File: cl_univpoly_integer.h

package info (click to toggle)
cln 0.98-7.1
  • links: PTS
  • area: main
  • in suites: slink
  • size: 12,188 kB
  • ctags: 15,282
  • sloc: cpp: 71,545; ansic: 12,015; asm: 8,431; sh: 3,159; makefile: 886; lisp: 64
file content (225 lines) | stat: -rw-r--r-- 6,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Univariate Polynomials over the integer numbers.

#ifndef _CL_UNIVPOLY_INTEGER_H
#define _CL_UNIVPOLY_INTEGER_H

#include "cl_ring.h"
#include "cl_univpoly.h"
#include "cl_number.h"

// Normal univariate polynomials with stricter static typing:
// `cl_I' instead of `cl_ring_element'.

#ifdef notyet

typedef cl_UP_specialized<cl_I> cl_UP_I;
typedef cl_univpoly_specialized_ring<cl_I> cl_univpoly_integer_ring;
//typedef cl_heap_univpoly_specialized_ring<cl_I> cl_heap_univpoly_integer_ring;

#else

class cl_heap_univpoly_integer_ring;

class cl_univpoly_integer_ring : public cl_univpoly_ring {
public:
	// Default constructor.
	cl_univpoly_integer_ring () : cl_univpoly_ring () {}
	// Copy constructor.
	cl_univpoly_integer_ring (const cl_univpoly_integer_ring&);
	// Assignment operator.
	cl_univpoly_integer_ring& operator= (const cl_univpoly_integer_ring&);
	// Automatic dereferencing.
	cl_heap_univpoly_integer_ring* operator-> () const
	{ return (cl_heap_univpoly_integer_ring*)heappointer; }
};
// Copy constructor and assignment operator.
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_integer_ring,cl_univpoly_ring)
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_integer_ring,cl_univpoly_integer_ring)

class cl_UP_I : public cl_UP {
public:
	const cl_univpoly_integer_ring& ring () const { return The(cl_univpoly_integer_ring)(_ring); }
	// Conversion.
	CL_DEFINE_CONVERTER(cl_ring_element)
	// Destructive modification.
	void set_coeff (uintL index, const cl_I& y);
	void finalize();
	// Evaluation.
	cl_I operator() (const cl_I& y) const;
public:	// Ability to place an object at a given address.
	void* operator new (size_t size) { return cl_malloc_hook(size); }
	void* operator new (size_t size, cl_UP_I* ptr) { (void)size; return ptr; }
	void operator delete (void* ptr) { cl_free_hook(ptr); }
};

class cl_heap_univpoly_integer_ring : public cl_heap_univpoly_ring {
	SUBCLASS_cl_heap_univpoly_ring()
	// High-level operations.
	void fprint (cl_ostream stream, const cl_UP_I& x)
	{
		cl_heap_univpoly_ring::fprint(stream,x);
	}
	cl_boolean equal (const cl_UP_I& x, const cl_UP_I& y)
	{
		return cl_heap_univpoly_ring::equal(x,y);
	}
	cl_UP_I zero ()
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::zero());
	}
	cl_boolean zerop (const cl_UP_I& x)
	{
		return cl_heap_univpoly_ring::zerop(x);
	}
	cl_UP_I plus (const cl_UP_I& x, const cl_UP_I& y)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::plus(x,y));
	}
	cl_UP_I minus (const cl_UP_I& x, const cl_UP_I& y)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::minus(x,y));
	}
	cl_UP_I uminus (const cl_UP_I& x)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::uminus(x));
	}
	cl_UP_I one ()
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::one());
	}
	cl_UP_I canonhom (const cl_I& x)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::canonhom(x));
	}
	cl_UP_I mul (const cl_UP_I& x, const cl_UP_I& y)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::mul(x,y));
	}
	cl_UP_I square (const cl_UP_I& x)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::square(x));
	}
	cl_UP_I expt_pos (const cl_UP_I& x, const cl_I& y)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::expt_pos(x,y));
	}
	cl_UP_I scalmul (const cl_I& x, const cl_UP_I& y)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_I_ring,x),y));
	}
	sintL degree (const cl_UP_I& x)
	{
		return cl_heap_univpoly_ring::degree(x);
	}
	cl_UP_I monomial (const cl_I& x, uintL e)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_I_ring,x),e));
	}
	cl_I coeff (const cl_UP_I& x, uintL index)
	{
		return The(cl_I)(cl_heap_univpoly_ring::coeff(x,index));
	}
	cl_UP_I create (sintL deg)
	{
		return The2(cl_UP_I)(cl_heap_univpoly_ring::create(deg));
	}
	void set_coeff (cl_UP_I& x, uintL index, const cl_I& y)
	{
		cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_I_ring,y));
	}
	void finalize (cl_UP_I& x)
	{
		cl_heap_univpoly_ring::finalize(x);
	}
	cl_I eval (const cl_UP_I& x, const cl_I& y)
	{
		return The(cl_I)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_I_ring,y)));
	}
private:
	// No need for any constructors.
	cl_heap_univpoly_integer_ring ();
};

// Lookup of polynomial rings.
inline cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& r)
{ return The(cl_univpoly_integer_ring) (cl_find_univpoly_ring((const cl_ring&)r)); }
inline cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& r, const cl_symbol& varname)
{ return The(cl_univpoly_integer_ring) (cl_find_univpoly_ring((const cl_ring&)r,varname)); }

// Operations on polynomials.

// Add.
inline cl_UP_I operator+ (const cl_UP_I& x, const cl_UP_I& y)
	{ return x.ring()->plus(x,y); }

// Negate.
inline cl_UP_I operator- (const cl_UP_I& x)
	{ return x.ring()->uminus(x); }

// Subtract.
inline cl_UP_I operator- (const cl_UP_I& x, const cl_UP_I& y)
	{ return x.ring()->minus(x,y); }

// Multiply.
inline cl_UP_I operator* (const cl_UP_I& x, const cl_UP_I& y)
	{ return x.ring()->mul(x,y); }

// Squaring.
inline cl_UP_I square (const cl_UP_I& x)
	{ return x.ring()->square(x); }

// Exponentiation x^y, where y > 0.
inline cl_UP_I expt_pos (const cl_UP_I& x, const cl_I& y)
	{ return x.ring()->expt_pos(x,y); }

// Scalar multiplication.
#if 0 // less efficient
inline cl_UP_I operator* (const cl_I& x, const cl_UP_I& y)
	{ return y.ring()->mul(y.ring()->canonhom(x),y); }
inline cl_UP_I operator* (const cl_UP_I& x, const cl_I& y)
	{ return x.ring()->mul(x.ring()->canonhom(y),x); }
#endif
inline cl_UP_I operator* (const cl_I& x, const cl_UP_I& y)
	{ return y.ring()->scalmul(x,y); }
inline cl_UP_I operator* (const cl_UP_I& x, const cl_I& y)
	{ return x.ring()->scalmul(y,x); }

// Coefficient.
inline cl_I coeff (const cl_UP_I& x, uintL index)
	{ return x.ring()->coeff(x,index); }

// Destructive modification.
inline void set_coeff (cl_UP_I& x, uintL index, const cl_I& y)
	{ x.ring()->set_coeff(x,index,y); }
inline void finalize (cl_UP_I& x)
	{ x.ring()->finalize(x); }
inline void cl_UP_I::set_coeff (uintL index, const cl_I& y)
	{ ring()->set_coeff(*this,index,y); }
inline void cl_UP_I::finalize ()
	{ ring()->finalize(*this); }

// Evaluation. (No extension of the base ring allowed here for now.)
inline cl_I cl_UP_I::operator() (const cl_I& y) const
{
	return ring()->eval(*this,y);
}

// Derivative.
inline cl_UP_I deriv (const cl_UP_I& x)
	{ return The2(cl_UP_I)(deriv((const cl_UP&)x)); }

#endif

CL_REQUIRE(cl_I_ring)


// Returns the n-th Tchebychev polynomial (n >= 0).
extern cl_UP_I cl_tschebychev (sintL n);

// Returns the n-th Hermite polynomial (n >= 0).
extern cl_UP_I cl_hermite (sintL n);

// Returns the n-th Laguerre polynomial (n >= 0).
extern cl_UP_I cl_laguerre (sintL n);

#endif /* _CL_UNIVPOLY_INTEGER_H */