1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
|
;; CLISP interface to PARI <http://pari.math.u-bordeaux.fr/>
;; Copyright (C) 1995 Michael Stoll
;; Copyright (C) 2004-2007 Sam Steingold
;; This is free software, distributed under the GNU GPL
(defpackage "PARI"
(:modern t)
(:use #:cl #:ffi))
(in-package "PARI")
(pushnew "PARI" custom:*system-package-list* :test #'string=)
(setf (documentation (find-package "PARI") 'sys::impnotes) "pari")
(default-foreign-language :stdc)
(pushnew :pari *features*)
(provide "pari")
;;; Declare all the pari types, variables, functions, ...
(c-lines "#undef T~%#include <pari/pari.h>~%")
;; #ifdef LONG_IS_32BIT
;; #define SIGNBITS 0xff000000L
;; #define SIGNSHIFT 24
(defconstant pari-sign-byte (byte 8 24))
;; #define TYPBITS 0xff000000L
;; #define TYPSHIFT 24
(defconstant pari-type-byte (byte 8 24))
;; #define LGBITS 0xffffL
(defconstant pari-length-byte (byte 16 0))
;; #define LGEFBITS 0xffffL
(defconstant pari-effective-length-byte (byte 16 0))
;; #define EXPOBITS 0xffffffL
(defconstant pari-exponent-byte (byte 24 0))
;; #define HIGHEXPOBIT 0x800000L
(defconstant pari-exponent-offset #x800000)
;; #define VALPBITS 0xffffL
(defconstant pari-valuation-byte (byte 16 0))
;; #define HIGHVALPBIT 0x8000L
(defconstant pari-valuation-offset #x8000)
;; #define PRECPBITS 0xffff0000L
;; #define PRECPSHIFT 16
(defconstant pari-precision-byte (byte 16 16))
;; #define VARNBITS 0xff0000L
;; #define VARNSHIFT 16
(defconstant pari-varno-byte (byte 8 16))
;; #endif
;; #ifdef LONG_IS_64BIT
;; ...
;; #endif
;; <parigen.h>
;;; The pari object type:
;;; typedef long *GEN;
;;; To prevent CLISP from thinking we want to do something with the long
;;; such a pointer points to, we replace long* by void*:
(def-c-type pari-gen c-pointer)
;; <paristio.h>
;; typedef struct entree {
;; char *name;
;; ulong valence;
;; void *value;
;; long menu;
;; char *code;
;; struct entree *next;
;; char *help;
;; void *args;
;; } entree;
(def-c-struct entree
(name c-string)
(valence ulong)
(value c-pointer)
(menu long)
(code c-string)
(next (c-pointer entree)) ; (c-ptr-null entree)
(help c-string)
(args c-pointer))
(defun next-entree (e) (foreign-value (entree-next e)))
(export 'next-entree)
;; typedef unsigned char *byteptr;
(def-c-type byteptr (c-ptr uchar))
;; typedef ulong pari_sp;
(def-c-type pari_sp ulong)
(def-c-var pari-series-precision (:name "precdl") (:type ulong))
;; there is no global prec in PARI 2
(c-lines "ulong clisp_get_prec (void);~%") ; prototype
(c-lines "ulong clisp_get_prec (void) { return /*prec*/ 64; }~%")
(c-lines "void clisp_set_prec (ulong p);~%") ; prototype
(c-lines "void clisp_set_prec (ulong p) { /*prec=*/(void)p; }~%")
(def-call-out pari-get-real-prec-raw (:name "clisp_get_prec")
(:arguments) (:return-type ulong))
(def-call-out pari-set-real-prec-raw (:name "clisp_set_prec")
(:arguments (p ulong)) (:return-type nil))
(export '(pari-real-precision pari-series-precision))
(define-symbol-macro pari-real-precision (pari-get-real-prec-digits))
(defun pari-get-real-prec-digits ()
(values (floor (* #.(* 32 (log 2 10)) (- (pari-get-real-prec-raw) 2)))))
(defun (setf pari-get-real-prec-digits) (digits)
(let ((bits (ceiling (* #.(log 10 2) digits))))
(setf (ext:long-float-digits) bits)
(pari-set-real-prec-raw (+ (ceiling bits 32) 2))
digits))
;; a scratch variable for CLISP: (defined in clisp-interface.c)
(c-lines "extern void* clispTemp;~%")
(def-c-var temp (:name "clispTemp") (:type c-pointer))
;; extern long lontyp[],lontyp2[];
;; extern long quitting_pari;
;; extern jmp_buf environnement;
;; extern FILE *outfile, *logfile, *infile, *errfile;
;; extern ulong avma,bot,top;
(def-c-var pari-avma (:name "avma") (:type pari_sp))
(def-c-var pari-top (:name "top") (:type pari_sp))
(def-c-var pari-bot (:name "bot") (:type pari_sp))
;; <paricom.h>
(def-c-var pari-pi (:name "gpi") (:type pari-gen) (:read-only t))
(def-c-var pari-euler (:name "geuler") (:type pari-gen) (:read-only t))
(def-c-var pari-bernzone (:name "bernzone") (:type pari-gen) (:read-only t))
(def-c-var pari-1 (:name "gen_1") (:type pari-gen) (:read-only t))
(def-c-var pari-2 (:name "gen_2") (:type pari-gen) (:read-only t))
(def-c-var pari-1/2 (:name "ghalf") (:type pari-gen) (:read-only t))
(def-c-var pari-i (:name "gi") (:type pari-gen) (:read-only t))
(def-c-var pari-0 (:name "gen_0") (:type pari-gen) (:read-only t))
(def-c-var pari--1 (:name "gen_m1") (:type pari-gen) (:read-only t))
;;(def-c-var pari-nil (:name "gnil") (:type pari-gen) (:read-only t))
;; extern GEN *polun,*polx;
(def-c-var pari-poly-1 (:name "polun") (:type (c-ptr pari-gen)) (:read-only t))
(def-c-var pari-poly-x (:name "polx") (:type (c-ptr pari-gen)) (:read-only t))
;; extern GEN primetab;
(def-c-var primetab (:type pari-gen) (:read-only t))
;; extern long *ordvar;
(def-c-var ordvar (:type (c-ptr long)) (:read-only t))
;; extern GEN polvar;
(def-c-var polvar (:type pari-gen) (:read-only t))
;; extern byteptr diffptr;
(def-c-var diffptr (:type byteptr) (:read-only t))
(c-lines "const unsigned long maxvarn = MAXVARN;~%")
(def-c-var maxvarn (:type ulong) (:read-only t))
;; extern entree **varentries;
(def-c-var varentries (:type (c-pointer (c-ptr-null entree))) (:read-only t))
(defun varentry (i)
(assert (< i maxvarn) (i)
"~S: index ~:D is too large (max ~:D)" 'varentry i maxvarn)
(let ((e (offset varentries (* i #.(sizeof '(c-pointer (c-ptr-null entree))))
'(c-pointer (c-ptr-null entree)))))
(and e (foreign-value e))))
;; extern int new_galois_format;
(def-c-var new_galois_format (:type (c-ptr int)))
;; extern int factor_add_primes;
(def-c-var factor_add_primes (:type (c-ptr int)))
;; extern ulong DEBUGFILES, DEBUGLEVEL, DEBUGMEM
(def-c-var debugfiles (:name "DEBUGFILES") (:type ulong))
(def-c-var debuglevel (:name "DEBUGLEVEL") (:type ulong))
(def-c-var debugmem (:name "DEBUGMEM") (:type ulong))
;; entree *is_entry(char *s);
(def-call-out is_entry (:arguments (s c-string))
(:return-type (c-ptr-null entree)))
;; this optimization is not necessary, it just saves some memory
(c-lines "char* get_entry_doc (char* s);~%") ; prototype
(c-lines "char* get_entry_doc (char* s) { entree *e = is_entry(s); return e==NULL?NULL:e->help; }~%")
(def-call-out get_entry_doc (:arguments (s c-string)) (:return-type c-string))
(defun get-pari-docstring (str name)
(let ((doc (get_entry_doc str)))
(and doc
(format nil "~A corresponds to the gp function ~A:~%~A"
name str doc))))
(def-c-const PARIVERSION (:type c-string))
(def-c-const PARI_VERSION_CODE)
(def-c-const PARI_VERSION_SHIFT)
(defconstant pari-version
(list PARIVERSION
(ldb (byte PARI_VERSION_SHIFT (* 2 PARI_VERSION_SHIFT))
PARI_VERSION_CODE)
(ldb (byte PARI_VERSION_SHIFT PARI_VERSION_SHIFT) PARI_VERSION_CODE)
(ldb (byte PARI_VERSION_SHIFT 0) PARI_VERSION_CODE)))
(export 'pari-version)
;;; /* init.c */
;; long allocatemoremem(size_t newsize);
(def-call-out allocatemoremem (:arguments (newsize ulong)) (:return-type long))
(defun allocatemem (&optional (newsize 0)) (allocatemoremem newsize))
(c-lines "#include \"cpari.h\"~%")
(def-call-out pari-init (:name "init_for_clisp")
(:arguments (parisize long) (maxprime long)) (:return-type nil))
(def-call-out pari-fini (:name "fini_for_clisp")
(:arguments (leaving int)) (:return-type nil))
(export '(pari-init pari-fini allocatemem))
(c-lines :init-always "init_for_clisp(4000000,500000);~%")
(c-lines :fini "fini_for_clisp(1);~%")
;; #define gval(x,v) ggval(x,polx[v])
;; #define gvar9(x) ((typ(x)==9)?gvar2(x):gvar(x))
;; #define coeff(a,i,j) (*((long*)(*(a+(j)))+(i)))
;; #define gcoeff(a,i,j) (GEN)coeff(a,i,j)
;; #define bern(i) (GEN)(bernzone + (i)*(*(bernzone + 2)) + 3)
(eval-when (compile load eval)
(defun make-arg-spec (arg)
(if (symbolp arg)
`(,arg pari-gen :in :none)
(case (length arg)
(1 `(,@arg pari-gen :in :none))
(2 `(,@arg :in :none))
(3 `(,@arg :none))
(4 arg)
(t `(,(first arg) ,(second arg) ,(third arg) ,(fourth arg))))))
(defun make-pari-name (sym)
(intern (ext:string-concat "%" (symbol-name sym)) (find-package "PARI")))
(defun convert-to-lambdalist (args)
(let ((flag nil))
(mapcan #'(lambda (arg)
(if (symbolp arg)
(list arg)
(case (length arg)
((1 2) (list (first arg)))
((3 4) (if (eq (third arg) :out) '() (list (first arg))))
(t `(,@(if flag '() (progn (setq flag t) '(&key)))
(,(first arg) ,(fifth arg)))))))
args)))
(defun convert-to-arglist (args)
(mapcan #'(lambda (arg)
(if (symbolp arg)
`((convert-to-pari ,arg))
(case (length arg)
(1 `((convert-to-pari ,(first arg))))
(2 (if (eq (second arg) 'pari-gen)
`((convert-to-pari ,(first arg)))
`(,(first arg))))
(t (if (eq (third arg) :out) '()
(if (eq (second arg) 'pari-gen)
`((convert-to-pari ,(first arg)))
`(,(first arg))))))))
args))
(defun get-additional-return-spec (args)
(mapcan #'(lambda (arg)
(if (and (listp arg) (eq (third arg) :out))
(if (and (consp (second arg))
(eq (first (second arg)) 'c-ptr))
`((,(first arg) ,(second (second arg))))
(error "~S: :OUT parameter in ~S is not a pointer."
'get-additional-return-spec arg))
'()))
args))
(defun make-defun (name pari-name type args)
(let ((add-values (get-additional-return-spec args)))
(if (null add-values)
`(progn
(export ',name)
(defun ,name ,(convert-to-lambdalist args)
,(case type
(pari-gen
`(make-internal-pari-object
(,pari-name ,@(convert-to-arglist args))))
(pari-bool
`(convert-to-boolean
(,pari-name ,@(convert-to-arglist args))))
(t `(,pari-name ,@(convert-to-arglist args))))))
(let* ((all-values (cons (list name type) add-values))
(temp-vars (mapcar #'(lambda (v) (declare (ignore v)) (gensym))
all-values)))
`(progn
(export ',name)
(defun ,name ,(convert-to-lambdalist args)
(multiple-value-bind ,temp-vars
(,pari-name ,@(convert-to-arglist args))
(values
,@(mapcar #'(lambda (vs tv)
(case (second vs)
(pari-gen `(make-internal-pari-object ,tv))
(pari-bool `(convert-to-boolean ,tv))
(t tv)))
all-values temp-vars)))))))))
(defun make-documentation (name gp-name args)
`(let ((docstring (get-pari-docstring ,gp-name ',name))
(docstr2 ,(format nil "Syntax: (~S~{ ~S~})~%"
name (convert-to-lambdalist args))))
(setf (documentation ',name 'function)
(if docstring
(format nil "~A~%~A" docstring docstr2)
docstr2)))))
;;; The macro pari-call-out declares the pari functions to CLISP.
;;; Its syntax is
;;; (pari-call-out <fun-spec> <pari-name> (<arg-spec>*) [<gp-name>])
;;; <fun-spec> ::= <name> | (<name> [<type> [<allocation>]])
;;; <arg-spec> ::= <name>
;;; | (<name> [<type> [<mode> [<allocation> [<default>]]]])
;;; <pari-name>, <gp-name> ::= <string>
;;; <name> ::= <symbol>
;;; <type> ::= pari-gen | pari-bool | <c-type>
;;; <mode> ::= :in | :out
;;; <allocation> ::= :none | :malloc-free | :alloca
;;; <default> ::= <expression>
;;; <gp-name> defaults to <pari-name>, <type> defaults to pari-gen,
;;; <mode> defaults to :in, and <allocation> defaults to :none.
;;; This defines a foreign function <pari-name> with arguments and return
;;; type as specified. Moreover, if <gp-name> is non-nil, a function
;;; <name> is defined and <name> is exported from the PARI package.
;;; Arguments and return value are converted as necessary.
;;; <arg-spec>s with <default> present must occur consecutively at the
;;; end of the <arg-spec> list (with :out parameters removed);
;;; the corresponding arguments are made
;;; into keyword arguments to <name> with defaults as given.
;;; If the return-type given was pari-bool, the result should be a pari
;;; zero or one and is converted to nil or t, respectively.
;;; A documentation string is provided.
(defmacro pari-call-out (fun lib-name args &optional (gp-name lib-name))
(let* ((name (if (symbolp fun) fun (first fun)))
(type (if (symbolp fun) 'pari-gen (second fun)))
(rtype-spec (if (or (symbolp fun) (eq type 'pari-bool))
'(pari-gen)
(rest fun)))
(pari-name (make-pari-name name)))
`(progn
(def-call-out ,pari-name
(:name ,lib-name)
(:return-type ,@rtype-spec)
(:arguments ,@(mapcar #'make-arg-spec args))
(:language :stdc))
,@(when gp-name
`(,(make-defun name pari-name type args)
,(make-documentation name gp-name args)))
',pari-name)))
;;; pari-call-out-prec has the same syntax as pari-call-out; it additionally
;;; provides a keyword argument prec defaulting to pari-get-real-prec-raw.
(defmacro pari-call-out-prec (fun lib-name args &optional (gp-name lib-name))
`(pari-call-out ,fun ,lib-name
(,@args (prec long :in :none (pari-get-real-prec-raw))) ,gp-name))
;;; /* alglin.c */
;; GEN gtrans(GEN x);
(pari-call-out matrix-transpose "gtrans" (x) "trans")
;; GEN gscalmat(GEN x, long n);
(pari-call-out scalar-matrix "gscalmat" (x (n long)) "?")
;; GEN gscalsmat(long x, long n);
;; GEN gaddmat(GEN x, GEN y);
;; GEN gaddsmat(long s, GEN y);
;; GEN inverseimage(GEN mat, GEN y);
(pari-call-out matrix-inverse-image "inverseimage" (mat y))
;; GEN ker(GEN x);
(pari-call-out matrix-kernel "ker" (x))
;; GEN keri(GEN x);
(pari-call-out matrix-kernel-integral "keri" (x))
;; GEN kerreel(GEN x, long prec);
;;(pari-call-out-prec matrix-kernel-inexact "kerreel" (x) "kerr")
;; GEN image(GEN x);
(pari-call-out matrix-image "image" (x))
;; GEN imagereel(GEN x, long prec);
;;(pari-call-out-prec matrix-image-inexact "imagereel" (x) "imager")
;; GEN imagecompl(GEN x);
(pari-call-out matrix-image-complement "imagecompl" (x))
;; GEN image2(GEN x);
;; GEN suppl(GEN x);
(pari-call-out matrix-supplement "suppl" (x) "supplement")
;; GEN eigen(GEN x, long prec);
(pari-call-out-prec matrix-eigenvectors "eigen" (x))
;; GEN hess(GEN x);
(pari-call-out matrix-to-hessenberg-form "hess" (x))
;; GEN carhess(GEN x, long v);
(pari-call-out characteristic-polynomial-hessenberg "carhess"
(x (varno long)) "char2")
;; GEN gauss(GEN a, GEN b);
(pari-call-out matrix-solve "gauss" (a b))
;; GEN invmat(GEN a);
;; GEN det(GEN a);
(pari-call-out matrix-determinant "det" (a))
;; GEN detreel(GEN a);
;; GEN det2(GEN a);
;; GEN caract(GEN x, int v);
;; GEN caradj(GEN x, long v, GEN *py);
(pari-call-out characteristic-polynomial-and-adjoint-matrix "caradj"
(x (varno long :in :none 0) (py (c-ptr pari-gen) :out :alloca)) "?")
;; GEN adj(GEN x);
(pari-call-out adjoint-matrix "adj" (x))
;; GEN caradj0(GEN x, long v);
(pari-call-out characteristic-polynomial "caradj0"
(x (varno long :in :none 0)) "char")
;; GEN gtrace(GEN x);
(pari-call-out pari-trace "gtrace" (x))
;; GEN quicktrace(GEN x,GEN sym);
;;(pari-call-out pari-quicktrace "quicktrace" (x sym))
;; GEN assmat(GEN x);
;; GEN gnorm(GEN x);
(pari-call-out norm "gnorm" (x) "norm")
;; GEN gnorml2(GEN x);
(pari-call-out l2-norm "gnorml2" (x) "norml2")
;; GEN gconj(GEN x);
(pari-call-out pari-conjugate "gconj" (x) "conj")
;; GEN conjvec(GEN x,long prec);
(pari-call-out-prec vector-of-conjugates "conjvec" (x))
;; GEN idmat(long n);
(pari-call-out identity-matrix "idmat" ((n long)))
;; GEN concat(GEN x, GEN y);
(pari-call-out pari-concatenate "concat" (x y))
;; GEN extract(GEN x, GEN l);
(pari-call-out vector-extract "extract" (x l))
;; GEN matextract(GEN x, GEN l1, GEN l2);
(pari-call-out matrix-extract "matextract" (x l1 l2))
;; GEN gtomat(GEN x);
(pari-call-out convert-to-matrix "gtomat" (x) "mat")
;; GEN invmulmat(GEN a, GEN b);
;; GEN invmulmatreel(GEN a, GEN b);
;;(pari-call-out matrix-invert-and-multiply-inexact "invmulmatreel" (a b) "?")
;; GEN invmatreel(GEN a);
;;(pari-call-out matrix-invert-inexact "invmatreel" (a) "matinvr")
;; GEN sqred(GEN a);
(pari-call-out symmetric-matrix-sqred "sqred" (a))
;; GEN sqred1(GEN a);
;; GEN sqred2(GEN a, long flg);
;; GEN sqred3(GEN a);
;; GEN signat(GEN a);
(pari-call-out symmetric-matrix-signature "signat" (a))
;; GEN jacobi(GEN a, long prec);
(pari-call-out-prec symmetric-matrix-eigenstuff "jacobi" (a))
;; GEN matrixqz(GEN x, GEN pp);
(pari-call-out matrix-qz "matrixqz" (x pp))
;; GEN matrixqz2(GEN x);
(pari-call-out matrix-qz2 "matrixqz2" (x))
;; GEN matrixqz3(GEN x);
(pari-call-out matrix-qz3 "matrixqz3" (x))
;; GEN indexrank(GEN x);
(pari-call-out matrix-indexrank "indexrank" (x))
;; GEN kerint(GEN x);
(pari-call-out matrix-kernel-integral-reduced "kerint" (x))
;; GEN kerint1(GEN x);
(pari-call-out matrix-kernel-integral-reduced-1 "kerint1" (x))
;; GEN kerint2(GEN x);
;; GEN intersect(GEN x, GEN y);
(pari-call-out matrix-subspace-intersection "intersect" (x y))
;; GEN deplin(GEN x);
(pari-call-out linear-dependence "deplin" (x))
;; GEN detint(GEN x);
(pari-call-out matrix-determinant-multiple "detint" (x))
;; GEN hnfspec(long** mat,GEN* ptdep,GEN* ptmatc,long* vperm,GEN* ptmatalpha,long co,long li,long k0,long* ptnlze,long* ptcol);
;; GEN hnffinal(GEN matgen,GEN* ptpdep,GEN* ptmatc,long* vperm,GEN* ptmatalpha,long lnz,long co,long li,long col,long lig,long nlze,long* ptcol);
;; GEN hnfadd(GEN mit,GEN* ptpdep,GEN* ptmatc,long* vperm,GEN* ptmatalpha,long co,long li,long col,long* ptnlze,GEN extramat,GEN extramatc);
;; long rank(GEN x);
(pari-call-out (matrix-rank long) "rank" (x))
;; GEN perf(GEN a);
(pari-call-out (symmetric-matrix-perfection) "perf" (a))
;;; /* anal.c */
;; GEN readexpr(char *t);
;; GEN readexpr(char **c);
;; GEN readseq(char *t);
(pari-call-out read-from-string "readseq" ((str c-string :in :alloca)) nil)
;; void switchin(char *name);
;; GEN switchout(char *name);
;; GEN fliplog(void);
;;; /* arith.c */
;; GEN racine(GEN a);
(pari-call-out pari-isqrt "racine" (a) "isqrt")
;; GEN mppgcd(GEN a, GEN b);
;; GEN mpfact(long n);
(pari-call-out factorial-integer "mpfact" ((n long)) "!")
;; GEN mpfactr(long n, long prec);
(pari-call-out-prec factorial-real "mpfactr" ((n long)) "fact")
;; GEN sfcont(GEN x, GEN x1, long k);
;; GEN sfcont2(GEN b, GEN x);
;; GEN gcf(GEN x);
(pari-call-out continued-fraction "gcf" (x) "cf")
;; GEN gcf2(GEN b, GEN x);
(pari-call-out continued-fraction-2 "gcf2" (b x) "cf2")
;; GEN pnqn(GEN x);
(pari-call-out continued-fraction-convergent "pnqn" (x))
;; GEN gboundcf(GEN x, long k);
(pari-call-out bounded-continued-fraction "gboundcf" (x (k long)) "boundcf")
;; GEN bestappr(GEN x, GEN k);
(pari-call-out best-rational-approximation "bestappr" (x k))
;; GEN addprimes(GEN primes);
(pari-call-out add-primes "addprimes" (primes) "addprimes")
;; GEN bezout(GEN a, GEN b, GEN *u, GEN *v);
;; GEN chinese(GEN x, GEN y);
(pari-call-out chinese-lift "chinese" (x y))
;; GEN Fp_inv(GEN a, GEN m);
;; GEN puissmodulo(GEN a, GEN n, GEN m);
;; GEN fibo(long n);
(pari-call-out fibonacci "fibo" ((n long)))
;; GEN nextprime(GEN n);
(pari-call-out next-prime "nextprime" (n) "nextprime")
;; GEN prime(long n);
(pari-call-out nth-prime "prime" ((n long)))
;; GEN primes(long n);
(pari-call-out first-n-primes "primes" ((n long)))
;; GEN phi(GEN n);
(pari-call-out euler-phi "phi" (n))
;; GEN decomp(GEN n);
;; GEN auxdecomp(GEN n, long all);
;; GEN smallfact(GEN n);
(pari-call-out factor-small "smallfact" (n))
;; GEN boundfact(GEN n, long lim);
(pari-call-out factor-bounded "boundfact" (n (lim long)))
;; GEN sumdiv(GEN n);
(pari-call-out sum-divisors "sumdiv" (n) "sigma")
;; GEN sumdivk(long k, GEN n);
(pari-call-out sum-divisor-powers "sumdivk" ((k long) n) "sigmak")
;; GEN numbdiv(GEN n);
(pari-call-out count-divisors "numbdiv" (n) "numdiv")
;; GEN binaire(GEN x);
(pari-call-out binaire "binaire" (x) "binaire")
;; GEN order(GEN x);
(pari-call-out order "order" (x))
;; GEN gener(GEN m);
(pari-call-out primitive-root "gener" (m) "primroot")
;; GEN znstar(GEN x);
(pari-call-out structure-of-z/n* "znstar" (x))
;; GEN divisors(GEN n);
(pari-call-out divisors "divisors" (n))
;; GEN classno(GEN x);
(pari-call-out quadratic-class-number "classno" (x))
;; GEN classno2(GEN x);
;; GEN hclassno(GEN x);
;; GEN fundunit(GEN x);
(pari-call-out quadratic-unit "fundunit" (x) "unit")
;; GEN regula(GEN x, long prec);
(pari-call-out-prec quadratic-regulator "regula" (x))
;; GEN compimag(GEN x, GEN y);
(pari-call-out compose-imag-qf "compimag" (x y))
;; GEN sqcomp(GEN x);
;; GEN qfi(GEN x, GEN y, GEN z);
(pari-call-out make-imag-qf "qfi" (x y z))
;; GEN qfr(GEN x, GEN y, GEN z, GEN d);
(pari-call-out make-real-qf "qfr" (x y z d))
;; GEN compreal(GEN x, GEN y);
;; GEN redreal(GEN x);
(pari-call-out reduce-real-qf "redreal" (x))
;; GEN sqcompreal(GEN x);
;; GEN rhoreal(GEN x);
(pari-call-out reduce-real-qf-one-step "rhoreal" (x))
;; GEN rhorealnod(GEN x, GEN isqrtD);
(pari-call-out reduce-real-qf-no-d-one-step "rhorealnod" (x isqrtD))
;; GEN redrealnod(GEN x, GEN isqrtD);
(pari-call-out reduce-real-qf-no-d "redrealnod" (x isqrtD))
;; GEN redimag(GEN x);
(pari-call-out reduce-imag-qf "redimag" (x))
;; GEN primeform(GEN x, GEN p, long prec);
(pari-call-out-prec prime-form "primeform" (x p) "pf")
;; GEN nucomp(GEN x, GEN y, GEN l);
(pari-call-out shanks-compose-imag-qf "nucomp" (x y l))
;; GEN nudupl(GEN x, GEN l);
(pari-call-out shanks-double-imag-qf "nudupl" (x l))
;; GEN nupow(GEN x, GEN n);
(pari-call-out shanks-power-imag-qf "nupow" (x n))
;; GEN comprealraw(GEN x, GEN y);
(pari-call-out compose-real-qf-raw "comprealraw" (x y))
;; GEN sqcomprealraw(GEN x);
;; GEN powrealraw(GEN x, long n, long prec);
(pari-call-out-prec power-real-qf-raw "powrealraw" (x (n long)))
;; GEN gkronecker(GEN x, GEN y);
;; GEN gkrogs(GEN x, long y);
;; GEN gcarreparfait(GEN x);
;; GEN gcarrecomplet(GEN x, GEN *pt);
;; GEN gisprime(GEN x);
(pari-call-out (prime? pari-bool) "gisprime" (x) "isprime")
;; GEN gispsp(GEN x);
(pari-call-out (pseudo-prime? pari-bool) "gispsp" (x) "ispsp")
;; GEN gissquarefree(GEN x);
(pari-call-out (square-free? pari-bool) "gissquarefree" (x) "issqfree")
;; GEN gisfundamental(GEN x);
(pari-call-out (fundamental-discriminant? pari-bool) "gisfundamental"
(x) "isfund")
;; GEN gbittest(GEN x, GEN n);
(pari-call-out (square? pari-bool) "gcarreparfait" (x) "issquare")
;; GEN gpseudopremier(GEN n, GEN a);
;; GEN gmillerrabin(GEN n, long k);
;; GEN gmu(GEN n);
;; GEN gomega(GEN n);
;; GEN gbigomega(GEN n);
;; long kronecker(GEN x, GEN y);
(pari-call-out (kronecker-symbol long) "kronecker" (x y) "kro")
;; GEN krosg(long s, GEN x);
;; GEN krogs(GEN x, long y);
;; GEN kross(long x, long y);
;; GEN kro8(GEN x, GEN y);
;; long mu(GEN n);
(pari-call-out (moebius-mu long) "mu" (n))
;; GEN omega(GEN n);
(pari-call-out (omega long) "omega" (n))
;; GEN bigomega(GEN n);
(pari-call-out (bigomega long) "bigomega" (n))
;; GEN hil(GEN x, GEN y, GEN p);
(pari-call-out (hilbert-symbol long) "hil" (x y p) "hil")
;; int carreparfait(GEN x);
;; GEN carrecomplet(GEN x, GEN *pt);
;; GEN bittest(GEN x, long n);
;; int isprime(GEN x);
;; GEN ispsp(GEN x);
;; GEN issquarefree(GEN x);
;; GEN isfundamental(GEN x);
;; GEN Fp_sqrt(GEN a, GEN p, GEN *pr);
;; int millerrabin(GEN n, long k);
;; GEN pseudopremier(GEN n, GEN a);
;; GEN inversemodulo(GEN a, GEN b, GEN *res);
;; byteptr initprimes(long maxnum);
;; void lucas(long n, GEN *ln, GEN *ln1);
;;; /* base.c */
;; GEN base(GEN x, GEN *y);
(pari-call-out nf-basis "base" (x (y (c-ptr pari-gen) :out :alloca)) "basis")
;; GEN smallbase(GEN x, GEN *y);
(pari-call-out nf-basis-small "smallbase"
(x (y (c-ptr pari-gen) :out :alloca)) "smallbasis")
;; GEN discf(GEN x);
(pari-call-out nf-field-discriminant "discf" (x))
;; GEN smalldiscf(GEN x);
(pari-call-out nf-field-discriminant-small "smalldiscf" (x))
;; GEN discf2(GEN x);
;; GEN hnf(GEN x);
(pari-call-out matrix-to-hnf "hnf" (x) "hermite")
;; GEN hnfhavas(GEN x);
;; GEN hnfnew(GEN x);
;; GEN hnfperm(GEN x);
;; GEN cleanmod(GEN x,long lim,GEN detmat,GEN detmatsur2);
;; GEN hnfmod(GEN x, GEN detmat);
(pari-call-out matrix-to-hnf-mod "hnfmod" (x detmat) "hermitemod")
;; GEN hnfmodid(GEN x,GEN p);
;; GEN smith(GEN x);
(pari-call-out matrix-elementary-divisors "smith" (x))
;; GEN smith2(GEN x);
(pari-call-out matrix-elementary-divisors-transforms "smith2" (x))
;; GEN factoredbase(GEN x, GEN p, GEN *y);
(pari-call-out nf-basis-factored "factoredbase"
(x p (y (c-ptr pari-gen) :out :alloca)) "factoredbasis")
;; GEN factoreddiscf(GEN x, GEN p);
(pari-call-out nf-field-discriminant-factored "factoreddiscf" (x p))
;; GEN allbase(GEN x, long code, GEN *y);
;; GEN galois(GEN x, long prec);
(pari-call-out-prec nf-galois-group "galois" (x))
;; GEN initalg(GEN x, long prec);
(pari-call-out-prec nf-initalg "initalg" (x))
;; GEN initalgred(GEN x, long prec);
(pari-call-out-prec nf-initalg-reduced "initalgred" (x))
;; GEN tschirnhaus(GEN x);
(pari-call-out nf-tschirnhausen-transformation "tschirnhaus" (x))
;; GEN galoisapply(GEN nf, GEN aut, GEN x);
(pari-call-out nf-apply-galois "galoisapply" (nf aut x))
;; GEN galoisconj(GEN nf);
(pari-call-out-prec nf-galois-conjugates "galoisconj" (nf))
;; GEN galoisconj0(GEN nf, long flag, GEN d, long prec);
(pari-call-out-prec nf-galois-conjugates-0 "galoisconj0" (nf (flag long) d))
;; GEN galoisconj2(GEN x, long nbmax, long prec);
(pari-call-out-prec nf-galois-conjugates-2 "galoisconj2" (nf (nbmax long)))
;; GEN galoisconj4(GEN T, GEN den, long flag, long karma);
(pari-call-out nf-galois-conjugates-4 "galoisconj4"
(x den (flag long) (karma long)))
(pari-call-out-prec nf-initalg-reduced-2 "initalgred2" (x))
;; GEN primedec(GEN nf,GEN p);
(pari-call-out nf-prime-decomposition "primedec" (nf p))
;; GEN idealmul(GEN nf,GEN ix,GEN iy);
(pari-call-out ideal-multiply "idealmul" (nf ix iy))
;; GEN idealmulred(GEN nf, GEN ix, GEN iy, long prec);
(pari-call-out-prec ideal-multiply-reduced "idealmulred" (nf ix iy))
;; GEN ideal_two_elt(GEN nf, GEN ix);
(pari-call-out ideal-2-generators "ideal_two_elt" (nf ix) "idealtwoelt")
;; GEN idealmulh(GEN nf, GEN ix, GEN iy);
;; GEN element_mulh(GEN nf, long limi, long limj, GEN x, GEN y);
;; GEN idealmulprime(GEN nf,GEN ix,GEN vp);
;; GEN minideal(GEN nf,GEN ix,GEN vdir,long prec);
;; GEN idealmulelt(GEN nf, GEN elt, GEN x);
;; GEN idealmullll(GEN nf, GEN x, GEN y);
;; GEN ideallllredall(GEN nf, GEN ix, GEN vdir, long prec, long precint);
;; GEN ideallllred(GEN nf,GEN ix,GEN vdir,long prec);
(pari-call-out-prec ideal-lll-reduction "ideallllred" (nf ix vdir))
;; GEN ideallllredpart1(GEN nf,GEN x,GEN vdir, long flprem, long prec);
;; GEN ideallllredpart1spec(GEN nf, GEN x, GEN matt2, long flprem, long prec);
;; GEN ideallllredpart2(GEN nf,GEN arch,GEN z,long prec);
;; GEN element_mul(GEN nf,GEN x,GEN y);
(pari-call-out nf-element-multiply "element_mul" (nf x y) "nfmul")
;; GEN element_sqr(GEN nf,GEN x);
;; GEN element_pow(GEN nf,GEN x,GEN k);
(pari-call-out nf-element-power "element_pow" (nf x k) "nfpow")
;; GEN element_mulvec(GEN nf, GEN x, GEN v);
;; GEN rootsof1(GEN x);
(pari-call-out nf-roots-of-unity "rootsof1" (x))
;; GEN idealinv(GEN nf, GEN ix);
(pari-call-out ideal-invert "idealinv" (nf x))
;; GEN idealpow(GEN nf, GEN ix, GEN n);
(pari-call-out ideal-power "idealpow" (nf iX n))
;; GEN idealpowred(GEN nf, GEN ix, GEN n, long prec);
(pari-call-out-prec ideal-power-reduced "idealpowred" (nf ix n))
;; GEN idealpows(GEN nf, GEN ideal, long iexp);
;; GEN idealpowprime(GEN nf, GEN vp, GEN n,long prec);
;; GEN idealfactor(GEN nf, GEN x);
(pari-call-out ideal-factor "idealfactor" (nf x))
;; GEN idealhermite(GEN nf, GEN x);
(pari-call-out ideal-to-hnf "idealhermite" (nf x))
;; GEN idealhnf0(GEN nf, GEN a, GEN b);
(pari-call-out ideal-2-generators-to-hnf "idealhnf0" (nf a b))
;; GEN idealadd(GEN nf, GEN x, GEN y);
(pari-call-out ideal-add "idealadd" (nf x y))
;; GEN idealaddtoone(GEN nf, GEN x, GEN y);
(pari-call-out ideal-split-one-2 "idealaddtoone" (nf x y))
;; GEN idealaddmultoone(GEN nf, GEN list);
(pari-call-out ideal-split-one-n "idealaddmultoone" (nf l))
;; GEN idealdiv(GEN nf, GEN x, GEN y);
(pari-call-out ideal-divide "idealdiv" (nf x y))
;; GEN idealintersect(GEN nf, GEN x, GEN y);
(pari-call-out ideal-intersection "idealintersect" (nf x y))
;; GEN principalideal(GEN nf, GEN a);
(pari-call-out nf-principal-ideal "principalideal" (nf a))
;; GEN principalidele(GEN nf, GEN a);
(pari-call-out nf-principal-idele "principalidele" (nf a))
;; GEN idealdivexact(GEN nf, GEN x, GEN y);
(pari-call-out ideal-divide-exact "idealdivexact" (nf x y))
;; GEN idealnorm(GEN nf, GEN x);
(pari-call-out ideal-norm "idealnorm" (nf x))
;; GEN idealappr(GEN nf, GEN x);
(pari-call-out ideal-approximate "idealappr" (nf x))
;; GEN idealapprfact(GEN nf, GEN x);
(pari-call-out ideal-approximate-factored "idealapprfact" (nf x))
;; GEN idealapprall(GEN nf, GEN x, long fl);
;; GEN idealchinese(GEN nf, GEN x, GEN y);
;; GEN idealcoprime(GEN nf, GEN x, GEN y);
(pari-call-out ideal-coprime "idealcoprime" (nf x y))
;; GEN ideal_two_elt2(GEN nf, GEN x, GEN a);
(pari-call-out ideal-2-generators-2 "ideal_two_elt2" (nf x a) "idealtwoelt2")
;; GEN twototwo(GEN nf, GEN a, GEN b);
;; GEN threetotwo(GEN nf, GEN a, GEN b, GEN c);
;; GEN threetotwo1(GEN nf, GEN a, GEN b, GEN c);
;; GEN threetotwo2(GEN nf, GEN a, GEN b, GEN c);
;;(pari-call-out nf-element-three-to-two "threetotwo" (nf a b c))
;;(pari-call-out nf-element-two-to-two "twototwo" (nf a b))
;; GEN basistoalg(GEN nf, GEN x);
(pari-call-out nf-basis-to-alg "basistoalg" (nf x))
;; GEN algtobasis(GEN nf, GEN x);
(pari-call-out nf-alg-to-basis "algtobasis" (nf x))
;; GEN weakhermite(GEN nf, GEN x);
;; GEN nfhermite(GEN nf, GEN x);
(pari-call-out nf-pseudo-to-hnf "nfhermite" (nf x))
;; GEN nfhermitemod(GEN nf, GEN x, GEN detmat);
(pari-call-out nf-pseudo-to-hnf-mod "nfhermitemod" (nf x detmat))
;; GEN nfsmith(GEN nf, GEN x);
(pari-call-out nf-smith-normal-form "nfsmith" (nf x))
;; GEN nfdiveuc(GEN nf, GEN a, GEN b);
(pari-call-out nf-element-euclidean-divide "nfdiveuc" (nf a b))
;; GEN nfdivrem(GEN nf, GEN a, GEN b);
(pari-call-out nf-element-euclidean-divmod "nfdivrem" (nf a b))
;; GEN nfmod(GEN nf, GEN a, GEN b);
(pari-call-out nf-element-mod "nfmod" (nf a b))
;; GEN element_div(GEN nf, GEN x, GEN y);
(pari-call-out nf-element-divide "element_div" (nf x y) "nfdiv")
;; GEN element_inv(GEN nf, GEN x);
;; GEN nfdetint(GEN nf,GEN pseudo);
(pari-call-out nf-determinant-multiple "nfdetint" (nf pseudo))
;; GEN element_reduce(GEN nf, GEN x, GEN ideal);
(pari-call-out nf-element-mod-ideal "element_reduce" (nf x ideal) "nfreduce")
;; GEN checknf(GEN nf);
;; GEN differente(GEN nf, GEN premiers);
;; long idealval(GEN nf,GEN ix,GEN vp);
(pari-call-out (ideal-valuation long) "idealval" (nf ix vp))
;; GEN isideal(GEN nf,GEN x);
(pari-call-out (nf-ideal? boolean) "isideal" (nf x))
;; long element_val(GEN nf, GEN x, GEN vp);
(pari-call-out (nf-element-valuation long) "element_val" (nf x vp) "nfval")
;; GEN element_val2(GEN nf, GEN x, GEN d, GEN vp);
;; long rnfisfree(GEN bnf, GEN order);
(pari-call-out (rnf-free? boolean) "rnfisfree" (bnf order))
;; GEN allbase4(GEN f, long code, GEN *y, GEN *ptw);
;; GEN base2(GEN x, GEN *y);
;; GEN rnfround2all(GEN nf, GEN pol, long all);
;; GEN rnfpseudobasis(GEN nf, GEN pol);
(pari-call-out rnf-pseudobasis "rnfpseudobasis" (bnf order))
;; GEN rnfdiscf(GEN nf, GEN pol);
(pari-call-out rnf-field-discriminant "rnfdiscf" (nf pol))
;; GEN rnfsimplifybasis(GEN bnf, GEN order);
;; GEN rnfsteinitz(GEN nf, GEN order);
(pari-call-out rnf-steinitz-class "rnfsteinitz" (nf order))
;; GEN rnfbasis(GEN bnf, GEN order);
(pari-call-out rnf-basis "rnfbasis" (bnf order))
;; GEN rnfhermitebasis(GEN bnf, GEN order);
(pari-call-out rnf-hermite-basis "rnfhermitebasis" (bnf order))
;; GEN bsrch(GEN p, GEN fa, long Ka, GEN eta, long Ma);
;; GEN setup(GEN p,GEN f,GEN theta,GEN nut);
;; GEN eleval(GEN f,GEN h,GEN a);
;; GEN vstar(GEN p,GEN h);
;; GEN factcp(GEN p,GEN f,GEN beta);
;; GEN bestnu(GEN w);
;; GEN gcdpm(GEN f1,GEN f2,GEN pm);
;; GEN compositum(GEN pol1, GEN pol2);
(pari-call-out nf-compositum "compositum" (pol1 pol2))
;; GEN initzeta(GEN pol, long prec);
(pari-call-out-prec nf-initzeta "initzeta" (pol))
;; GEN gzetak(GEN nfz, GEN s, long prec);
(pari-call-out-prec nf-zeta-value "gzetak" (nfz s (flag long)) "zetak")
;; GEN glambdak(GEN nfz, GEN s, long prec);
(pari-call-out-prec nf-lambda-value "glambdak" (nfz s) "lambdak")
;; GEN gzetakall(GEN nfz, GEN s, long flag, long prec);
;; GEN nfreducemodpr(GEN nf, GEN x, GEN prhall);
;; GEN element_divmodpr(GEN nf, GEN x, GEN y, GEN prhall);
;; GEN element_powmodpr(GEN nf, GEN x, GEN k, GEN prhall);
;; #define element_mulmodpr(nf,x,y,prhall) (nfreducemodpr(nf,element_mul(nf,x,y);
;; GEN prhall))
;; #define element_sqrmodpr(nf,x,prhall) (nfreducemodpr(nf,element_sqr(nf,x);
;; GEN prhall))
;;; /* base1.c */
;; GEN tayl(GEN x, long v, long precdl);
(pari-call-out taylor-expansion "tayl"
(x (varno long :in :none (get-varno x))
(precdl long :in :none pari-series-precision))
"taylor")
;; GEN legendre(long n);
(pari-call-out legendre-polynomial "legendre" ((n long)))
;; GEN tchebi(long n);
(pari-call-out tchebychev-polynomial "tchebi" ((n long)))
;; GEN hilb(long n);
;;(pari-call-out hilbert-matrix "hilb" ((n long)) "hilb")
;; GEN pasc(long n);
;;(pari-call-out pascal-triangle "pasc" ((n long)) "pascal")
;; GEN laplace(GEN x);
(pari-call-out laplace-transform "laplace" (x))
;; GEN gprec(GEN x, long l);
(pari-call-out change-precision "gprec" (x (l long)) "precision")
;; GEN convol(GEN x, GEN y);
(pari-call-out hadamard-product "convol" (x y))
;; GEN ggrando(GEN x, long n);
(pari-call-out pari-o "ggrando" (a (b long)) "O")
;; GEN gconvsp(GEN x);
;; GEN gconvpe(GEN x);
;; GEN lll(GEN x, long prec);
(pari-call-out-prec matrix-lll-reduce "lll" (x))
;; GEN lll1(GEN x, long prec);
;; GEN lllrat(GEN x);
;; GEN lllgram(GEN x, long prec);
(pari-call-out-prec gram-matrix-lll-reduce "lllgram" (x))
;; GEN lllgram1(GEN x, long prec);
;; GEN lllgramint(GEN x);
(pari-call-out gram-matrix-lll-reduce-integral "lllgramint" (x))
;; GEN lllint(GEN x);
(pari-call-out matrix-lll-reduce-integral "lllint" (x))
;; GEN lllintpartial(GEN mat);
(pari-call-out matrix-partial-lll-reduce-integral "lllintpartial" (mat))
;; GEN lllintpartialall(GEN mat, long all);
;; GEN lllgramkerim(GEN x);
(pari-call-out gram-matrix-lll-reduce-kernel-and-image "lllgramkerim" (x))
;; GEN lllkerim(GEN x);
(pari-call-out matrix-lll-reduce-kernel-and-image "lllkerim" (x))
;; GEN lllgramall(GEN x, long all);
;; GEN lllall0(GEN x, long all);
;; GEN lllgen(GEN x);
;; GEN lllkerimgen(GEN x);
;; GEN lllgramgen(GEN x);
;; GEN lllgramkerimgen(GEN x);
;; GEN lllgramallgen(GEN x, long all);
;; GEN binomial(GEN x, long k);
(pari-call-out binomial-coefficient "binomial" (x k))
;; GEN gscal(GEN x, GEN y);
;; GEN cyclo(long n);
(pari-call-out cyclotomic-polynomial "cyclo" ((n long)) "polcyclo")
;; GEN vecsort(GEN x, GEN k);
(pari-call-out vector-sort-key "vecsort" (x k))
;; GEN lindep(GEN x, long prec);
(pari-call-out-prec vector-find-linear-dependence "lindep" (x))
;; GEN lindep2(GEN x, long bit);
;; GEN lindep2bis(GEN x, long bit, long prec);
;; GEN algdep(GEN x, long n, long prec);
(pari-call-out-prec find-algebraic-dependence "algdep" (x (n long)))
;; GEN algdep2(GEN x, long n, long bit);
;; GEN changevar(GEN x, GEN y);
(pari-call-out change-variables "changevar" (x y))
;; GEN ordred(GEN x, long prec);
(pari-call-out-prec nf-ordred "ordred" (x))
;; GEN polrecip(GEN x);
(pari-call-out reciprocal-polynomial "polrecip" (x) "recip")
;; GEN reorder(GEN x);
;; GEN sort(GEN x);
(pari-call-out vector-sort "sort" (x))
;; GEN lexsort(GEN x);
(pari-call-out vector-lexsort "lexsort" (x))
;; GEN indexsort(GEN x);
(pari-call-out vector-index-sort "indexsort" (x) "indsort")
;; GEN polsym(GEN x, long n);
(pari-call-out symmetric-powers "polsym" (x (n long)))
;; GEN minim(GEN a, long borne, long stockmax);
;; GEN minimprim(GEN a, long borne, long stockmax);
(pari-call-out symmetric-matrix-minimal-vectors "minim" (a (b long) (m long)))
;; GEN polred(GEN x, long prec);
(pari-call-out-prec nf-poly-reduce "polred" (x))
;; GEN factoredpolred(GEN x, GEN p, long prec);
(pari-call-out-prec nf-poly-reduce-factored "factoredpolred" (x p))
;; GEN smallpolred(GEN x, long prec);
(pari-call-out-prec nf-poly-reduce-small "smallpolred" (x))
;; GEN polred2(GEN x, long prec);
(pari-call-out-prec nf-poly-reduce-2 "polred2" (x))
;; GEN factoredpolred2(GEN x, GEN p, long prec);
(pari-call-out-prec nf-poly-reduce-2-factored "factoredpolred2" (x p))
;; GEN polredabs(GEN x, long prec);
(pari-call-out-prec nf-poly-reduce-abs "polredabs" (x))
;; GEN smallpolred2(GEN x, long prec);
(pari-call-out-prec nf-poly-reduce-2-small "smallpolred2" (x))
;; GEN allpolred(GEN x, GEN *pta, long code, long prec);
;; GEN polymodrecip(GEN x);
(pari-call-out polymod-reverse "polymodrecip" (x) "modreverse")
;; GEN genrand(void);
(pari-call-out pari-random "genrand" () "random")
;; GEN numtoperm(long n, GEN x);
(pari-call-out permutation "numtoperm" ((n long) x))
;; GEN permtonum(GEN x);
(pari-call-out permutation-number "permtonum" (x))
;; long mymyrand();
;; long setprecr(long n);
;(pari-call-out (set-real-precision long) "setprecr" ((n long)) "setprecision")
;; GEN setserieslength(long n);
;(pari-call-out (set-series-precision long) "setserieslength" ((n long)))
;; GEN ccontent(long* x,long n);
;; GEN setrand(long seed);
(pari-call-out setrand "setrand" ((seed long)))
;; GEN getrand(void);
(pari-call-out getrand "getrand" ())
;; GEN getstack(void);
(pari-call-out getstack "getstack" ())
;; GEN gettime(void);
;; GEN getheap(void);
(pari-call-out getheap "getheap" ())
;; void getheapaux(long* nombre, long* espace);
;;; /* bibli2.c */
;; GEN somme(entree *ep, GEN x, GEN a, GEN b, char *ch);
;; GEN produit(entree *ep, GEN x, GEN a, GEN b, char *ch);
;; GEN suminf(entree *ep, GEN a, char *ch, long prec);
;; GEN prodinf(entree *ep, GEN a, char *ch, long prec);
;; GEN prodinf1(entree *ep, GEN a, char *ch, long prec);
;; GEN prodeuler(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN vecteur(entree *ep, GEN nmax, char *ch);
;; GEN vvecteur(entree *ep, GEN nmax, char *ch);
;; GEN matrice(entree *ep1, entree *ep2, GEN nlig, GEN ncol, char *ch);
;; GEN divsomme(entree *ep, GEN num, char *ch);
;; GEN qromb(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN qromo(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN qromi(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN rombint(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN polint(GEN xa, GEN ya, GEN x, GEN *dy);
(pari-call-out interpolating-polynomial-value "polint"
(xa ya x (dy (c-ptr pari-gen) :out :alloca)))
;; GEN plot(entree *ep, GEN a, GEN b, char *ch);
;; GEN ploth(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN ploth2(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN plothraw(GEN listx, GEN listy);
;; GEN zbrent(entree *ep, GEN a, GEN b, char *ch, long prec);
;; GEN sumalt(entree *ep, GEN a, char *ch, long prec);
;; GEN sumalt1(entree *ep, GEN a, char *ch, long prec);
;; GEN sumalt2(entree *ep, GEN a, char *ch, long prec);
;; GEN sumalt3(entree *ep, GEN a, char *ch, long prec);
;; GEN sumpos(entree *ep, GEN a, char *ch, long prec);
;; GEN sumposold(entree *ep, GEN a, char *ch, long prec);
;; GEN forpari(entree *ep, GEN a, GEN b, char *ch);
;; GEN forstep(entree *ep, GEN a, GEN b, GEN s, char *ch);
;; GEN fordiv(entree *ep, GEN a, char *ch);
;; GEN forprime(entree *ep, GEN a, GEN b, char *ch);
;; GEN forvec(entree *ep, GEN x, char *ch);
;; GEN initrect(long ne, long x, long y);
;; GEN killrect(long ne);
;; GEN rectcursor(long ne);
;; GEN rectmove(long ne, GEN x, GEN y);
;; GEN rectrmove(long ne, GEN x, GEN y);
;; GEN rectpoint(long ne, GEN x, GEN y);
;; GEN rectrpoint(long ne, GEN x, GEN y);
;; GEN rectbox(long ne, GEN gx2, GEN gy2);
;; GEN rectrbox(long ne, GEN gx2, GEN gy2);
;; GEN rectline(long ne, GEN gx2, GEN gy2);
;; GEN rectrline(long ne, GEN gx2, GEN gy2);
;; GEN rectdraw(GEN list);
;; GEN rectpoints(long ne, GEN listx, GEN listy);
;; GEN rectlines(long ne, GEN listx, GEN listy);
;; GEN rectstring(long ne, GEN x);
;; GEN rectscale(long ne, GEN x1, GEN x2, GEN y1, GEN y2);
;; GEN postdraw(GEN list);
;; GEN postploth(entree *ep, GEN a, GEN b, char *ch);
;; GEN postploth2(entree *ep, GEN a, GEN b, char *ch);
;; GEN postplothraw(GEN listx, GEN listy);
;; GEN gtoset(GEN x);
(pari-call-out convert-to-set "gtoset" (x) "set")
;; GEN setunion(GEN x, GEN y);
(pari-call-out pari-set-union "setunion" (x y))
;; GEN setintersect(GEN x, GEN y);
(pari-call-out pari-set-intersection "setintersect" (x y))
;; GEN setminus(GEN x, GEN y);
(pari-call-out pari-set-difference "setminus" (x y))
;; GEN dirmul(GEN x, GEN y);
(pari-call-out dirichlet-multiply "dirmul" (x y))
;; GEN dirdiv(GEN x, GEN y);
(pari-call-out dirichlet-divide "dirdiv" (x y))
;; GEN dirzetak(GEN nf, GEN b);
(pari-call-out nf-dirchlet-zeta-series "dirzetak" (nf b))
;; long isvecset(GEN x);
;; GEN setsearch(GEN x, GEN y);
(pari-call-out (pari-set-position long) "setsearch" (x y))
;;(pari-call-out (set? boolean) "isvecset" (x) "isset")
;;; /* buch1.c et buch2.c */
;; GEN buchimag(GEN D, GEN gcbach, GEN gcbach2, GEN gCO);
(pari-call-out buchimag "buchimag" (d c c2 (co pari-gen :in :none 5)))
;; GEN buchreal(GEN D, GEN gsens, GEN gcbach, GEN gcbach2, GEN gRELSUP, long prec);
(pari-call-out-prec buchreal "buchreal"
(d narrow? c c2 (relsup pari-gen :in :none 5)))
;; GEN buchall(GEN P, GEN gcbach, GEN gcbach2, GEN gRELSUP, GEN gborne, long nbrelpid, long minsfb, long flun, long prec);
(pari-call-out-prec nf-buchall "buchall"
(p c c2 nrel borne (nrpid long) (minsfb long) (flun long)) nil)
(defmacro def-buch-variant (name flun gp-name)
(let* ((pari-name (make-pari-name 'nf-buchall))
(type 'pari-gen)
(args `(p (c pari-gen :in :none 0.3) (c2 pari-gen :in :none c)
(nrel pari-gen :in :none 5) (borne pari-gen :in :none 1)
(nrpid long :in :none 4) (minsfb long :in :none 3)
(flun long :in :none ,flun)
(prec log :in :none (pari-get-real-prec-raw)))))
`(progn
,(make-defun name pari-name type args)
,(make-documentation name gp-name args))))
;; #define buchgen(P,gcbach,gcbach2,prec) buchall(P,gcbach,gcbach2,stoi(5);
;; GEN gzero,4,3,0,prec)
(def-buch-variant nf-buchgen 0 "buchgen")
;; #define buchgenfu(P,gcbach,gcbach2,prec) buchall(P,gcbach,gcbach2,stoi(5);
;; GEN gzero,4,3,2,prec)
(def-buch-variant nf-buchgenfu 2 "buchgenfu")
;; #define buchinit(P,gcbach,gcbach2,prec) buchall(P,gcbach,gcbach2,stoi(5);
;; GEN gzero,4,3,-1,prec)
(def-buch-variant nf-buchinit -1 "buchinit")
;; #define buchinitfu(P,gcbach,gcbach2,prec) buchall(P,gcbach,gcbach2,stoi(5);
;; GEN gzero,4,3,-2,prec)
(def-buch-variant nf-buchinitfu -2 "buchinitfu")
;; GEN isprincipal(GEN bignf, GEN x);
;; GEN isprincipalgen(GEN bignf, GEN x);
(pari-call-out ideal-class "isprincipal" (bignf x))
(pari-call-out ideal-class-more "isprincipalgen" (bignf x))
;; GEN isunit(GEN bignf, GEN x);
(pari-call-out nf-unit-in-basis "isunit" (bnf x))
;; GEN signunits(GEN bignf);
(pari-call-out nf-unit-signs "signunits" (bignf))
;; GEN buchfu(GEN bignf);
(pari-call-out nf-buchfu "buchfu" (bignf))
;; GEN buchnarrow(GEN bignf);
(pari-call-out nf-buchnarrow "buchnarrow" (bignf))
;; int compte(long **mat, long row, long longueur, long *firstnonzero);
;; int compte2(long **mat, long row, long longueur, long *firstnonzero);
;;; /* elliptic.c */
;; GEN ghell(GEN e, GEN a, long prec);
(pari-call-out-prec ell-height "ghell" (e a) "hell")
;; GEN ghell2(GEN e, GEN a, long prec);
;; GEN ghell3(GEN e, GEN a, long prec);
;; GEN initell(GEN x, long prec);
(pari-call-out-prec ell-init "initell" (x))
;; GEN initell2(GEN x, long prec);
;; GEN smallinitell(GEN x);
(pari-call-out ell-init-small "smallinitell" (x))
;; GEN zell(GEN e, GEN z, long prec);
(pari-call-out-prec ell-xy-to-z "zell" (e z))
;; GEN coordch(GEN e, GEN ch);
(pari-call-out ell-change-coordinates "coordch" (e ch) "chell")
;; GEN pointch(GEN x, GEN ch);
(pari-call-out ell-change-point-coordinates "pointch" (x ch) "chptell")
;; GEN addell(GEN e, GEN z1, GEN z2);
(pari-call-out ell-add "addell" (e z1 z2))
;; GEN subell(GEN e, GEN z1, GEN z2);
(pari-call-out ell-subtract "subell" (e z1 z2))
;; GEN powell(GEN e, GEN z, GEN n);
(pari-call-out ell-multiply "powell" (e z n))
;; GEN mathell(GEN e, GEN x, long prec);
(pari-call-out-prec ell-height-pairing-gram-matrix "mathell" (e x))
;; GEN bilhell(GEN e, GEN z1, GEN z2, long prec);
(pari-call-out-prec ell-height-pairing "bilhell" (e z1 z2))
;; GEN ordell(GEN e, GEN x, long prec);
(pari-call-out-prec ell-y-coordinates "ordell" (e x))
;; GEN apell(GEN e, GEN pl);
(pari-call-out ell-l-series-p "apell" (e p))
;; GEN apell1(GEN e, GEN p);
;; GEN apell2(GEN e, GEN p);
;; GEN anell(GEN e, long n);
(pari-call-out ell-l-series "anell" (e (n long)))
;; GEN akell(GEN e, GEN n);
(pari-call-out ell-l-series-n "akell" (e n))
;; GEN elllocalred(GEN e, GEN p1);
(pari-call-out ell-local-reduction "elllocalred" (e p1))
;; GEN ellglobalred(GEN e1);
(pari-call-out ell-global-reduction "ellglobalred" (e1))
;; GEN lseriesell(GEN e, GEN s, GEN N, GEN A, long prec);
(pari-call-out-prec ell-l-series-value "lseriesell" (e s N A))
;; GEN pointell(GEN e, GEN z, long prec);
(pari-call-out-prec ell-z-to-xy "pointell" (e z))
;; GEN elltaniyama(GEN e, long prec);
(pari-call-out-prec ell-modular-parametrization "elltaniyama" (e))
;; GEN orderell(GEN e, GEN p);
(pari-call-out ell-order "orderell" (e p))
;; GEN torsell(GEN e);
(pari-call-out ell-torsion-group "torsell" (e))
;; int oncurve(GEN e, GEN z);
(pari-call-out (ell-on-curve? boolean) "oncurve" (e z) "isoncurve")
;; void eulsum(GEN *sum, GEN term, long jterm, GEN *tab, long *dsum, long prec);
;;; /* es.c */
;; void filtre(char *s);
;; GEN pariputc(char c);
;; GEN pariputs(char *s);
;; GEN ecrire(GEN x, char format, long dec, long chmp);
;; GEN voir(GEN x, long nb);
;; GEN sor(GEN g, char fo, long dd, long chmp);
;; void brute(GEN g, char format, long dec);
;; GEN matbrute(GEN g, char format, long dec);
;; GEN texe(GEN g, char format, long dec);
;; GEN etatpile(unsigned int n);
;; void outerr(GEN x);
;; GEN bruterr(GEN x,char format,long dec);
;; GEN outbeauterr(GEN x);
;; void bruteall(GEN g, char format, long dec, long flbl);
;; #ifdef CLISP_MODULE
;; void pariflush(void);
;; #endif /* CLISP_MODULE */
;; char* GENtostr(GEN x);
(pari-call-out (write-to-string c-string :malloc-free) "GENtostr" (x) nil)
;; void fprintferr(char* pat, ...);
;; void flusherr();
;; char *gitoascii(GEN g, char *buf);
;; void printvargp(long);
;; extern void (*printvariable)(long);
;; long timer(void);
;; GEN timer2(void);
;;; /* gen1.c */
;; GEN gadd(GEN x, GEN y);
(pari-call-out pari+ "gadd" (x y) "+")
;; GEN gsub(GEN x, GEN y);
(pari-call-out pari- "gsub" (x y) "-")
;; GEN gmul(GEN x, GEN y);
(pari-call-out pari* "gmul" (x y) "*")
;; GEN gdiv(GEN x, GEN y);
(pari-call-out pari/ "gdiv" (x y) "/")
;;; /* gen2.c gen3.c */
;; GEN gcopy(GEN x);
;(pari-call-out copy "gcopy" (x) nil)
;; GEN forcecopy(GEN x);
;; GEN gclone(GEN x);
;; GEN cgetp(GEN x);
;; GEN gaddpex(GEN x, GEN y);
;; GEN greffe(GEN x, long l);
;; GEN gopsg2(GEN (*f) (GEN, GEN);
;; GEN long s, GEN y);
;; GEN gopgs2(GEN (*f) (GEN, GEN);
;; GEN GEN y, long s);
;; GEN co8(GEN x, long l);
;; GEN cvtop(GEN x, GEN p, long l);
;; GEN compo(GEN x, long n);
(pari-call-out component "compo" (x (n long)))
;; GEN gsqr(GEN x);
(pari-call-out square "gsqr" (x) "sqr")
;; GEN gneg(GEN x);
(pari-call-out pari-minus "gneg" (x) "-")
;; GEN gabs(GEN x, long prec);
(pari-call-out-prec pari-abs "gabs" (x) "abs")
;; GEN gpow(GEN x, GEN n, long prec);
(pari-call-out-prec pari-expt "gpow" (x n) "^")
;; GEN gpowgs(GEN x, long n);
(pari-call-out pari-expt-integer "gpowgs" (x (n long)) "^")
;; GEN gmax(GEN x, GEN y);
(pari-call-out pari-max "gmax" (x y) "max")
;; GEN gmin(GEN x, GEN y);
(pari-call-out pari-min "gmin" (x y) "min")
;; GEN ginv(GEN x);
(pari-call-out invert "ginv" (x) "^(-1)")
;; GEN denom(GEN x);
(pari-call-out pari-denominator "denom" (x))
;; GEN numer(GEN x);
(pari-call-out pari-numerator "numer" (x))
;; GEN lift(GEN x);
(pari-call-out lift "lift" (x))
;; GEN centerlift(GEN x);
(pari-call-out centerlift "centerlift" (x))
;; GEN vecmax(GEN x);
(pari-call-out vector-max "vecmax" (x))
;; GEN vecmin(GEN x);
(pari-call-out vector-min "vecmin" (x))
;; GEN gmulsg(long s, GEN y);
;; GEN gdivgs(GEN x, long s);
;; GEN gmodulo(GEN x, GEN y);
;; GEN gmodulcp(GEN x, GEN y);
(pari-call-out make-mod "gmodulcp" (x y) "mod")
;; GEN simplify(GEN x);
(pari-call-out simplify "simplify" (x))
;; GEN gmod(GEN x, GEN y);
(pari-call-out pari-mod "gmod" (x y) "%")
;; GEN gshift(GEN x, long n);
(pari-call-out pari-ash "gshift" (x (n long)) "shift")
;; GEN gmul2n(GEN x, long n);
(pari-call-out multiply-by-2^n "gmul2n" (x (n long)) "shiftmul")
;; GEN gsubst(GEN x, long v, GEN y);
(pari-call-out pari-substitute "gsubst" (x (varno long) y) "subst")
;; GEN deriv(GEN x, long v);
(pari-call-out derivative "deriv" (x (varno long :in :none (get-varno x))))
;; GEN integ(GEN x, long v);
(pari-call-out integral "integ" (x (varno long :in :none (get-varno x))))
;; GEN recip(GEN x);
(pari-call-out pws-reverse "recip" (x) "reverse")
;; GEN ground(GEN x);
(pari-call-out pari-round "ground" (x) "round")
;; GEN gcvtoi(GEN x, long *e);
;; GEN grndtoi(GEN x, long *e);
;; GEN gceil(GEN x);
(pari-call-out pari-ceiling "gceil" (x) "ceil")
;; GEN gfloor(GEN x);
(pari-call-out pari-floor "gfloor" (x) "floor")
;; GEN gfrac(GEN x);
(pari-call-out mod-1 "gfrac" (x) "frac")
;; GEN gtrunc(GEN x);
(pari-call-out pari-truncate "gtrunc" (x) "trunc")
;; GEN gdivent(GEN x, GEN y);
(pari-call-out quotient "gdivent" (x y) "\\")
;; GEN gdiventres(GEN x, GEN y);
(pari-call-out quotient-and-mod "gdiventres" (x y) "divres")
;; GEN gdivmod(GEN x, GEN y, GEN *pr);
;; GEN geval(GEN x);
;; GEN glt(GEN x, GEN y);
(pari-call-out (pari< pari-bool) "glt" (x y) "<")
;; GEN gle(GEN x, GEN y);
(pari-call-out (pari<= pari-bool) "gle" (x y) "<=")
;; GEN ggt(GEN x, GEN y);
(pari-call-out (pari> pari-bool) "ggt" (x y) ">")
;; GEN gge(GEN x, GEN y);
(pari-call-out (pari>= pari-bool) "gge" (x y) ">=")
;; GEN geq(GEN x, GEN y);
(pari-call-out (pari= pari-bool) "geq" (x y) "==")
;; GEN gne(GEN x, GEN y);
(pari-call-out (pari/= pari-bool) "gne" (x y) "!=")
;; GEN gand(GEN x, GEN y);
(pari-call-out (pari-and pari-bool) "gand" (x y) "&&")
;; GEN gor(GEN x, GEN y);
(pari-call-out (pari-or pari-bool) "gor" (x y) "||")
;; GEN glength(GEN x);
(pari-call-out pari-length "glength" (x) "length")
;; GEN matsize(GEN x);
(pari-call-out matrix-size "matsize" (x))
;; GEN truecoeff(GEN x, long n);
(pari-call-out coefficient "truecoeff" (x (n long)) "coeff")
;; GEN gtype(GEN x);
;; GEN gsettype(GEN x,long t);
;; GEN gtopoly(GEN x, long v);
(pari-call-out convert-to-polynomial-reverse "gtopoly"
(x (varno long :in :none 0)) "poly")
;; GEN gtopolyrev(GEN x, long v);
(pari-call-out convert-to-polynomial "gtopolyrev"
(x (varno long :in :none 0)) "polyrev")
;; GEN gtoser(GEN x, long v);
(pari-call-out convert-to-pws "gtoser" (x (varno long :in :none 0)) "series")
;; GEN gtovec(GEN x);
(pari-call-out convert-to-vector "gtovec" (x) "vec")
;; GEN dbltor(double x);
;; Be consistent and take 'constant term first' as the normal thing ...
;; GEN karamul(GEN x, GEN y, long k);
;; GEN mpkaramul(GEN x, GEN y, long k);
;; GEN gdivround(GEN x, GEN y);
(pari-call-out pari-round2 "gdivround" (x y) "\\/")
;; GEN gpolvar(GEN y);
;; void gop0z(GEN (*f) (void);
;; GEN GEN x);
;; GEN gop1z(GEN (*f) (GEN);
;; GEN GEN x, GEN y);
;; GEN gop2z(GEN (*f) (GEN, GEN);
;; GEN GEN x, GEN y, GEN z);
;; GEN gops2gsz(GEN (*f) (GEN, long);
;; GEN GEN x, long s, GEN z);
;; GEN gops2sgz(GEN (*f) (long, GEN);
;; GEN long s, GEN y, GEN z);
;; GEN gops2ssz(GEN (*f) (long, long);
;; GEN long s, long y, GEN z);
;; void gop3z(GEN (*f) (GEN, GEN, GEN);
;; GEN GEN x, GEN y, GEN z, GEN t);
;; GEN gops1z(GEN (*f) (long);
;; GEN long s, GEN y);
;; GEN gopsg2z(GEN (*f) (GEN, GEN);
;; GEN long s, GEN y, GEN z);
;; GEN gopgs2z(GEN (*f) (GEN, GEN);
;; GEN GEN y, long s, GEN z);
;; GEN gaffsg(long s, GEN x);
;; GEN gaffect(GEN x, GEN y);
;; void normalize(GEN *px);
;; GEN normalizepol(GEN *px);
;; int gcmp0(GEN x);
(pari-call-out (zero? boolean) "gcmp0" (x) "?")
;; GEN gcmp1(GEN x);
(pari-call-out (one? boolean) "gcmp1" (x) "?")
;; GEN gcmp_1(GEN x);
(pari-call-out (minus-one? boolean) "gcmp_1" (x) "?")
;; GEN gcmp(GEN x, GEN y);
(pari-call-out (compare boolean) "gcmp" (x y) "?")
;; GEN lexcmp(GEN x, GEN y);
(pari-call-out (compare-lex boolean) "lexcmp" (x y) "lex")
;; GEN gequal(GEN x, GEN y);
(pari-call-out (equal? boolean) "gequal" (x y) "==")
;; GEN polegal(GEN x, GEN y);
;; GEN vecegal(GEN x, GEN y);
;; GEN gsigne(GEN x);
(pari-call-out (pari-sign int) "gsigne" (x) "sign")
;; int gvar(GEN x);
(pari-call-out (varno int) "gvar" (x) "?")
;; GEN gvar2(GEN x);
;; GEN tdeg(GEN x);
;; GEN precision(GEN x);
;; GEN gprecision(GEN x);
;; GEN ismonome(GEN x);
;; GEN iscomplex(GEN x);
;; GEN isexactzero(GEN g);
(pari-call-out (eql-0? boolean) "isexactzero" (g))
(defun get-varno (x)
(let ((vn (%varno (convert-to-pari x))))
(if (< vn 256) vn 0)))
;; long padicprec(GEN x, GEN p);
(pari-call-out (get-padic-precision long) "padicprec" (x p))
;; long opgs2(int (*f) (GEN, GEN);
;; GEN GEN y, long s);
;; long taille(GEN x);
;; GEN taille2(GEN x);
(pari-call-out (pari-bytesize long) "taille2" (x) "bytesize")
;; GEN gexpo(GEN x);
;; GEN gtolong(GEN x);
;; GEN ggval(GEN x, GEN p);
(pari-call-out (valuation long) "ggval" (x p) "valuation")
;; GEN rounderror(GEN x);
;;(pari-call-out (rounderror long) "rounderror" (x))
;; GEN gsize(GEN x);
;;(pari-call-out (size long) "gsize" (x) "size")
;; GEN Z_pvalrem(GEN x, GEN p, GEN *py);
;; double rtodbl(GEN x);
;; GEN gtodouble(GEN x);
;;; /* polarit.c */
;; GEN ginvmod(GEN x, GEN y);
;; GEN gcopy(GEN x);
;; GEN gdeuc(GEN x, GEN y);
;; GEN grem(GEN x, GEN y);
;; GEN poldivrem(GEN x, GEN y, GEN *pr);
;; GEN poleval(GEN x, GEN y);
;; GEN roots(GEN x, long l);
(pari-call-out-prec complex-roots "roots" (x))
;; GEN roots2(GEN pol,long PREC);
;; GEN rootslong(GEN x, long l);
;;(pari-call-out-prec complex-roots-robust "rootslong" (x))
;; GEN ggcd(GEN x, GEN y);
(pari-call-out pari-gcd "ggcd" (x y) "gcd")
;; GEN gbezout(GEN x, GEN y, GEN *u, GEN *v);
;; GEN vecbezout(GEN x, GEN y);
(pari-call-out pari-xgcd "vecbezout" (x y) "bezout")
;; GEN glcm(GEN x, GEN y);
(pari-call-out pari-lcm "glcm" (x y) "lcm")
;; GEN subresext(GEN x, GEN y, GEN *U, GEN *V);
;; GEN vecbezoutres(GEN x, GEN y);
;; GEN polgcd(GEN x, GEN y);
;; GEN srgcd(GEN x, GEN y);
;; GEN polgcdnun(GEN x, GEN y);
;; GEN content(GEN x);
(pari-call-out content "content" (x))
;; GEN primpart(GEN x);
;; GEN psres(GEN x, GEN y);
;; GEN factorff(GEN f, GEN p, GEN a);
(pari-call-out factor-in-fq "factorff" (f p a))
;; GEN factmod(GEN f, GEN p);
(pari-call-out factor-in-fp "factmod" (f p))
;; GEN rootmod(GEN f, GEN p);
(pari-call-out mod-p-roots "rootmod" (f p))
;; GEN rootmod2(GEN f, GEN p);
(pari-call-out mod-p-roots-small "rootmod2" (f p))
;; GEN decpol(GEN x, long klim);
;; GEN factor(GEN x);
(pari-call-out factor "factor" (x))
;; GEN gisirreducible(GEN x);
(pari-call-out (irreducible? pari-bool) "gisirreducible" (x) "isirreducible")
;; GEN factpol(GEN x, long klim, long hint);
(pari-call-out factor-poly-hensel "factpol" (x (klim long) (hint long)))
;; GEN factpol2(GEN x, long klim);
;;(pari-call-out factor-poly-complex "factpol2" (x (klim long)) "?")
;; GEN simplefactmod(GEN f, GEN p);
(pari-call-out factor-degrees "simplefactmod" (f p))
;; GEN factcantor(GEN x, GEN p);
(pari-call-out factor-cantor-zassenhaus "factcantor" (x p))
;; GEN subres(GEN x, GEN y);
(c-lines "GEN subres0 (GEN x, GEN y);~%") ; prototype
(c-lines "GEN subres0 (GEN x, GEN y) { return subres(x,y); }~%")
(pari-call-out resultant "subres0" (x y) "resultant")
;; GEN discsr(GEN x);
(pari-call-out discriminant "discsr" (x) "disc")
;; GEN quadpoly(GEN x);
(pari-call-out quad-minimal-polynomial "quadpoly" (x))
;; GEN quadgen(GEN x);
(pari-call-out make-quad "quadgen" (x))
;; GEN quaddisc(GEN x);
(pari-call-out quad-discriminant "quaddisc" (x))
;; GEN bezoutpol(GEN a, GEN b, GEN *u, GEN *v);
;; GEN polinvmod(GEN x, GEN y);
;; GEN resultant2(GEN x, GEN y);
(pari-call-out resultant-sylvester "resultant2" (x y))
;; GEN sylvestermatrix(GEN x,GEN y);
(pari-call-out sylvester-matrix "sylvestermatrix" (x y))
;; GEN polfnf(GEN a, GEN t);
(pari-call-out nf-factor "polfnf" (a b) "factornf")
;; GEN nfiso(GEN a, GEN b);
;(pari-call-out nf-field-isomorphic? "nfiso" (a b) "isisom")
;; GEN nfincl(GEN a, GEN b);
;(pari-call-out nf-field-inclusion? "nfincl" (a b) "isincl")
;; GEN isisomfast(GEN nf1, GEN nf2, long prec);
;; GEN isinclfast(GEN nf1, GEN nf2, long prec);
;; GEN newtonpoly(GEN x, GEN p);
(pari-call-out newton-polygon "newtonpoly" (x p))
;; GEN padicappr(GEN f, GEN a);
(pari-call-out lift-padic-roots "padicappr" (f a))
;; GEN rootpadic(GEN f, GEN p, long r);
(pari-call-out padic-roots "rootpadic" (f p (prec long)))
;; GEN rootpadicfast(GEN f, GEN p, long r, long flall);
;; GEN gcvtop(GEN x, GEN p, long r);
;; GEN factorpadic2(GEN x, GEN p, long r);
;; GEN factorpadic4(GEN x, GEN p, long r);
(pari-call-out factor-padic "factorpadic4"
(x p (prec long)) "factorpadic")
;; GEN nilordpadic(GEN p,long r,GEN fx,long mf,GEN gx);
;; GEN Decomppadic(GEN p,long r,GEN f,long mf,GEN theta,GEN chi,GEN nu);
;; GEN squarefree(GEN f);
;; long sturmpart(GEN x, GEN a, GEN b);
(pari-call-out (count-real-roots-between long) "sturmpart" (x a b))
(defun count-real-roots (x) (count-real-roots-between x nil nil))
(export 'count-real-roots)
;; int poldivis(GEN x, GEN y, GEN *z);
;; GEN gdvd(GEN x, GEN y);
;; void gredsp(GEN *px);
;; GEN split(long m, GEN *t, long d, long p, GEN q);
;; GEN split9(GEN m, GEN *t, long d, long p, GEN q, GEN unfq, GEN qq, GEN a);
;; GEN splitgen(GEN m, GEN *t,long d,GEN p, GEN q);
;; int issimplefield(GEN x);
;; GEN isinexactfield(GEN x);
;;; /* trans.c */
;; GEN greal(GEN x);
(pari-call-out pari-realpart "greal" (x) "real")
;; GEN gimag(GEN x);
(pari-call-out pari-imagpart "gimag" (x) "imag")
;; GEN teich(GEN x);
(pari-call-out-prec teichmueller "teich" (x))
;; GEN agm(GEN x, GEN y, long prec);
(pari-call-out-prec arithmetic-geometric-mean "agm" (x y))
;; GEN palog(GEN x);
;; GEN sqrtr(GEN x);
;; GEN gsqrt(GEN x, long prec);
(pari-call-out-prec pari-sqrt "gsqrt" (x) "sqrt")
;; GEN gexp(GEN x, long prec);
(pari-call-out-prec pari-exp "gexp" (x) "exp")
;; GEN mplog(GEN x);
;; GEN glog(GEN x, long prec);
(pari-call-out-prec pari-log "glog" (x) "log")
;; GEN mpexp1(GEN x);
;; GEN mpexp(GEN x);
;; GEN mplog(GEN q);
;; GEN glog(GEN x, long prec);
;; GEN mpsc1(GEN x, long *ptmod8);
;; GEN mpcos(GEN x);
;; GEN gcos(GEN x, long prec);
(pari-call-out-prec pari-cos "gcos" (x) "cos")
;; GEN mpsin(GEN x);
;; GEN gsin(GEN x, long prec);
(pari-call-out-prec pari-sin "gsin" (x) "sin")
;; GEN mpaut(GEN x);
;; GEN mptan(GEN x);
;; GEN gtan(GEN x, long prec);
(pari-call-out-prec pari-tan "gtan" (x) "tan")
;; GEN mpatan(GEN x);
;; GEN gatan(GEN x, long prec);
(pari-call-out-prec pari-arctan "gatan" (x) "atan")
;; GEN mpasin(GEN x);
;; GEN gasin(GEN x, long prec);
(pari-call-out-prec pari-arcsin "gasin" (x) "asin")
;; GEN mpacos(GEN x);
;; GEN gacos(GEN x, long prec);
(pari-call-out-prec pari-arccos "gacos" (x) "acos")
;; GEN mparg(GEN x, GEN y);
;; GEN mpch(GEN x);
;; GEN gch(GEN x, long prec);
(pari-call-out-prec pari-cosh "gch" (x) "cosh")
;; GEN mpsh(GEN x);
;; GEN gsh(GEN x, long prec);
(pari-call-out-prec pari-sinh "gsh" (x) "sinh")
;; GEN mpth(GEN x);
;; GEN gth(GEN x, long prec);
(pari-call-out-prec pari-tanh "gth" (x) "tanh")
;; GEN mpath(GEN x);
;; GEN gath(GEN x, long prec);
(pari-call-out-prec pari-artanh "gath" (x) "atanh")
;; GEN mpash(GEN x);
;; GEN gash(GEN x, long prec);
(pari-call-out-prec pari-arsinh "gash" (x) "asinh")
;; GEN garg(GEN x, long prec);
(pari-call-out-prec pari-argument "garg" (x) "arg")
;; GEN sarg(GEN x, GEN y, long prec);
;; GEN mppsi(GEN z);
;; GEN gpsi(GEN x, long prec);
(pari-call-out-prec psi "gpsi" (x) "psi")
;; GEN transc(GEN (*f) (GEN, long), GEN x, long prec);
;; GEN kbessel(GEN nu, GEN gx, long prec);
(pari-call-out-prec bessel-k "kbessel" (nu x))
;; GEN hyperu(GEN a, GEN b, GEN gx, long prec);
(pari-call-out-prec hypergeometric-u "hyperu" (a b x))
;; GEN cxpsi(GEN z, long prec);
;; GEN jbesselh(GEN n, GEN z, long prec);
(pari-call-out-prec bessel-j-half "jbesselh" (n z))
;; GEN gzeta(GEN x, long prec);
(pari-call-out-prec riemann-zeta "gzeta" (x) "zeta")
;; GEN kbessel2(GEN nu, GEN x, long prec);
;; GEN eint1(GEN x, long prec);
(pari-call-out-prec exponential-integral-1 "eint1" (x))
;; GEN gerfc(GEN x, long prec);
(pari-call-out-prec erfc "gerfc" (x))
;; GEN eta(GEN x, long prec);
(pari-call-out-prec dedekind-eta "eta" (x))
;; GEN jell(GEN x, long prec);
(pari-call-out-prec elliptic-j "jell" (x))
;; GEN wf2(GEN x, long prec);
(pari-call-out-prec weber-f2 "wf2" (x))
;; GEN wf(GEN x, long prec);
(pari-call-out-prec weber-f "wf" (x))
;; GEN incgam(GEN a, GEN x, long prec);
(pari-call-out-prec incomplete-gamma "incgam" (a x))
;; GEN incgam1(GEN a, GEN x, long prec);
;; GEN incgam2(GEN a, GEN x, long prec);
;; GEN incgam3(GEN a, GEN x, long prec);
;;(pari-call-out-prec complementary-incomplete-gamma "incgam3" (a x))
;; GEN incgam4(GEN a, GEN x, GEN z, long prec);
;; GEN bernreal(long n, long prec);
(pari-call-out-prec bernoulli-real "bernreal" ((n long)))
;; GEN bernvec(long nomb);
(pari-call-out bernoulli-vector "bernvec" ((nomb long)))
;; GEN mpach(GEN x);
;; GEN gach(GEN x, long prec);
(pari-call-out-prec pari-arcosh "gach" (x) "acosh")
;; GEN mpgamma(GEN x);
;; GEN cxgamma(GEN x, long prec);
;; GEN ggamma(GEN x, long prec);
(pari-call-out-prec gamma "ggamma" (x) "gamma")
;; GEN mpgamd(long x, long prec);
;; GEN ggamd(GEN x, long prec);
(pari-call-out-prec gamma-shift-1/2 "ggamd" (x) "gamh")
;; GEN mppi(long prec);
(pari-call-out-prec pari-pi "mppi" () "pi")
(define-symbol-macro pari-pi (pari-pi))
;; GEN mpeuler(long prec);
(pari-call-out-prec euler "mpeuler" () "euler")
;; GEN polylog(long m, GEN x, long prec);
(pari-call-out-prec polylog "gpolylog" ((m long) x) "polylog")
;; GEN dilog(GEN x, long prec);
(pari-call-out-prec dilog "dilog" (x))
;; GEN polylogd(long m, GEN x, long prec);
(pari-call-out-prec polylog-d "polylogd" ((m long) x))
;; GEN polylogdold(long m, GEN x, long prec);
(pari-call-out-prec polylog-d-old "polylogdold" ((m long) x))
;; GEN polylogp(long m, GEN x, long prec);
(pari-call-out-prec polylog-p "polylogp" ((m long) x))
;; GEN gpolylog(long m, GEN x, long prec);
(define-symbol-macro euler (euler))
;; GEN theta(GEN q, GEN z, long prec);
;; GEN thetanullk(GEN q, long k, long prec);
;; GEN mplngamma(GEN x);
;; GEN cxlngamma(GEN x, long prec);
;; GEN glngamma(GEN x, long prec);
(pari-call-out-prec log-gamma "glngamma" (x) "lngamma")
;; GEN izeta(GEN x, long prec);
;; void constpi(long prec);
;(pari-call-out-prec (precompute-pi nil) "constpi" () "pi")
;; GEN consteuler(long prec);
;(pari-call-out-prec (precompute-euler nil) "consteuler" () "euler")
;; GEN mpbern(long nomb, long prec);
;; GEN gsincos(GEN x, GEN *s, GEN *c, long prec);
;; void gsqrtz(GEN x, GEN y);
;; GEN gexpz(GEN x, GEN y);
;; GEN glogz(GEN x, GEN y);
;; GEN gcosz(GEN x, GEN y);
;; GEN gsinz(GEN x, GEN y);
;; GEN mpsincos(GEN x, GEN *s, GEN *c);
;; GEN gtanz(GEN x, GEN y);
;; void gatanz(GEN x, GEN y);
;; GEN gasinz(GEN x, GEN y);
;; GEN gacosz(GEN x, GEN y);
;; GEN gchz(GEN x, GEN y);
;; GEN gshz(GEN x, GEN y);
;; GEN gthz(GEN x, GEN y);
;; GEN gashz(GEN x, GEN y);
;; GEN gachz(GEN x, GEN y);
;; void gathz(GEN x, GEN y);
;; GEN ggammaz(GEN x, GEN y);
;; GEN glngammaz(GEN x, GEN y);
;; GEN mpgamdz(long s, GEN y);
;; GEN ggamdz(GEN x, GEN y);
;; GEN gpsiz(GEN x, GEN y);
;; GEN gzetaz(GEN x, GEN y);
;; void gpolylogz(long m, GEN x, GEN y);
;;; /* version.c */
;; GEN gerepilc(GEN l, GEN p, GEN q);
;; void gerepilemany(long ltop, GEN* const gptr[], long nptr);
;; void printversion(void);
;; GEN printversionno(void);
;;; mpdefs.h
(defmacro extract0 ((var x) &body body)
`(progn
(setf temp ,x)
(symbol-macrolet ((,var (deref (cast temp '(c-ptr ulong)))))
,@body)))
(defmacro extract1 ((var x) &body body)
`(progn
(setf temp ,x)
(symbol-macrolet
((,var (element (deref (cast temp '(c-ptr (c-array ulong 2)))) 1)))
,@body)))
;; #define signe(x) (((long)((GEN)(x))[1])>>SIGNSHIFT)
(defun pari-sign-raw (x)
(extract1 (elt1 x)
(ecase (ldb pari-sign-byte elt1)
(0 0) (1 1) (255 -1))))
;; #define setsigne(x,s) (((GEN)(x))[1]=(((GEN)(x))[1]&(~SIGNBITS))+(((long)(s))<<SIGNSHIFT))
(defun (setf pari-sign-raw) (x s)
(extract1 (elt1 x)
(dpb s pari-sign-byte elt1)))
;; #define typ(x) (((ulong)((GEN)(x))[0])>>TYPSHIFT)
(defun pari-type-raw (x)
(extract0 (elt0 x)
(ldb pari-type-byte elt0)))
;; #define settyp(x,s) (((GEN)(x))[0]=(((GEN)(x))[0]&(~TYPBITS))+(((ulong)(s))<<TYPSHIFT))
(defun (setf pari-type-raw) (x s)
(extract0 (elt0 x)
(dpb s pari-type-byte elt0)))
;; #define pere(x) ((ulong)(((GEN)(x))[0]&PEREBITS)>>PERESHIFT)
;; #define setpere(x,s) (((GEN)(x))[0]=(((GEN)(x))[0]&(~PEREBITS))+(((ulong)(s))<<PERESHIFT))
;; #define lg(x) ((long)(((GEN)(x))[0]&LGBITS))
(defun pari-length-raw (x)
(extract0 (elt0 x)
(ldb pari-length-byte elt0)))
;; #define setlg(x,s) (((GEN)(x))[0]=(((GEN)(x))[0]&(~LGBITS))+(s))
;; #define lgef(x) ((long)(((GEN)(x))[1]&LGEFBITS))
(defun pari-effective-length-raw (x)
(extract1 (elt1 x)
(ldb pari-effective-length-byte elt1)))
;; #define setlgef(x,s) (((GEN)(x))[1]=(((GEN)(x))[1]&(~LGEFBITS))+(s))
;; #define expo(x) ((long)((((GEN)(x))[1]&EXPOBITS)-HIGHEXPOBIT))
(defun pari-exponent-raw (x)
(extract1 (elt1 x)
(- (ldb pari-exponent-byte elt1) pari-exponent-offset)))
;; #define setexpo(x,s) (((GEN)(x))[1]=(((GEN)(x))[1]&(~EXPOBITS))+(HIGHEXPOBIT+(s)))
(defun (setf pari-exponent-raw) (x s)
(extract1 (elt1 x)
(dpb (+ s pari-exponent-offset) pari-exponent-byte elt1)))
;; #define valp(x) ((long)((((GEN)(x))[1]&VALPBITS)-HIGHVALPBIT))
(defun pari-valuation-raw (x)
(extract1 (elt1 x)
(- (ldb pari-valuation-byte elt1) pari-valuation-offset)))
;; #define setvalp(x,s) (((GEN)(x))[1]=(((GEN)(x))[1]&(~VALPBITS))+(HIGHVALPBIT+(s)))
(defun (setf pari-valuation-raw) (x s)
(extract1 (elt1 x)
(dpb (+ s pari-valuation-offset) pari-valuation-byte elt1)))
;; #define precp(x) ((long)(((ulong)((GEN)(x))[1])>>PRECPSHIFT))
(defun pari-precision-raw (x)
(extract1 (elt1 x)
(ldb pari-precision-byte elt1)))
;; #define setprecp(x,s) (((GEN)(x))[1]=(((GEN)(x))[1]&(~PRECPBITS))+(((long)(s))<<PRECPSHIFT))
;; #define varn(x) ((long)((((GEN)(x))[1]&VARNBITS)>>VARNSHIFT))
(defun pari-varno-raw (x)
(extract1 (elt1 x)
(ldb pari-varno-byte elt1)))
;; #define setvarn(x,s) (((GEN)(x))[1]=(((GEN)(x))[1]&(~VARNBITS))+(((ulong)(s))<<VARNSHIFT))
(defun (setf pari-varno-raw) (x s)
(extract1 (elt1 x)
(dpb s pari-varno-byte elt1)))
;; #define mant(x,i) ((((GEN)(x))[1]&SIGNBITS)?((GEN)(x))[i+1]:0)
(defun pari-mantissa-eff (x)
(let ((len (pari-effective-length-raw x)))
;; x is still in temp here
(incf (cast temp 'ulong) 8)
(deref (cast temp `(c-ptr (c-array ulong ,(- len 2)))))))
(defun pari-mantissa (x)
(let ((len (pari-length-raw x)))
;; x is still in temp here
(incf (cast temp 'ulong) 8)
(deref (cast temp `(c-ptr (c-array ulong ,(- len 2)))))))
;; #define setmant(x,i,s) (((GEN)(x))[i+1]=s)
(defun pari-set-component (obj i ptr)
(setf temp obj)
(incf (cast temp 'ulong) (* 4 i))
(setf (deref (cast temp '(c-ptr pari-gen))) ptr))
;;; mpansi.h
;; GEN cgeti(long x);
;; GEN cgetr(long x);
;; GEN stoi(long x);
;; GEN cgetg(long x, long y);
;; GEN mpneg(GEN x);
;; GEN mpabs(GEN x);
(def-call-out pari-cgetg
(:name "cgetg")
(:return-type pari-gen)
(:arguments (x long) (y long))
(:language :stdc))
;;; /* mp.c ou mp.s */
;; GEN gerepile(long l, long p, GEN q);
;; GEN icopy(GEN x);
;; GEN mpcopy(GEN x);
#|
(def-call-out pari-gerepile
(:name "gerepile")
(:return-type pari-gen)
(:arguments (l long) (p long) (q pari-gen :in :none))
(:language :stdc))
|#
;;;; Conversion CLISP --> pari and pari --> CLISP
;; Make a vector of ulongs into a pari object (including the second codeword,
;; which is element 0 of the vector). type is the pari type code.
(defun pari-make-object (vec type)
(let ((obj (pari-cgetg (1+ (length vec)) type)))
(setf temp obj)
(incf (cast temp 'ulong) 4)
(setf (deref (cast temp `(c-ptr (c-array ulong ,(length vec))))) vec)
obj))
;;; Define some CLISP analogs for pari types
(export '(pari-object internal-pari-object))
(defclass pari-object () ()
(:documentation "An abstract class for CLISP equivalents of pari objects"))
(defgeneric convert-to-pari (x)
(:documentation
"Converts suitable CLISP objects into internal pari objects"))
(defclass internal-pari-object (pari-object)
((pointer :accessor pari-class-pointer :initarg :pointer))
(:documentation "Pari object as a pointer into the pari stack"))
(defun make-internal-pari-object (ptr)
(make-instance 'internal-pari-object :pointer ptr))
(defmethod convert-to-pari ((x internal-pari-object))
(pari-class-pointer x))
;;; Make internal pari objects printable and readable
(defmethod print-object ((x internal-pari-object) stream)
(format stream "#Z\"~A\"" (%write-to-string (pari-class-pointer x)))
x)
(defun pari-reader (stream subchar arg)
(declare (ignore subchar))
(when arg (error "~S: Between # and Z no number is allowed." 'read))
(let ((str (read stream t nil t)))
(unless (stringp str)
(error "~S: After #Z a string must follow." 'read))
(make-instance 'internal-pari-object
:pointer (%read-from-string (remove-if #'sys::whitespacep str)))))
(set-dispatch-macro-character #\# #\Z #'pari-reader)
;;; Some helper macros for defining classes for pari objects
(eval-when (compile load eval)
(defun make-accessors (slots)
(let ((pari-package (find-package "PARI")))
(mapcar #'(lambda (slot)
(intern (format nil "pari-class-~A" slot) pari-package))
slots)))
(defun make-initargs (slots)
(let ((keyword-package (find-package "KEYWORD")))
(mapcar #'(lambda (slot)
(intern (string-upcase (symbol-name slot)) keyword-package))
slots)))
(defun dpc-class (name slots accessors initargs)
`(progn
(export '(,name ,@accessors))
(defclass ,name (pari-object)
,(mapcar #'(lambda (slot accessor initarg)
`(,slot :accessor ,accessor :initarg ,initarg))
slots accessors initargs))
(defmethod print-object ((x ,name) stream)
(if *print-readably*
(format stream ,(format nil "#.(~~S '~~S~{ ~S '~~S~})" initargs)
'make-instance ',name
,@(mapcar #'(lambda (acc) `(,acc x)) accessors))
(format stream ,(format nil "#<~~S~{ ~S ~~S~}>" initargs)
',name
,@(mapcar #'(lambda (acc) `(,acc x)) accessors))))))
(defun dpc-to-pari (typecode name slots accessors)
`(defmethod convert-to-pari ((x ,name))
(let ((obj (pari-cgetg ,(+ 1 (length slots)) ,typecode)))
,@(let ((count 0))
(mapcar #'(lambda (accessor)
`(pari-set-component obj ,(incf count)
(convert-to-pari (,accessor x))))
accessors))
obj)))
(defun dpc-from-pari (typecode name initargs)
`(defun ,(intern (format nil "convert-from-pari-~D" typecode) "PARI") (ptr)
(make-instance ',name
,@(let ((count 0))
(mapcan #'(lambda (initarg)
`(,initarg (convert-from-pari
(%component ptr ,(incf count)))))
initargs))))))
(defmacro define-pari-class-only (name slots)
(dpc-class name slots (make-accessors slots) (make-initargs slots)))
(defmacro define-pari-class-0 (typecode name slots)
(let ((accessors (make-accessors slots))
(initargs (make-initargs slots)))
`(progn
,(dpc-class name slots accessors initargs)
,(dpc-to-pari typecode name slots accessors))))
(defmacro define-pari-class (typecode name slots)
(let ((accessors (make-accessors slots))
(initargs (make-initargs slots)))
`(progn
,(dpc-class name slots accessors initargs)
,(dpc-to-pari typecode name slots accessors)
,(dpc-from-pari typecode name initargs))))
;; Type 1: integers -- represented by CLISP integers
(defmethod convert-to-pari ((x (eql 0)))
pari-0)
(defmethod convert-to-pari ((x (eql 1)))
pari-1)
(defmethod convert-to-pari ((x (eql 2)))
pari-2)
(defmethod convert-to-pari ((x (eql -1)))
pari--1)
(defmethod convert-to-pari ((x integer))
(let* ((sign (signum x))
(val (abs x))
(len (ceiling (integer-length val) 32))
(vec (make-array (1+ len))))
(setf (svref vec 0)
(dpb sign pari-sign-byte
(dpb (+ len 2) pari-effective-length-byte 0)))
(do ((i len (1- i))
(y val (ash y -32)))
((eql i 0))
(setf (svref vec i) (logand y #xFFFFFFFF)))
(pari-make-object vec 1)))
(defun convert-from-pari-1 (ptr)
(let* ((sign (pari-sign-raw ptr))
(mant (pari-mantissa-eff ptr))
(result 0))
(dotimes (i (length mant) (* sign result))
(setq result (+ (* result #x100000000) (svref mant i))))))
;; Type 2: real numbers -- represented by CLISP floats
(defmethod convert-to-pari ((x float))
(if (= x 0)
(pari-make-object
(vector (- pari-exponent-offset (* 32 (pari-get-real-prec-raw)) -61) 0) 2)
(multiple-value-bind (signif expo sign) (integer-decode-float x)
(let ((pr (float-precision x)))
;; need ceil(pr/32) mantissa words,
;; signif has to be scaled by 2^(32*ceil(pr/32)-pr)
;; and the exponent will be pr+expo-1
(multiple-value-bind (q r) (ceiling pr 32)
(setq signif (ash signif (- r)))
(let ((vec (make-array (1+ q))))
(setf (svref vec 0)
(dpb sign pari-sign-byte
(dpb (+ pari-exponent-offset pr expo -1)
pari-exponent-byte 0)))
(do ((i q (1- i))
(y signif (ash y -32)))
((eql i 0))
(setf (svref vec i) (logand y #xFFFFFFFF)))
(pari-make-object vec 2)))))))
(defun convert-from-pari-2 (ptr)
(let* ((sign (pari-sign-raw ptr))
(expo (pari-exponent-raw ptr))
(mant (pari-mantissa ptr))
(signif 0))
(dotimes (i (length mant))
(setq signif (+ (* signif #x100000000) (svref mant i))))
(* sign (scale-float (float signif (float-digits 1 (* 32 (length mant))))
(- expo (* 32 (length mant)) -1)))))
;; Type 3: integermods
(define-pari-class 3 pari-integermod (modulus rep))
;; Type 4,5: rational numbers -- represented by CLISP ratios
(defmethod convert-to-pari ((x (eql 1/2)))
pari-1/2)
(defmethod convert-to-pari ((x ratio))
(let ((obj (pari-cgetg 3 4)))
(pari-set-component obj 1 (convert-to-pari (numerator x)))
(pari-set-component obj 2 (convert-to-pari (denominator x)))
obj))
(defun convert-from-pari-4 (ptr)
(/ (convert-from-pari (%component ptr 1))
(convert-from-pari (%component ptr 2))))
;; Type 6: complex numbers -- represented by CLISP complex if possible
(define-pari-class-0 6 pari-complex (realpart imagpart))
(defmethod convert-to-pari ((x (eql #C(0 1))))
pari-i)
(defmethod convert-to-pari ((x complex))
(let ((obj (pari-cgetg 3 6)))
(pari-set-component obj 1 (convert-to-pari (realpart x)))
(pari-set-component obj 2 (convert-to-pari (imagpart x)))
obj))
(defun convert-from-pari-6 (ptr)
(if (and (member (pari-type-raw (%component ptr 1)) '(1 2 4 5))
(member (pari-type-raw (%component ptr 2)) '(1 2 4 5)))
;; CLISP complex is possible
(complex (convert-from-pari (%component ptr 1))
(convert-from-pari (%component ptr 2)))
;; must construct pari-complex
(make-instance 'pari-complex
:realpart (convert-from-pari (%component ptr 1))
:imagpart (convert-from-pari (%component ptr 2)))))
;; Type 7: p-adic numbers
(define-pari-class-only pari-padic (precp valp prime prpow rep))
(defmethod convert-to-pari ((x pari-padic))
(let ((obj (pari-cgetg 5 7)))
(extract1 (elt1 obj)
(setf elt1 (dpb (pari-class-precp x) pari-precision-byte
(dpb (+ (pari-class-valp x) pari-valuation-offset)
pari-valuation-byte 0))))
(pari-set-component obj 2 (convert-to-pari (pari-class-prime x)))
(pari-set-component obj 3 (convert-to-pari (pari-class-prpow x)))
(pari-set-component obj 4 (convert-to-pari (pari-class-rep x)))
obj))
(defun convert-from-pari-7 (ptr)
(make-instance 'pari-padic
:precp (pari-precision-raw ptr)
:valp (pari-valuation-raw ptr)
:prime (convert-from-pari (%component ptr 1))
:prpow (convert-from-pari (%component ptr 2))
:rep (convert-from-pari (%component ptr 3))))
;; Type 8: quadratic numbers
(define-pari-class 8 pari-quadratic (poly realpart imagpart))
;; Type 9: polymods
(define-pari-class 9 pari-polymod (modulus rep))
;; Type 10: polynomials
(define-pari-class-only pari-poly (s varno coeffs))
(defmethod convert-to-pari ((x pari-poly))
(let* ((coeffs (pari-class-coeffs x))
(obj (pari-cgetg (+ 2 (length coeffs)) 10)))
(extract1 (elt1 obj)
(setf elt1
(dpb (pari-class-s x) pari-sign-byte
(dpb (pari-class-varno x) pari-varno-byte
(dpb (+ 2 (length coeffs))
pari-effective-length-byte 0)))))
(dotimes (i (length coeffs) obj)
(pari-set-component obj (+ i 2) (convert-to-pari (svref coeffs i))))))
(defun convert-from-pari-10 (ptr)
(let ((s (pari-sign-raw ptr))
(varno (pari-varno-raw ptr))
(coeffs (pari-mantissa-eff ptr)))
(dotimes (i (length coeffs))
(setf (cast temp 'ulong) (svref coeffs i))
(setf (svref coeffs i) (convert-from-pari temp)))
(make-instance 'pari-poly :s s :varno varno :coeffs coeffs)))
;; Type 11: power series
(define-pari-class-only pari-pws (s varno expo coeffs))
(defmethod convert-to-pari ((x pari-pws))
(let* ((coeffs (pari-class-coeffs x))
(obj (pari-cgetg (+ 2 (length coeffs)) 11)))
(extract1 (elt1 obj)
(setf elt1
(dpb (pari-class-s x) pari-sign-byte
(dpb (pari-class-varno x) pari-varno-byte
(dpb (+ (pari-class-expo x) pari-valuation-offset)
pari-valuation-byte 0)))))
(dotimes (i (length coeffs) obj)
(pari-set-component obj (+ i 2) (convert-to-pari (svref coeffs i))))))
(defun convert-from-pari-11 (ptr)
(let ((s (pari-sign-raw ptr))
(varno (pari-varno-raw ptr))
(expo (pari-valuation-raw ptr))
(coeffs (pari-mantissa ptr)))
(dotimes (i (length coeffs))
(setf (cast temp 'ulong) (svref coeffs i))
(setf (svref coeffs i) (convert-from-pari temp)))
(make-instance 'pari-pws :s s :varno varno :expo expo :coeffs coeffs)))
;; Type 13,14: rational functions
(define-pari-class 13 pari-ratfun (numer denom))
;; Type 15: indefinite binary quadratic forms
(define-pari-class 15 pari-real-qf (a b c))
;; Type 16: definite binary quadratic forms
(define-pari-class 16 pari-imag-qf (a b c))
;; Type 17,18: (row and column) vectors -- represented by CLISP vectors
;; #(:row v1 v2 ... vn) <---> row vector
;; #(:col v1 v2 ... vn) <---> column vector
;; #(v1 v2 ... vn) ---> row vector
(defmethod convert-to-pari ((x vector))
(if (and (plusp (length x)) (member (svref x 0) '(:row :col) :test #'eq))
(let ((obj (pari-cgetg (length x) (case (svref x 0) (:row 17) (:col 18)))))
(do ((i (1- (length x)) (1- i)))
((eql i 0) obj)
(pari-set-component obj i (convert-to-pari (svref x i)))))
(let ((obj (pari-cgetg (1+ (length x)) 17)))
(dotimes (i (length x) obj)
(pari-set-component obj (1+ i) (convert-to-pari (svref x i)))))))
(defun convert-from-pari-17 (ptr)
(let* ((len (1- (pari-length-raw ptr)))
(vec (make-array (1+ len))))
(setf (svref vec 0) :row)
(do ((i len (1- i)))
((eql i 0) vec)
(setf (svref vec i) (convert-from-pari (%component ptr i))))))
(defun convert-from-pari-18 (ptr)
(let* ((len (1- (pari-length-raw ptr)))
(vec (make-array (1+ len))))
(setf (svref vec 0) :col)
(do ((i len (1- i)))
((eql i 0) vec)
(setf (svref vec i) (convert-from-pari (%component ptr i))))))
;; Type 19: matrices -- represented by CLISP 2-dim arrays
(defmethod convert-to-pari ((x array))
(unless (eql (array-rank x) 2)
(error "~S: Array ~S is not 2-dimensional." 'convert-to-pari x))
(let ((obj (pari-cgetg (1+ (array-dimension x 1)) 19)))
(dotimes (j (array-dimension x 1) obj)
(let ((col (pari-cgetg (1+ (array-dimension x 0)) 18)))
(dotimes (i (array-dimension x 0))
(pari-set-component col (1+ i) (convert-to-pari (aref x i j))))
(pari-set-component obj (1+ j) col)))))
(defun convert-from-pari-19 (ptr)
(let ((cols (1- (pari-length-raw ptr))))
(if (eql cols 0)
(make-array '()) ; probably shouldn't happen...
(let* ((rows (1- (pari-length-raw (%component ptr 1))))
(arr (make-array (list rows cols))))
(dotimes (j cols arr)
(let ((col (%component ptr (1+ j))))
(unless (eql (1- (pari-length-raw col)) rows)
(error "~S: Pari matrix has columns of unequal length."
'convert-from-pari))
(dotimes (i rows)
(setf (aref arr i j)
(convert-from-pari (%component col (1+ i)))))))))))
;;; Conversion from pari -- dispatch
(defun convert-from-pari (ptr)
"Converts an internal pari object to a CLISP object"
(case (pari-type-raw ptr)
(1 (convert-from-pari-1 ptr))
(2 (convert-from-pari-2 ptr))
(3 (convert-from-pari-3 ptr))
((4 5) (convert-from-pari-4 ptr))
(6 (convert-from-pari-6 ptr))
(7 (convert-from-pari-7 ptr))
(8 (convert-from-pari-8 ptr))
(9 (convert-from-pari-9 ptr))
(10 (convert-from-pari-10 ptr))
(11 (convert-from-pari-11 ptr))
((13 14) (convert-from-pari-13 ptr))
(15 (convert-from-pari-15 ptr))
(16 (convert-from-pari-16 ptr))
(17 (convert-from-pari-17 ptr))
(18 (convert-from-pari-18 ptr))
(19 (convert-from-pari-19 ptr))
(t (error "~S: Pari type ~D not yet implemented as a CLISP type."
'convert-from-pari (pari-type-raw ptr)))))
(defun convert-to-boolean (ptr)
(case (convert-from-pari ptr)
(0 nil)
(1 t)
(t (error "Pari predicate returned ~S instead of 0 or 1."
(convert-from-pari ptr)))))
(export 'pari-to-lisp)
(defgeneric pari-to-lisp (x))
(defmethod pari-to-lisp ((x pari-object)) x)
(defmethod pari-to-lisp ((x internal-pari-object))
(convert-from-pari (pari-class-pointer x)))
(defmethod pari-to-lisp ((x number)) x)
(defmethod pari-to-lisp ((x array)) x)
;; local variables:
;; eval: (put 'pari-call-out 'common-lisp-indent-function 'defun)
;; eval: (put 'pari-call-out-prec 'common-lisp-indent-function 'defun)
;; eval: (font-lock-add-keywords nil '(("(\\(pari-call-out\\(-prec\\)?\\)\\s *\\(\\(\\s_\\|\\sw\\)*\\)" (1 font-lock-keyword-face) (3 font-lock-function-name-face)) ("(\\(pari-call-out\\(-prec\\)?\\)\\s *(\\(\\(\\s_\\|\\sw\\)*\\)\\s *\\(\\(\\s_\\|\\sw\\)*\\).*)" (1 font-lock-keyword-face) (3 font-lock-function-name-face) (5 font-lock-type-face))))
;; end:
|