /* poss. increase exponent */
          }
        clear_loop_up(&ptr[1],mantlen-count-1); /* fill restrest with Nulls */
      }
      var object result;
      encode_LF(sign,exp,MSDptr,mantlen, result =);
      RESTORE_NUM_STACK /* restore num_stack */
      return result;
    }
  }
}
#else
local maygc object LF_futruncate_LF (object x)
{
  var uintC len = Lfloat_length(x);
  var uintL uexp = TheLfloat(x)->expo;
  if (uexp <= LF_exp_mid) {
    if (uexp == 0)
      return x; /* x=0.0 -> result 0.0 */
    encode_LF1s(LF_sign(x),len, return); /* e<=0 -> result +-1.0 */
  }
  var uintL exp = uexp - LF_exp_mid;
  if (exp >= intDsize*(uintL)len) /* e>=16n -> x as result */
    return x;
  /* 0 < e < 16n */
  /* test, if all rear 16n-e bits are =0 : */
  var uintC count = floor(exp,intDsize); /* digits to copy, < mantlen */
  var uintC bitcount = exp % intDsize; /* bits to copy behind it, >=0, <intDsize */
  var uintD mask = minus_bitm(intDsize-bitcount); /* mask with bitcount bits */
  {
    var uintD* mantptr = &TheLfloat(x)->data[count];
    if (((mantptr[0] & ~mask) ==0)
        && !test_loop_up(&mantptr[1],len-count-1))
      return x;
  }
  /* no -> produce new Long-Float: */
  pushSTACK(x);
  var object y = allocate_lfloat(len,uexp,LF_sign(x)); /* new Long-Float */
  x = popSTACK();
  /* y_mant := NUDS with e bits from x_mant with increment and 16n-e nullbits: */
  var uintD* x_mantMSDptr = &TheLfloat(x)->data[0];
  var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
  var uintD* ptr = /* copy count complete digits */
    copy_loop_up(x_mantMSDptr,y_mantMSDptr,count);
  if ((ptr[0] = ((x_mantMSDptr[count] & mask) - mask)) == 0) /* then copy bitcount bits and increment */
    if (inc_loop_down(ptr,count)!=0) { /* poss. continue to increment */
      y_mantMSDptr[0] = bit(intDsize-1); (TheLfloat(y)->expo)++; /* poss. increase exponent */
    }
  clear_loop_up(&ptr[1],len-count-1); /* fill rest with Nulls */
  return y;
}
#endif

/* returns for a Long-Float x : (fround x), a LF.
 LF_fround_LF(x)
 x is rounded to the next whole number.
 can trigger GC */
local maygc object LF_fround_LF (object x);
/* method:
 x = 0.0 or e<0 -> result 0.0
 0<=e<16n -> round away the last (16n-e) bits of the mantissa,
             keep exponent and sign.
 e>=16n -> result x */
#if 0
local maygc object LF_fround_LF (object x)
{
  var signean sign;
  var sintL exp;
  var uintD* mantMSDptr;
  var uintC mantlen;
  LF_decode(x, { return x; }, sign=,exp=,mantMSDptr=,mantlen=,);
  if (exp<0) { encode_LF0(mantlen, return); } /* e<0 -> result 0.0 */
  if ((uintL)exp >= intDsize*(uintL)mantlen) { /* e>=16n -> x as result */
    return x;
  } else { /* 0 <= e < 16n */
    /* round away all rear 16n-e bits : */
    var uintC count = floor((uintL)exp,intDsize); /* digits to copy, < mantlen */
    var uintC bitcount = ((uintL)exp) % intDsize; /* bits to copy behind it, >=0, <intDsize */
    var uintD mask = minus_bit(intDsize-bitcount-1); /* mask with bitcount+1 bits */
    var uintD* mantptr = &mantMSDptr[count];
    if ((mantptr[0] & -mask) ==0) /* bit 16n-e-1 =0 -> round off */
      goto ab;
    if (!((mantptr[0] & ~mask) ==0)) /* bit 16n-e-1 =1 and bits 16n-e-2..0 >0 -> round up */
      goto auf;
    if (test_loop_up(&mantptr[1],mantlen-count-1))
      goto auf;
    /* round-to-even, according to bit 16n-e : */
    if (bitcount>0) {
      if ((mantptr[0] & (-2*mask)) ==0)
        goto ab;
      else
        goto auf;
    } else if (count>0) {
      if ((mantptr[-1] & bit(0)) ==0)
        goto ab;
      else
        goto auf;
    } else {
      /* bitcount=0, count=0, so exp=0: round off from +-0.5 to 0.0 */
      encode_LF0(mantlen, return);
    }
   ab: { /* round off */
      SAVE_NUM_STACK /* save num_stack */
      var uintD* MSDptr;
      num_stack_need(mantlen, MSDptr=,);
      var uintD* ptr = /* copy count complete digits */
        copy_loop_up(mantMSDptr,MSDptr,count);
      *ptr++ = mantMSDptr[count] & mask; /* then copy bitcount bits */
      clear_loop_up(ptr,mantlen-count-1); /* fill rest with Nulls */
      var object result;
      encode_LF(sign,exp,MSDptr,mantlen, result =);
      RESTORE_NUM_STACK /* restore num_stack */
      return result;
    }
   auf: { /* round up */
      SAVE_NUM_STACK /* save num_stack */
      var uintD* MSDptr;
      num_stack_need(mantlen, MSDptr=,);
      var uintD* ptr = /* copy count complete digits */
        copy_loop_up(mantMSDptr,MSDptr,count);
      if ((ptr[0] = ((mantptr[0] & mask) - mask)) == 0) /* then copy bitcount bits and increment */
        if (inc_loop_down(ptr,count)!=0) { /* poss. continue to increment */
          MSDptr[0] = bit(intDsize-1); exp = exp+1; /* poss. increase exponent */
        }
      clear_loop_up(&ptr[1],mantlen-count-1); /* fill rest with Nulls */
      var object result;
      encode_LF(sign,exp,MSDptr,mantlen, result =);
      RESTORE_NUM_STACK /* restore num_stack */
      return result;
    }
  }
}
#else
local maygc object LF_fround_LF (object x)
{
  var uintC len = Lfloat_length(x);
  var uintL uexp = TheLfloat(x)->expo;
  if (uexp < LF_exp_mid) {
    if (uexp == 0)
      return x; /* x=0.0 -> result 0.0 */
    encode_LF0(len, return); /* e<0 -> result 0.0 */
  }
  var uintL exp = uexp - LF_exp_mid;
  if (exp >= intDsize*(uintL)len) /* e>=16n -> x as result */
    return x;
  /* 0 <= e < 16n */
  /* round away all rear 16n-e bits: */
  var uintC count = floor(exp,intDsize); /* digits to copy, < mantlen */
  var uintC bitcount = exp % intDsize; /* bits to copy behind it, >=0, <intDsize */
  var uintD mask = minus_bit(intDsize-bitcount-1); /* mask with bitcount+1 bits */
  {
    var uintD* mantptr = &TheLfloat(x)->data[count];
   #if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ == 7))
    if ((mantptr[0] & -mask) ==0) /* Bit 16n-e-1 =0 -> round off */
   #else
    /* Work around gcc-2.7.x bug on i386/ELF */
    if ((mantptr[0] & ((~mask)+1)) ==0) /* Bit 16n-e-1 =0 -> round off */
   #endif
      goto ab;
    if ((mantptr[0] & ~mask)!=0) /* Bit 16n-e-1 =1 and Bits 16n-e-2..0 >0 -> round up */
      goto auf;
    if (test_loop_up(&mantptr[1],len-count-1))
      goto auf;
    /* round-to-even, according to bit 16n-e : */
    if (bitcount>0) {
      if ((mantptr[0] & (-2*mask)) ==0)
        goto ab;
      else
        goto auf;
    } else if (count>0) {
      if ((mantptr[-1] & bit(0)) ==0)
        goto ab;
      else
        goto auf;
    } else {
      /* bitcount=0, count=0, so exp=0: rounding off from +-0.5 to 0.0 */
      encode_LF0(len, return);
    }
  }
 ab: { /* round off */
    pushSTACK(x);
    var object y = allocate_lfloat(len,uexp,LF_sign(x)); /* new Long-Float */
    x = popSTACK();
    /* y_mant := NUDS with e bits from x_mant and 16n-e Nullbits: */
    var uintD* x_mantMSDptr = &TheLfloat(x)->data[0];
    var uintD* ptr =
      copy_loop_up(x_mantMSDptr,&TheLfloat(y)->data[0],count); /* copy count complete digits */
    *ptr++ = x_mantMSDptr[count] & mask; /* then copy bitcount bits */
    clear_loop_up(ptr,len-count-1); /* fill rest with Nulls */
    return y;
  }
 auf: { /* round up */
    pushSTACK(x);
    var object y = allocate_lfloat(len,uexp,LF_sign(x)); /* new Long-Float */
    x = popSTACK();
    /* y_mant := NUDS with e bits from x_mant with increment and 16n-e Nullbits: */
    var uintD* x_mantMSDptr = &TheLfloat(x)->data[0];
    var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
    var uintD* ptr = /* copy count complete digits */
      copy_loop_up(x_mantMSDptr,y_mantMSDptr,count);
    if ((ptr[0] = ((x_mantMSDptr[count] & mask) - mask)) == 0) /* then copy bitcount bits and increment */
      if (inc_loop_down(ptr,count)!=0) { /* poss. continue to increment */
        y_mantMSDptr[0] = bit(intDsize-1); (TheLfloat(y)->expo)++; /* poss. increase exponent */
      }
    clear_loop_up(&ptr[1],len-count-1); /* fill rest with Nulls */
    return y;
  }
}
#endif

/* returns for a Long-Float x : (- x), a LF.
 LF_minus_LF(x)
 can trigger GC
 method:
 if x=0.0, done. Else flip sign bit and keep pointer. */
local maygc object LF_minus_LF (object x)
{
  if (TheLfloat(x)->expo == 0) {
    return x;
  } else {
   #if defined(SPVW_MIXED) && defined(TYPECODES)
    return as_object(as_oint(x) ^ wbit(vorz_bit_o));
   #else
    var uintC len = Lfloat_length(x);
    pushSTACK(x);
    var object mx = allocate_lfloat(len,TheLfloat(x)->expo,~LF_sign(x));
    x = popSTACK();
    copy_loop_up(&TheLfloat(x)->data[0],&TheLfloat(mx)->data[0],len);
    return mx;
   #endif
  }
}

/* LF_LF_comp(x,y) compares two Long-Floats x and y.
 result: 0 if x=y, +1 if x>y, -1 if x<y.
 method:
 x and y have different signs ->
    x < 0 -> x < y
    x >= 0 -> x > y
 x and y have equal signs ->
    x >=0 -> compare x and y (the right 24 bits)
    x <0 -> compare y and x (the right 24 bits) */
local signean LF_LF_comp (object x, object y)
{
  if (!R_minusp(y)) { /* y>=0 */
    if (!R_minusp(x)) { /* y>=0, x>=0 */
      { /* compare exponents and mantissas: */
        var uintL x_uexp = TheLfloat(x)->expo;
        var uintL y_uexp = TheLfloat(y)->expo;
        if (x_uexp < y_uexp)
          return signean_minus; /* x<y */
        if (x_uexp > y_uexp)
          return signean_plus; /* x>y */
      }
      {
        var uintC x_len = Lfloat_length(x);
        var uintC y_len = Lfloat_length(y);
        var uintC len = (x_len<y_len ? x_len : y_len); /* min(x_len,y_len) */
        /* compare len digits: */
        var signean erg =
          compare_loop_up(&TheLfloat(x)->data[0],&TheLfloat(y)->data[0],len);
        if (erg!=0)
          return erg; /* different -> done */
        /* commen sub part was equal */
        if (x_len == y_len)
          return signean_null; /* equal length -> done */
        if (x_len > y_len) { /* x longer than y */
          if (test_loop_up(&TheLfloat(x)->data[y_len],x_len-y_len))
            return signean_plus; /* x>y */
          else
            return signean_null;
        } else { /* y longer than x */
          if (test_loop_up(&TheLfloat(y)->data[x_len],y_len-x_len))
            return signean_minus; /* x<y */
          else
            return signean_null;
        }
      }
    } else { /* y>=0, x<0 */
      return signean_minus; /* x<y */
    }
  } else {
    if (!R_minusp(x)) { /* y<0, x>=0 */
      return signean_plus; /* x>y */
    } else { /* y<0, x<0 */
      { /* compare exponents and mantissas: */
        var uintL x_uexp = TheLfloat(x)->expo;
        var uintL y_uexp = TheLfloat(y)->expo;
        if (x_uexp < y_uexp)
          return signean_plus; /* |x|<|y| -> x>y */
        if (x_uexp > y_uexp)
          return signean_minus; /* |x|>|y| -> x<y */
      }
      {
        var uintC x_len = Lfloat_length(x);
        var uintC y_len = Lfloat_length(y);
        var uintC len = (x_len<y_len ? x_len : y_len); /* min(x_len,y_len) */
        /* compare len digits: */
        var signean erg =
          compare_loop_up(&TheLfloat(y)->data[0],&TheLfloat(x)->data[0],len);
        if (erg!=0)
          return erg; /* different -> done */
        /* common sub part was equal */
        if (x_len == y_len)
          return signean_null; /* equal length -> done */
        if (x_len > y_len) { /* x longer than y */
          if (test_loop_up(&TheLfloat(x)->data[y_len],x_len-y_len))
            return signean_minus; /* |x|>|y| -> x<y */
          else
            return signean_null;
        } else { /* y longer than x */
          if (test_loop_up(&TheLfloat(y)->data[x_len],y_len-x_len))
            return signean_plus; /* |x|<|y| -> x>y */
          else
            return signean_null;
        }
      }
    }
  }
}

/* LF_shorten_LF(x,len) shortens a Long-Float x to given length len
 and rounds.
 > object x: a Long-FLoat
 > uintC len: wished length (>= LF_minlen, < Lfloat_length(x))
 < object result: shortened Long-Float
 can trigger GC */
local maygc object LF_shorten_LF (object x, uintC len)
{
  /* x = 0.0 does not need to be caught, because when mantissa is 0
     we round of anyway, so the mantissa remains 0. */
  pushSTACK(x);
  var object y = allocate_lfloat(len,TheLfloat(x)->expo,LF_sign(x)); /* new LF */
  x = popSTACK();
  var uintC oldlen = Lfloat_length(x); /* old length, > len */
  /* copy mantissa from x to y: */
  copy_loop_up(&TheLfloat(x)->data[0],&TheLfloat(y)->data[0],len);
  /* decide, if to round up or off: */
  var uintD* ptr = &TheLfloat(x)->data[len];
  if (((sintD)ptr[0] >= 0) /* next bit a 0 -> round off */
       || (((ptr[0] & ((uintD)bit(intDsize-1)-1)) ==0) /* a 1 and all further Nulls? */
           && !test_loop_up(&ptr[1],oldlen-len-1)
           /* round-to-even */
           && ((ptr[-1] & bit(0)) ==0))) {
    /* round off */
  } else { /* round up */
    if ( inc_loop_down(&TheLfloat(y)->data[len],len) ) {
      /* carry by rounding up */
      TheLfloat(y)->data[0] = bit(intDsize-1); /* mantissa := 10...0 */
      /* increase exponent: */
      if (++(TheLfloat(y)->expo) == (uint32)(LF_exp_high+1))
        fehler_overflow();
    }
  }
  return y;
}

/* LF_extend_LF(x,len) extends a Long-Float x to a given length len.
 > object x: a Long-FLoat
 > uintC len: wished length (> Lfloat_length(x))
 < object result: extended Long-Float
 can trigger GC */
local maygc object LF_extend_LF (object x, uintC len)
{
  pushSTACK(x);
  var object y = allocate_lfloat(len,TheLfloat(x)->expo,LF_sign(x)); /* new LF */
  x = popSTACK();
  var uintC oldlen = Lfloat_length(x); /* old length, < len */
  /* copy mantissa from x to y: */
  var uintD* ptr =
    copy_loop_up(&TheLfloat(x)->data[0],&TheLfloat(y)->data[0],oldlen);
  /* and complete with Null digits: */
  clear_loop_up(ptr,len-oldlen);
  return y;
}

/* LF_to_LF(x,len) converts a Long-Float x into a Long-Float of given length
 len and rounds if necessary.
 > object x: a Long-FLoat
 > uintC len: wished length (>= LF_minlen)
 < object result: Long-Float of given length
 can trigger GC */
local maygc object LF_to_LF (object x, uintC len)
{
  var uintC oldlen = Lfloat_length(x);
  if (len < oldlen)
    return LF_shorten_LF(x,len);
  if (len > oldlen)
    return LF_extend_LF(x,len);
  /* len = oldlen */
  return x;
}

/* returns for two equal-length Long-Float x and y : (+ x y), a LF.
 LF_LF_plus_LF(x,y)
 can trigger GC
 method (according to [Knuth, II, Seminumerical Algorithms, section 4.2.1., S.200]):
 if e1<e2, swap x1 and x2.
 So e1 >= e2.
 if e2=0, so x2=0.0, result x1.
 if e1 - e2 >= 16n+2, result x1.
 Extend the mantissas right by 3 bits (bit -1 as protection bit, bits -2,-3
   as rounding bits: 00 exact, 01 1. half, 10 exact middle, 11 2. half.)
 Shift the mantissa of x2 by e0-e1 bits to the right. (Execute the
 rounding: bit -3 is the logical Or of the bits -3,-4,-5,...)
 if x1,x2 have equal sign: Add it to the mantissa of x1.
 if x1,x2 have different sign: Subtract it from the
    mantissa of x1. <0 -> (e1=e2) swap the signs, negate.
                    =0 -> result 0.0
 exponent is e1.
 normalize, done. */
local maygc object LF_LF_plus_LF (object x1, object x2)
{
  var uintL uexp1 = TheLfloat(x1)->expo;
  var uintL uexp2 = TheLfloat(x2)->expo;
  if (uexp1 < uexp2) { /* swap x1 and x2 */
    swap(object, x1,x2); swap(uintL, uexp1,uexp2);
  }
  /* uexp1 >= uexp2 */
  if (uexp2==0)
    return x1; /* x2=0.0 -> x1 as result */
  var uintC len = Lfloat_length(x1); /* length n of x1 and x2 */
  var uintL expdiff = uexp1-uexp2; /* e1-e2 */
 #if !(defined(SPVW_MIXED) && defined(TYPECODES))
  if ((expdiff == 0) && !same_sign_p(x1,x2)) {
    /* different signs, but same exponent */
    /* determine sign of the result: */
    var signean erg = /* compare mantissas (len digits at a time)  */
      compare_loop_up(&TheLfloat(x1)->data[0],&TheLfloat(x2)->data[0],len);
    if (erg==0) { /* mantissas equal */
      encode_LF0(len, return); /* result 0.0 */
    }
    if (erg<0) { /* |x1| < |x2| */
      /* swap x1 and x2, expdiff remains =0 */
      swap(object, x1,x2); swap(uintL, uexp1,uexp2);
    }
  }
 #endif
  if (expdiff >= intDsize * (uintL)len + 2) /* e1-e2 >= 16n+2 ? */
    return x1; /* yes -> x1 as result */
  /* allocate new Long-Float: */
  pushSTACK(x1); pushSTACK(x2);
  var object y = allocate_lfloat(len,uexp1,LF_sign(x1));
  x2 = popSTACK(); x1 = popSTACK();
  var uintL i = floor(expdiff,intDsize); /* e1-e2 div 16 (>=0, <=n) */
  var uintL j = expdiff % intDsize; /* e1-e2 mod 16 (>=0, <16) */
  /* Mantissa of x2 must be shifted by intDsize*i+j bits to the right. */
  var uintC x2_len = len - i; /* n-i digits of x2 used */
  /* shift x2_len digits by j bits to the right and copy them: */
  SAVE_NUM_STACK /* save num_stack */
  var uintD* x2_MSDptr;
  var uintD* x2_LSDptr;
  var uintD rounding_bits;
  num_stack_need(x2_len, x2_MSDptr=,x2_LSDptr=); /* x2_len digits room */
  begin_arith_call();
  if (j==0) {
    copy_loop_up(&TheLfloat(x2)->data[0],x2_MSDptr,x2_len); rounding_bits = 0;
  } else {
    rounding_bits = shiftrightcopy_loop_up(&TheLfloat(x2)->data[0],x2_MSDptr,x2_len,j,0);
  }
  /* x2_MSDptr/x2_len/x2_LSDptr are the essential digits of x2.
     rounding_bits contains the last j shifted out bits.
     build the 3 rounding bits from rounding_bits and the next i digits
     (as bits intDsize-1..intDsize-3 from rounding_bits) : */
  if (j>=2) { /* j>=2 -> bits -1,-2 are OK, determine bit -3: */
    if ((rounding_bits & (bit(intDsize-3)-1)) ==0) {
      if (test_loop_up(&TheLfloat(x2)->data[x2_len],i))
        rounding_bits |= bit(intDsize-3); /* set rounding bit -3 */
    } else {
      rounding_bits |= bit(intDsize-3); /* set rounding bit -3 */
      rounding_bits &= bitm(intDsize)-bit(intDsize-3); /* delete other bits */
    }
  } else {
    /* j<=3 -> bits intDsize-4..0 from rounding_bits are already Null.
       pull up next and further i-1 digits: */
    if (i > 0) { /* i=0 -> bits -1,-2,-3 are OK. */
      var uintD* ptr = &TheLfloat(x2)->data[x2_len];
      rounding_bits |= (ptr[0] >> j); /* add further relevant bits of the next digit */
      if ((rounding_bits & (bit(intDsize-3)-1)) ==0) { /* all bits -3,-4,... =0 ? */
        if (((ptr[0] & (bit(3)-1))!=0) /* j (<=3) lower bits of ptr[0] all =0 ? */
            || test_loop_up(&ptr[1],i-1))
          rounding_bits |= bit(intDsize-3); /* set rounding bit -3 */
      } else {
        rounding_bits |= bit(intDsize-3); /* set rounding bit -3 */
        rounding_bits &= bitm(intDsize)-bit(intDsize-3); /* delete other bits */
      }
    }
  }
  /* x2 is there in shifted form in the UDS x2_MSDptr/x2_len/x2_LSDptr ,
     with rounding bits in bit intDsize-1..intDsize-3 from rounding_bits. */
  {
    var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
    var uintD* y_mantLSDptr = &y_mantMSDptr[(uintP)len];
    if (same_sign_p(x1,x2)) { /* equal sign -> add mantissas */
      /* first the right mantissa part (x2_len digits) by addition: */
      var uintD carry =
        add_loop_down(&TheLfloat(x1)->data[(uintP)len],x2_LSDptr,
                      y_mantLSDptr, x2_len);
      /* then copy the left mantissa part (i digits) directly: */
      var uintD* ptr =
        copy_loop_up(&TheLfloat(x1)->data[0],y_mantMSDptr,i);
      /* then add carry from the right part to the left mantissa part: */
      if (carry!=0)
        if ( inc_loop_down(ptr,i) ) { /* carry beyond the first digit */
          /* increment exponent of y : */
          if (++(TheLfloat(y)->expo) == (uint32)(LF_exp_high+1))
            fehler_overflow();
          /* normalize by shifting by 1 bit to the right: */
          var uintD carry_rechts =
            shift1right_loop_up(y_mantMSDptr,len,(uintD)(-1));
          rounding_bits = rounding_bits>>1; /* also shift rounding bits */
          if (!(carry_rechts==0))
            rounding_bits |= bit(intDsize-1);
        }
    } else { /* different signs -> subtract mantissas */
      /* first the right mantissa part (x2_len digits) by subtraction: */
      rounding_bits = -rounding_bits;
      var uintD carry =
        subx_loop_down(&TheLfloat(x1)->data[(uintP)len],x2_LSDptr,
                       y_mantLSDptr, x2_len,
                       (rounding_bits==0 ? 0 : -1L));
      /* then copy the left mantissa part (i digits) directly: */
      var uintD* ptr =
        copy_loop_up(&TheLfloat(x1)->data[0],y_mantMSDptr,i);
      /* then subtract carry from the right part from the left mantissa part: */
      if (carry!=0)
        if ( dec_loop_down(ptr,i) ) {
          /* carry beyond the first digit, so e1=e2 */
         #if !(defined(SPVW_MIXED) && defined(TYPECODES))
          NOTREACHED; /* we have already treated this case */
         #else
          /* negate: */
          y = as_object(as_oint(y) ^ wbit(vorz_bit_o));
          rounding_bits = -rounding_bits;
          if (rounding_bits==0) {
            /* negate without carry */
            neg_loop_down(y_mantLSDptr,len);
          } else { /* negate with carry from the right */
            /* not_loop_down(y_mantLSDptr,len); // or */
            not_loop_up(y_mantMSDptr,len);
          }
         #endif
        }
    }
    /* normalize UDS y_mantMSDptr/len/y_mantLSDptr/rounding_bits: */
    {
      var uintD* ptr = y_mantMSDptr;
      var uintL k = 0;
      var uintC count;
      dotimesC(count,len, {
        if (!(ptr[0]==0))
          goto nonzero_found;
        ptr++; k++;
      });
      if (!(rounding_bits==0))
        goto nonzero_found;
      /* the UDS is completely Null. So e1=e2, no rounding bits. */
      end_arith_call();
      RESTORE_NUM_STACK /* restore num_stack */
     #if !(defined(SPVW_MIXED) && defined(TYPECODES))
      NOTREACHED; /* we have already treated this case */
     #else
      TheLfloat(y)->expo = 0; /* 0.0 as result */
      return as_object(as_oint(y) & ~wbit(vorz_bit_o));
     #endif
     nonzero_found: /* digit /=0 found */
      /* copy UDS from ptr to y_mantMSDptr by k digits downwards: */
      if (k>0) {
        /* at least one leading Nulldigit. So, e1-e2 = 0 or 1. */
        ptr = copy_loop_up(ptr,y_mantMSDptr,len-k); /* shift len-k digits */
        *ptr++ = rounding_bits; /* rounding bits as further digit */
        clear_loop_up(ptr,k-1); /* then k-1 nulldigits */
        rounding_bits = 0; /* and no further rounding bits */
        /* decrease exponent by intDsize*k : */
        k = intDsize*k;
        var uintL uexp = TheLfloat(y)->expo;
       #if !(LF_exp_low==1)
        if (uexp < k+LF_exp_low)
       #else
        if (uexp <= k)
       #endif
          {
            end_arith_call();
            RESTORE_NUM_STACK /* restore num_stack */
            if (underflow_allowed()) {
              fehler_underflow();
            } else {
              encode_LF0(len, return); /* result 0.0 */
            }
          }
        TheLfloat(y)->expo = uexp - k;
      }
    }
    /* normalize NUDS y_mantMSDptr/len/y_mantLSDptr/rounding_bits : */
    {
      var uintL s;
      integerlengthD(y_mantMSDptr[0], s = intDsize - );
      /* s = number of leading nullbits in first word (>=0, <intDsize) */
      if (s > 0) {
        /* Shift the NUDS y_mantMSDptr/len/y_mantLSDptr/rounding_bits
           by s bits to the left.
           (e1-e2>1 enforces s=1.) */
        if (s==1) {
          shift1left_loop_down(y_mantLSDptr,len);
          if (rounding_bits & bit(intDsize-1))
            y_mantLSDptr[-1] |= bit(0);
          rounding_bits = rounding_bits << 1;
        } else { /* s>1, so e1-e2 <= 1 <= s. */
          shiftleft_loop_down(y_mantLSDptr,len,s,rounding_bits>>(intDsize-s));
          rounding_bits = 0; /* = rounding_bits << s; */
        }
        /* decrease exponent by s : */
        var uintL uexp = TheLfloat(y)->expo;
       #if !(LF_exp_low==1)
        if (uexp < s+LF_exp_low)
       #else
        if (uexp <= s)
       #endif
          {
            end_arith_call();
            RESTORE_NUM_STACK /* restore num_stack */
            if (underflow_allowed()) {
              fehler_underflow();
            } else {
              encode_LF0(len, return); /* result 0.0 */
            }
          }
        TheLfloat(y)->expo = uexp - s;
      }
    }
    /* here, rounding_bits contains bit -1 as Bit intDsize-1, bit -2 as
       bit intDsize-2, Bit -3 as Or(Bits intDsize-3..0) !
       Round. Inspect rounding_bits: */
    if ((rounding_bits & bit(intDsize-1)) ==0) /* bit -1 deleted -> round off */
      goto ab;
    rounding_bits = rounding_bits<<1; /* bits -2,-3 */
    if (!(rounding_bits==0)) /* bit -2 or bit -3 set -> round up */
      goto auf;
    /* round-to-even: */
    if ((y_mantLSDptr[-1] & bit(0)) ==0)
      goto ab;
   auf: /* round up */
    if ( inc_loop_down(y_mantLSDptr,len) ) {
      /* carry by rounding up */
      y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
      /* increase exponent: */
      if (++(TheLfloat(y)->expo) == (uint32)(LF_exp_high+1)) {
        end_arith_call(); RESTORE_NUM_STACK; fehler_overflow();
      }
    }
   ab: /* round off */
    ;
  }
  end_arith_call();
  RESTORE_NUM_STACK /* restore num_stack */
  /* y done. */
  return y;
}

/* returns for two equal-length Long-Float x and y : (- x y), a LF.
 LF_LF_minus_LF(x,y)
 can trigger GC
 method:
 (- x1 x2) = (+ x1 (- x2)) */
local maygc object LF_LF_minus_LF (object x1, object x2)
{
  if (TheLfloat(x2)->expo == 0) {
    return x1;
  } else {
   #if defined(SPVW_MIXED) && defined(TYPECODES)
    return LF_LF_plus_LF(x1, as_object(as_oint(x2) ^ wbit(vorz_bit_o)) );
   #else
    var uintC len2 = Lfloat_length(x2);
    pushSTACK(x1); pushSTACK(x2);
    var object mx2 = allocate_lfloat(len2,TheLfloat(x2)->expo,~LF_sign(x2));
    x2 = popSTACK();
    copy_loop_up(&TheLfloat(x2)->data[0],&TheLfloat(mx2)->data[0],len2);
    return LF_LF_plus_LF(popSTACK(),mx2);
   #endif
  }
}

/* returns for a Long-Float x : (* x x), a LF.
 LF_square_LF(x)
 can trigger GC
 method:
 If x=0.0 -> result 0.0
 Else: result-sign = positive.
        result-exponent = 2 * exponent of x.
        calcualte square of the mantissas (2n digits).
        If the leading bit is =0 : shift mantissa product by 1 bit to
          the left (the front n+1 digits are enough)
          and decrement exponent.
        rounding to n digits yields the result-mantissa. */
local maygc object LF_square_LF (object x)
{
  var uintL uexp = TheLfloat(x)->expo;
  if (uexp==0)
    return x; /* x=0.0 -> result 0.0 */
  /* add exponents:
     (uexp-LF_exp_mid) + (uexp-LF_exp_mid) = (2*uexp-LF_exp_mid)-LF_exp_mid */
  if ((sintL)uexp >= 0) { /* no Carry */
    uexp = 2*uexp;
    if (uexp < LF_exp_mid+LF_exp_low) {
      if (underflow_allowed()) {
        fehler_underflow();
      } else {
        encode_LF0(Lfloat_length(x), return); /* result 0.0 */
      }
    }
  } else { /* Carry */
    uexp = 2*uexp;
    if (uexp > (uintL)(LF_exp_mid+LF_exp_high+1))
      fehler_overflow();
  }
  uexp = uexp - LF_exp_mid;
  /* now, LF_exp_low <= uexp <= LF_exp_high+1.
     allocate new Long-Float: */
  pushSTACK(x);
  var uintC len = Lfloat_length(x); /* length n of x */
  var object y = allocate_lfloat(len,uexp,0);
  SAVE_NUM_STACK /* save num_stack */
    x = popSTACK();
  { /* form product: */
    var uintD* MSDptr;
    begin_arith_call();
    UDS_square_UDS(len,&TheLfloat(x)->data[(uintP)len],
                   MSDptr=,_EMA_,);
    var uintD* midptr = &MSDptr[(uintP)len]; /* pointer into the middle of the 2n digits */
    if ((sintD)MSDptr[0] >= 0) { /* test leading bit */
      /* shift the first n+1 digits by 1 bit to the left: */
      shift1left_loop_down(&midptr[1],len+1);
      /* decrement exponent: */
      if ((TheLfloat(y)->expo)-- == LF_exp_low-1) {
        end_arith_call();
        RESTORE_NUM_STACK /* restore num_stack */
          if (underflow_allowed()) {
            fehler_underflow();
          } else {
            encode_LF0(len, return); /* result 0.0 */
          }
      }
    }
    end_arith_call();
    /* carry forward the first half of the mantissa product: */
    var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
    var uintD* y_mantLSDptr =
      copy_loop_up(MSDptr,y_mantMSDptr,len);
    /* round: */
    if (((sintD)midptr[0] >= 0) /* next bit =0 -> round off */
        || (((midptr[0] & ((uintD)bit(intDsize-1)-1)) ==0) /* bit =1, further bits >0 -> round up */
            && !test_loop_up(&midptr[1],len-1)
            /* round-to-even */
            && ((midptr[-1] & bit(0)) ==0))) {
      /* round off */
    } else {
      /* round up */
      if ( inc_loop_down(y_mantLSDptr,len) ) {
        /* carry due to rounding up (can only happen,
           if a shift by 1 bit to the left took place, beforehand) */
        y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
        (TheLfloat(y)->expo)++; /* re-increment exponent again */
      }
    }
    /* assure LF_exp_low <= exp <= LF_exp_high : */
    if (TheLfloat(y)->expo == (uint32)(LF_exp_high+1)) {
      RESTORE_NUM_STACK; fehler_overflow();
    }
  }
  RESTORE_NUM_STACK /* restore num_stack */
  return y;
}

/* returns for two equal-length Long-Float x and y : (* x y), a LF.
 LF_LF_mal_LF(x,y)
 can trigger GC
 method:
 If x1=0.0 or x2=0.0 -> result 0.0
 Else: result-sign = sign of x1 xor sign of x2.
        result-exponent = sum of exponents of x1 and x2.
        form product of mantissas (2n Digits).
        If the leading bit is =0 : shift mantissa product by 1 bit to
          the left (the front n+1 digits are enough)
          and decrement exponent.
        Rounding to n digits yields the result-mantissa. */
local maygc object LF_LF_mal_LF (object x1, object x2)
{
  var uintL uexp1 = TheLfloat(x1)->expo;
  if (uexp1==0)
    return x1; /* x1=0.0 -> result 0.0 */
  var uintL uexp2 = TheLfloat(x2)->expo;
  if (uexp2==0)
    return x2; /* x2=0.0 -> result 0.0 */
  /* add exponents:
     (uexp1-LF_exp_mid) + (uexp2-LF_exp_mid) =
     (uexp1+uexp2-LF_exp_mid)-LF_exp_mid */
  uexp1 = uexp1 + uexp2;
  if (uexp1 >= uexp2) { /* no Carry */
    if (uexp1 < LF_exp_mid+LF_exp_low) {
      if (underflow_allowed()) {
        fehler_underflow();
      } else {
        encode_LF0(Lfloat_length(x1), return); /* result 0.0 */
      }
    }
  } else { /* Carry */
    if (uexp1 > (uintL)(LF_exp_mid+LF_exp_high+1))
      fehler_overflow();
  }
  uexp1 = uexp1 - LF_exp_mid;
  /* now, LF_exp_low <= uexp1 <= LF_exp_high+1. */
  /* allocate new Long-Float: */
  pushSTACK(x1); pushSTACK(x2);
  var uintC len = Lfloat_length(x1); /* length n of x1 and x2 */
 #ifdef TYPECODES
  var signean sign = R_sign(as_object(as_oint(x1) ^ as_oint(x2))); /* combine signs */
 #else
  var signean sign = LF_sign(x1) ^ LF_sign(x2);
 #endif
  var object y = allocate_lfloat(len,uexp1,sign);
  SAVE_NUM_STACK /* save num_stack */
  x2 = popSTACK(); x1 = popSTACK();
  { /* form product: */
    var uintD* MSDptr;
    begin_arith_call();
    UDS_UDS_mal_UDS(len,&TheLfloat(x1)->data[(uintP)len],
                    len,&TheLfloat(x2)->data[(uintP)len],
                    MSDptr=,_EMA_,);
    var uintD* midptr = &MSDptr[(uintP)len]; /* pointer into the middle of the 2n digits */
    if ((sintD)MSDptr[0] >= 0) { /* test leading bit */
      /* shift the first n+1 Digits by 1 bit to the left: */
      shift1left_loop_down(&midptr[1],len+1);
      /* decrement exponent: */
      if (--(TheLfloat(y)->expo) == LF_exp_low-1) {
        end_arith_call();
        RESTORE_NUM_STACK /* restore num_stack */
        if (underflow_allowed()) {
          fehler_underflow();
        } else {
          encode_LF0(len, return); /* result 0.0 */
        }
      }
    }
    end_arith_call();
    /* carry first half of the mantissa product : */
    var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
    var uintD* y_mantLSDptr = copy_loop_up(MSDptr,y_mantMSDptr,len);
    /* round: */
    if (((sintD)midptr[0] >= 0) /* next bit =0 -> round off */
         || (((midptr[0] & ((uintD)bit(intDsize-1)-1)) ==0) /* bit =1, further bits >0 -> round up */
             && !test_loop_up(&midptr[1],len-1)
             /* round-to-even */
             && ((midptr[-1] & bit(0)) ==0))) {
      /* round off */
    } else { /* round up */
      if ( inc_loop_down(y_mantLSDptr,len) ) {
        /* carry due to rounding up (can only happen,
           if shift by  1 bit to the left took place, beforehand) */
        y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
        (TheLfloat(y)->expo)++; /* re-increment exponent again */
      }
    }
    /* assure LF_exp_low <= exp <= LF_exp_high : */
    if (TheLfloat(y)->expo == (uint32)(LF_exp_high+1)) {
      RESTORE_NUM_STACK; fehler_overflow();
    }
  }
  RESTORE_NUM_STACK /* restore num_stack */
  return y;
}

/* returns for two equal-length Long-Float x and y : (/ x y), a LF.
 LF_LF_durch_LF(x,y)
 can trigger GC
 method:
 x2 = 0.0 -> Error
 x1 = 0.0 -> result 0.0
 Else:
 result-sign     = xor of the two sings of x1 and x2
 result-exponent = difference of the two exponents of x1 and x2
 result-mantissa = mantissa mant1 / mantissa mant2, rounded.
   mant1/mant2 > 1/2, mant1/mant2 < 2;
   after rounding mant1/mant2 >=1/2, <=2*mant1<2.
   When mant1/mant2 >=1 we need 16n-1 bits behind the dot,
   when mant1/mant2 <1 we need 16n bits behind the dot.
   For Rounding: We need one rounding bit (rest specifies, if exact).
   Hence, we need 16n+1 bits behind the dot from mant1/mant2, altogether.
   Divide daher (as Unsigned Integers)
     2^16(n+1)*(2^16n*m0) by (2^16n*m1).
   If the quotient is >=2^16(n+1) , shift it by 1 bit to the right,
     increase the exponent by 1 and round the last digit away.
   If the quotient is <2^16(n+1) , round the last digit away. When rounding
    overflow occurs, shift by 1 bit to the right and increase exponent by 1. */
/* work around a gcc-2.7.0 bug on i386. */
#if defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ == 7)
  #define workaround_gcc270_bug()  *&uexp1 = *&uexp1;
#else
  #define workaround_gcc270_bug()
#endif
local maygc object LF_LF_durch_LF (object x1, object x2)
{
  var uintL uexp2 = TheLfloat(x2)->expo;
  if (uexp2==0)
    divide_0(); /* x2=0.0 -> Error */
  var uintL uexp1 = TheLfloat(x1)->expo;
  if (uexp1==0)
    return x1; /* x1=0.0 -> result 0.0 */
  /* suvtract exponents:
     (uexp1-LF_exp_mid) - (uexp2-LF_exp_mid) =
     (uexp1-uexp2+LF_exp_mid)-LF_exp_mid */
  if (uexp1 >= uexp2) {
    uexp1 = uexp1 - uexp2; /* no carry */
    workaround_gcc270_bug();
    if (uexp1 > LF_exp_high-LF_exp_mid)
      fehler_overflow();
    uexp1 = uexp1 + LF_exp_mid;
  } else {
    uexp1 = uexp1 - uexp2; /* carry */
    workaround_gcc270_bug();
    if (uexp1 < (uintL)(LF_exp_low-1-LF_exp_mid)) {
      if (underflow_allowed()) {
        fehler_underflow();
      } else {
        encode_LF0(Lfloat_length(x1), return); /* result 0.0 */
      }
    }
    uexp1 = uexp1 + LF_exp_mid;
  }
  /* LF_exp_low-1 <= uexp1 <= LF_exp_high. */
  /* allocate new Long-Float: */
  pushSTACK(x1); pushSTACK(x2);
  var uintC len = Lfloat_length(x1); /* length n of x1 and x2 */
#ifdef TYPECODES
  var signean sign = R_sign(as_object(as_oint(x1) ^ as_oint(x2))); /* combine sign */
#else
  var signean sign = LF_sign(x1) ^ LF_sign(x2);
#endif
  var object y = allocate_lfloat(len,uexp1,sign);
  x2 = popSTACK(); x1 = popSTACK();
  { /* form counter: */
    var uintD* z_MSDptr;
    var uintL z_len;
    var uintD* z_LSDptr;
    z_len = 2*(uintL)len + 1;
    if ((intWCsize < 32) && (z_len > (uintL)(bitc(intWCsize)-1)))
      fehler_LF_toolong();
    {
      SAVE_NUM_STACK /* save num_stack */
      num_stack_need(z_len, z_MSDptr=,z_LSDptr=);
      {
        var uintD* ptr =
          copy_loop_up(&TheLfloat(x1)->data[0],z_MSDptr,len); /* copy n digits */
        clear_loop_up(ptr,len+1); /* and n+1 Null-Digits */
      }
      /* form quotient: divide 2n+1-digit-number by n-digit-number */
      begin_arith_call();
      var DS q;
      var DS r;
      {
        var uintD* x2_mantMSDptr = &TheLfloat(x2)->data[0];
        UDS_divide(z_MSDptr,z_len,z_LSDptr,
                   x2_mantMSDptr,len,&x2_mantMSDptr[(uintP)len],
                   &q, &r);
      }
      /* q is the quotient with n+1 or n+2 digits, r the rest. */
      if (q.len > len+1) {
        /* quotient has n+2 digits -> shift by 1 bit to the right: */
        var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
        var uintD carry_rechts =
          shiftrightcopy_loop_up(&q.MSDptr[1],y_mantMSDptr,len,1,
                                 /* carry left = q.MSDptr[0] = 1 */ 1 );
        /* increment exponent: */
        if (++(TheLfloat(y)->expo) == (uint32)(LF_exp_high+1))
          fehler_overflow();
        /* round: */
        if ((carry_rechts == 0) /* shifted out bit =0 -> round off */
            || ((q.LSDptr[-1]==0) /* =1 and further bits >0 or rest >0 -> round up */
                && (r.len==0)
                /* round-to-even */
                && ((q.LSDptr[-2] & bit(1)) ==0))) {
          /* round off */
        } else {
          /* round up */
          inc_loop_down(&y_mantMSDptr[(uintP)len],len);
        }
      } else {
        /* quotient has n+1 digits -> justs copy: */
        var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
        copy_loop_up(q.MSDptr,y_mantMSDptr,len);
        /* round: */
        if (((sintD)(q.LSDptr[-1]) >= 0) /* next bit =0 -> round off */
            || (((q.LSDptr[-1] & ((uintD)bit(intDsize-1)-1)) ==0) /* =1 and further bits >0 or rest >0 -> round up */
                && (r.len==0)
                /* round-to-even */
                && ((q.LSDptr[-2] & bit(0)) ==0))) {
          /* round off */
        } else { /* round up */
          if ( inc_loop_down(&y_mantMSDptr[(uintP)len],len) ) {
            /* carry created by rounding up */
            y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
            /* increment exponents: */
            if (++(TheLfloat(y)->expo) == (uint32)(LF_exp_high+1))
              fehler_overflow();
          }
        }
      }
      end_arith_call();
      RESTORE_NUM_STACK /* restore num_stack */
    }
    /* assure LF_exp_low <= exp <= LF_exp_high : */
    if (TheLfloat(y)->expo == LF_exp_low-1) {
      if (underflow_allowed()) {
        fehler_underflow();
      } else {
        encode_LF0(len, return); /* result 0.0 */
      }
    }
  }
  return y;
}

/* returns for a Long-Float x>=0 : (sqrt x), a LF.
 LF_sqrt_LF(x)
 can trigger GC
 method:
 x = 0.0 -> result 0.0
 result-sign := positive,
 result-exponent := ceiling(e/2),
 result-mantissa:
   Extend the mantissa (n digits) by n+2 nulldigits behind.
   if e is odd, shift it (or only the first n+1 digits)
     by 1 bit to the right.
   calculate the integer-root, a n+1-digit-number with a
     leading 1.
   Round the last digit away:
     bit 15 = 0 -> round off,
     bit 15 = 1, rest =0 and root exact -> round-to-even,
     else round up.
   When rounding overflow occurs, shift mantissa by 1 bit to the right
     and increment exponent. */
local maygc object LF_sqrt_LF (object x)
{
  var uintL uexp = TheLfloat(x)->expo;
  if (uexp==0)
    return x; /* x=0.0 -> 0.0 as result */
  var uintC len = Lfloat_length(x);
  /* create radicand: */
  var uintD* r_MSDptr;
  var uintD* r_LSDptr;
  var uintL r_len = 2*(uintL)len+2; /* length of the radicand */
  if ((intWCsize < 32) && (r_len > (uintL)(bitc(intWCsize)-1)))
    fehler_LF_toolong();
  {
    SAVE_NUM_STACK /* save num_stack */
    num_stack_need(r_len, r_MSDptr=,r_LSDptr=);
    if ((uexp & bit(0)) == (LF_exp_mid & bit(0))) { /* exponent even */
      var uintD* ptr =
        copy_loop_up(&TheLfloat(x)->data[0],r_MSDptr,len); /* copy n digits */
      clear_loop_up(ptr,len+2); /* append n+2 Nulldigits */
    } else { /* exponent odd */
      begin_arith_call();
      var uintD carry_rechts = /* copy n digits and shift by 1 bit to the right */
        shiftrightcopy_loop_up(&TheLfloat(x)->data[0],r_MSDptr,len,1,0);
      var uintD* ptr = &r_MSDptr[(uintP)len];
      *ptr++ = carry_rechts; /* append carry and */
      clear_loop_up(ptr,len+1); /* n+1 Nulldigits */
      end_arith_call();
    }
    /* Compute ((uexp - LF_exp_mid + 1) >> 1) + LF_exp_mid without risking
       uintL overflow. */
    uexp = ((uexp - ((LF_exp_mid - 1) & 1)) >> 1) - ((LF_exp_mid - 1) >> 1)
           + LF_exp_mid;
    /* allocate result: */
    var object y = allocate_lfloat(len,uexp,0);
    var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
    /* calculate root: */
    var DS w;
    var bool exactp;
    UDS_sqrt(r_MSDptr,r_len,r_LSDptr, &w, exactp=);
    /* w is the integer-root, a n+1-digit-number. */
    copy_loop_up(w.MSDptr,y_mantMSDptr,len); /* copy NUDS to y */
    /* round: */
    if (((sintD)(w.LSDptr[-1]) >= 0) /* next bit =0 -> round off */
        || (((w.LSDptr[-1] & ((uintD)bit(intDsize-1)-1)) ==0) /* =1 and further bits >0 or rest >0 -> round up */
            && exactp
            /* round-to-even */
            && ((w.LSDptr[-2] & bit(0)) ==0))) {
      /* round off */
    } else { /* round up */
      if ( inc_loop_down(&y_mantMSDptr[(uintP)len],len) ) {
        /* carry by rounding up */
        y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
        (TheLfloat(y)->expo)++; /* increment exponent  */
      }
    }
    RESTORE_NUM_STACK /* restore num_stack */
    return y;
  }
}

/* LF_to_I(x) converts a Long-Float x, that represents an integer number,
 into an Integer.
 can trigger GC
 method:
 If x=0.0, result 0.
 Else (ASH sign*mantissa (e-16n)). */
local maygc object LF_to_I (object x)
{
  var uintL uexp = TheLfloat(x)->expo;
  if (uexp==0)
    return Fixnum_0; /* x=0.0 -> result 0 */
  /* turn mantissa into an Integer: */
  var uintD* MSDptr;
  var uintD* LSDptr;
  var uintC len = Lfloat_length(x);
  var uintC len1 = len+1; /* need 1 Digit more */
  if (uintWCoverflow(len1))
    fehler_LF_toolong();
  {
    SAVE_NUM_STACK /* save num_stack */
    num_stack_need(len1, MSDptr=,LSDptr=);
    copy_loop_up(&TheLfloat(x)->data[0],&MSDptr[1],len); /* copy mantissa */
    MSDptr[0] = 0; /* and additional nulldigit */
    /* mantissa is the UDS MSDptr/len1/LSDptr. */
    if (R_minusp(x))
      /* x<0 -> negate mantissa: */
      neg_loop_down(LSDptr,len1);
    /* sign*mantissa is the DS MSDptr/len1/LSDptr. */
    pushSTACK(DS_to_I(MSDptr,len1)); /* sign*mantissa as Integer */
    RESTORE_NUM_STACK /* restore num_stack */
  }
  /* form e-16n = uexp-LF_exp_mid-16n as Integer: */
  var uintL sub = LF_exp_mid + intDsize*(uintL)len;
  var object shiftcount = UL_UL_minus_I(uexp,sub);
  /* execute (ASH Vorzeichen*Mantisse (- e 16n)) : */
  return I_I_ash_I(popSTACK(),shiftcount);
}

/* I_to_LF(x,len,signal_overflow) converts an integer x to a long-float with
 len digits, and rounds thereby.
 can trigger GC
 method:
 x=0 -> result 0.0
 Memorize sign of x.
 x:=(abs x)
 exponent:=(integer-length x)
 let mantissa contain the most significant 16n bits of the Integer x
    (with the leading 16-(e mod 16) nullbits to be discarded).
 Round the further bits away:
   There are no more -> round off,
   next bit = 0 -> round off,
   next bit bit = 1 and rest =0 -> round-to-even,
   next bit bit = 1 and rest >0 -> round up.
 When rounding up: rounding overflow -> shift mantissa by 1 bit to the right
   and increment exponent. */
local maygc object I_to_LF (object x, uintC len, bool signal_overflow)
{
  if (eq(x,Fixnum_0)) {
    encode_LF0(len, return); /* x=0 -> result 0.0 */
  }
  var signean sign = R_sign(x); /* sign of x */
  if (!(sign==0))
    x = I_minus_I(x); /* take absolut value of x */
  var uintL exp = I_integer_length(x); /* (integer-length x) < intDsize*2^intWCsize */
  /* test, if exp <= LF_exp_high-LF_exp_mid : */
  if ((log2_intDsize+intWCsize < 32)
      && ((uintL)(intDsize*bitc(intWCsize)-1) <=
          (uintL)(LF_exp_high-LF_exp_mid))) {
    /* guarantees exp <= intDsize*2^intWCsize-1 <= LF_exp_high-LF_exp_mid */
  } else {
    if (!(exp <= (uintL)(LF_exp_high-LF_exp_mid))) {
      if (signal_overflow) fehler_overflow(); else return nullobj;
    }
  }
  /* build Long-Float: */
  pushSTACK(x);
  var object y = allocate_lfloat(len,exp+LF_exp_mid,sign);
  var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
  var uintD* x_MSDptr;
  var uintC x_len;
  I_to_NDS_nocopy(popSTACK(), x_MSDptr=,x_len=,); /* form NDS for x, x_len>0 */
  /* shift x_MSDptr/x_len/.. by (exp mod 16) bits to the right and fill
     into y (particularly: only at most len digits): */
  var uintL shiftcount = exp % intDsize;
  /* the NDS begins with intDsize-shiftcount nullbits, then comes a 1. */
  begin_arith_call();
  if (x_len > len) {
    x_len -= 1+len;
    if (shiftcount>0) {
      var uintD carry_rechts =
        shiftrightcopy_loop_up(&x_MSDptr[1],y_mantMSDptr,len,shiftcount,x_MSDptr[0]);
      /* mantissa is filled. Round: */
      if (((sintD)carry_rechts >= 0) /* next bit =0 -> round off */
          || (((carry_rechts & ((uintD)bit(intDsize-1)-1)) ==0) /* =1, rest >0 -> round up */
              && !test_loop_up(&x_MSDptr[1+(uintP)len],x_len)
              /* round-to-even */
              && ((y_mantMSDptr[(uintP)len-1] & bit(0)) ==0)))
        goto ab; /* round off */
      else
        goto auf; /* round up */
    } else {
      copy_loop_up(&x_MSDptr[1],y_mantMSDptr,len);
      /* mantissa is filled. Round: */
      var uintD* ptr = &x_MSDptr[1+(uintP)len];
      if ((x_len==0) /* no more bits -> round off */
          || ((sintD)ptr[0] >= 0) /* next bit =0 -> round off */
          || (((ptr[0] & ((uintD)bit(intDsize-1)-1)) ==0) /* =1, rest >0 -> round up */
              && !test_loop_up(&ptr[1],x_len-1)
              /* round-to-even */
              && ((ptr[-1] & bit(0)) ==0)))
        goto ab; /* round off */
      else
        goto auf; /* round up */
    }
   auf: /* round up */
    if ( inc_loop_down(&y_mantMSDptr[(uintP)len],len) ) {
      /* carry due to rounding up */
      y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
      /* increment exponent: */
      if ((log2_intDsize+intWCsize < 32)
          && ((uintL)(intDsize*bitc(intWCsize)-1) <
              (uintL)(LF_exp_high-LF_exp_mid))) {
        /* guarantees exp < intDsize*2^intWCsize-1 <= LF_exp_high-LF_exp_mid */
        (TheLfloat(y)->expo)++; /* now, exp <= LF_exp_high-LF_exp_mid */
      } else {
        if (++(TheLfloat(y)->expo) == (uint32)(LF_exp_high+1)) {
          if (signal_overflow) fehler_overflow(); else return nullobj;
        }
      }
    }
   ab: /* round off */
    ;
  } else { /* x_len <= len */
    var uintD carry_rechts;
    len -= x_len;
    x_len -= 1;
    if (shiftcount>0) {
      carry_rechts = shiftrightcopy_loop_up(&x_MSDptr[1],y_mantMSDptr,x_len,shiftcount,x_MSDptr[0]);
    } else {
      copy_loop_up(&x_MSDptr[1],y_mantMSDptr,x_len); carry_rechts = 0;
    }
    var uintD* y_ptr = &y_mantMSDptr[x_len];
    *y_ptr++ = carry_rechts; /* carry as next digit */
    clear_loop_up(y_ptr,len); /* then len-x_len nulldigits */
  }
  end_arith_call();
  return y;
}

/* RA_to_LF(x,len,signal_overflow) converts a rational number x to a long-float
 with len digits and rounds thereby.
 can trigger GC
 method:
 x integer -> obvious.
 x = +/- a/b with Integers a,b>0:
   let k,m be chosen, so that
     2^(k-1) <= a < 2^k, 2^(m-1) <= b < 2^m.
   Then, 2^(k-m-1) < a/b < 2^(k-m+1).
   result-sign := sign of x.
   Calculate k=(integer-length a) and m=(integer-length b).
   result-exponent := k-m.
   result-mantissa:
     calculate floor(2^(-k+m+16n+1)*a/b) :
       When k-m>=16n+1, divide a by (ash b (k-m-16n-1)),
       when k-m<16n+1 divide (ash a (-k+m+16n+1)) by b.
     The first value is >=2^16n, <2^(16n+2).
     If it is >=2^(16n+1) , increase exponent by 1,
       round 2 bits away and shift by 2 bits to the right;
     if it is <2^(16n+1) ,
       round 1 bit away and shift by 1 bit to the right. */
local maygc object RA_to_LF (object x, uintC len, bool signal_overflow)
{
  if (RA_integerp(x))
    return I_to_LF(x,len,signal_overflow);
  /* x Ratio */
  pushSTACK(TheRatio(x)->rt_den); /* b */
  var signean sign = RT_sign(x); /* sign */
  x = TheRatio(x)->rt_num; /* +/- a */
  if (!(sign==0))
    x = I_minus_I(x); /* take absolute value, return a */
  pushSTACK(x);
  /* stack layout: b, a. */
  var sintL lendiff = I_integer_length(x) /* (integer-length a) */
    - I_integer_length(STACK_1); /* (integer-length b) */
  /* |lendiff| < intDsize*2^intWCsize. For LF-Exponenten there is a sintL
     available, so we need no test for Overflow or Underflow. */
  {
    var uintL difflimit = intDsize*(uintL)len + 1; /* 16n+1 */
    var object zaehler;
    var object nenner;
    if (lendiff > (sintL)difflimit) {
      /* 0 <= k-m-16n-1 < k < intDsize*2^intWCsize */
      nenner = I_I_ash_I(STACK_1,(log2_intDsize+intWCsize<=oint_data_len /* intDsize*2^intWCsize <= 2^oint_data_len ? */
                                  ? fixnum( (uintL)(lendiff - difflimit))
                                  : UL_to_I((uintL)(lendiff - difflimit))));
      zaehler = popSTACK(); /* a */
      skipSTACK(1);
    } else { /* 0 < -k+m+16n+1 <= m+1 + 16n < intDsize*2^intWCsize + intDsize*2^intWCsize */
      var object shiftcount = /* -k+m+16n+1 */
        (log2_intDsize+intWCsize+1<=oint_data_len /* 2*intDsize*2^intWCsize <= 2^oint_data_len ? */
         ? fixnum( (uintL)(difflimit - lendiff))
         : UL_to_I((uintL)(difflimit - lendiff)));
      zaehler = I_I_ash_I(popSTACK(),shiftcount); /* (ash a -k+m+16n+1) */
      nenner = popSTACK(); /* b */
    }
    /* execute division zaehler/nenner (engl. numerator/denominator): */
    I_I_divide_I_I(zaehler,nenner);
  }
  /* stack layout: q, r. */
  /* 2^16n <= q < 2^(16n+2), so q is Bignum with n+1 Digits. */
  var object y = allocate_lfloat(len,lendiff+LF_exp_mid,sign); /* new Long-Float */
  var uintD* y_mantMSDptr = &TheLfloat(y)->data[0];
  begin_arith_call();
  {
    var uintD* q_MSDptr = &TheBignum(STACK_1)->data[0];
    if (q_MSDptr[0] == 1) { /* first digit =1 or =2,3 ? */
      /* 2^16n <= q < 2^(16n+1), so 2^(k-m-1) < a/b < 2^(k-m). */
      /* fill mantissa with a shift loop by 1 bit to the right: */
      var uintD rounding_bit =
        shiftrightcopy_loop_up(&q_MSDptr[1],y_mantMSDptr,len,1,1);
      if ((rounding_bit == 0) /* shifted out bit =0 -> round off */
          || (eq(STACK_0,Fixnum_0) /* =1 and rest r > 0 -> round up */
              /* round-to-even */
              && ((y_mantMSDptr[(uintP)len-1] & bit(0)) ==0)))
        goto ab; /* round off */
      else
        goto auf; /* round up */
    } else {
      /* 2^(16n+1) <= q < 2^(16n+2), also 2^(k-m) < a/b < 2^(k-m+1). */
      /* fill mantissa with a shift loop by 2 bits to the right: */
      var uintD rounding_bits =
        shiftrightcopy_loop_up(&q_MSDptr[1],y_mantMSDptr,len,2,q_MSDptr[0]);
      (TheLfloat(y)->expo)++; /* increment exponent to k-m+1 */
      if (((sintD)rounding_bits >= 0) /* shifted out bit =0 -> round off */
          || (((rounding_bits & bit(intDsize-2)) ==0) /* =1 and next bit =1 or rest r > 0 -> round up */
              && eq(STACK_0,Fixnum_0)
              /* round-to-even */
              && ((y_mantMSDptr[(uintP)len-1] & bit(0)) ==0)))
        goto ab; /* round off */
      else
        goto auf; /* round up */
    }
  }
 auf: /* round up */
  if ( inc_loop_down(&y_mantMSDptr[(uintP)len],len) ) {
    /* carry due to rounding up */
    y_mantMSDptr[0] = bit(intDsize-1); /* mantissa := 10...0 */
    (TheLfloat(y)->expo)++; /* increment exponent */
  }
 ab: /* round off */
  end_arith_call();
  skipSTACK(2);
  return y;
}